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Crisis-induced flow reversals in magnetoconvection
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We report the occurrence of flow reversals induced by the attractor-merging crisis in Rayleigh-Bénard
convection of electrically conducting low-Prandtl-number fluids in the presence of a uniform external horizontal
magnetic field. The simultaneous collision of two coexisting chaotic attractors with an unstable fixed point and
its associated stable manifold takes place in the higher-dimensional phase space of the system, leading to a
single merged chaotic attractor. The effect of strength of the magnetic field on the flow reversal phenomena is
also explored in detail.
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I. INTRODUCTION

Flow reversals have long been a topic of interest to re-
searchers due to their relevance to various geophysical and
industrial applications. For example, Earth’s geomagnetic
field has gone through numerous reversals of polarity in the
last 10 million years (four or five reversals per million years on
an average). Industrial applications of flow reversals include
the vacuum arc remelting (VAR) refining process which is
used to remove impurities and porosity from ingots [1,2]. The
appearance of flow reversals in VAR gives rise to a change in
the pool shape and influences the ingot structure. Thus, great
effort is made to minimize the effect of flow reversals in VAR.
Flow reversals are also observed in large-scale fluid motion
occurring in the ocean and atmosphere [3]. To understand the
mechanism of reversal phenomena, researchers often rely on
some simplified models such as Rayleigh-Bénard convection
(RBC). The geometry of RBC is quite simple and consists of
a thin layer of fluid confined between two horizontal parallel
plates subjected to a vertical temperature gradient [4]. Two
control parameters, namely, the Rayleigh number Ra (the
strength of the buoyancy) and the Prandtl number Pr (the
ratio of the kinematic viscosity and thermal diffusivity of
the fluid), control the dynamics of RBC. The occurrence of
flow reversals in RBC has also been reported in many exper-
imental and numerical studies where reversals are related to
the large-scale circulations appearing in turbulent convection
[5–11]. However, in most of these studies the fluids under
consideration have Pr � 0.7. In contrast, flow reversals in
low-Pr fluids (such as liquid metals, which are more relevant
in the context of industrial applications) are relatively less
studied. Yanagisawa and coworkers reported the occurrence
of flow reversals in RBC of low-Pr fluids such as liquid metals
in the presence of a horizontal magnetic field [12–14]. They
observed random flow reversals in their experimental study
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when Ra/Q ≈ 10, where Q is the Chandrasekhar number,
measures the strength of the Lorentz force [12]. In their nu-
merical study, they reported a transition between four-roll and
five-roll structures, which causes the flow reversals [14].

Recently, Mannattil et al. numerically studied the flow
reversal phenomena appearing in infinite-Pr and zero-Pr fluids
and showed that they are very different from each other [15].
They reported that for zero-Pr reversals, the velocity nonlin-
earity dominates all other terms, while the most dominating
term for infinite-Pr reversals is the nonlinearity present in the
energy equation. The study also emphasized the applicability
of low-dimensional models to capture the reversal dynam-
ics in detail and reported that the dynamics associated with
zero-Pr reversals can be captured with a deterministic low-
dimensional model proposed by Pal et al. [16]. It is interesting
to note that similar deterministic low-dimensional models are
also used to explore the nonlinear properties of low-Pr RBC in
the presence of magnetic field [17–19]. However, to the best
of our knowledge, the nonlinear dynamics of flow reversals
appearing in low-Pr fluids in the presence of external magnetic
field have not been explored yet. We address this issue in the
present study by considering the alignment of the external
magnetic field along the horizontal direction. We first perform
three-dimensional (3D) direct numerical simulations (DNSs)
of the governing equations for this purpose. Then we con-
struct a low-dimensional model from DNS data to investigate
the reversal dynamics. Analysis of the model together with
the support from DNSs reveals the presence of an attractor-
merging crisis in the system which is found to cause the flow
reversals.

Crises are global bifurcations which occur when a chaotic
attractor collides with an unstable periodic orbit (UPO) and its
stable manifold [20,21]. An attractor-merging crisis generally
occurs in systems with symmetries where two or more chaotic
attractors merge together to form a single chaotic attractor
as a system parameter is varied [21]. At the critical value of
the control parameter, the precrisis attractors simultaneously
touch their common basin boundary and collide with one
or more UPOs to form the merged attractor. The attractor-
merging crisis has also been observed in several numerical
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and experimental studies [22–26]. However, the mechanism of
crisis may differ in higher-dimensional systems if an unstable
time-independent equilibrium solution “zero” exists [21]. For
example, consider the Lorenz system where three attractors
(one chaotic attractor and two fixed point attractors) coexist
in a certain parameter range. As the parameter is varied, the
chaotic attractor collides with the basin boundary of the fixed
point attractors and gives rise to a chaotic transient [21]. In this
paper, we characterize an attractor-merging crisis in RBC of
low-Pr fluids in the presence of an external uniform horizontal
magnetic field which leads to the flow reversals.

The rest of this paper is organized as follows: Sec. II
describes the mathematical formulation of the problem. The
results of the DNSs are discussed in Sec. III. Section IV is
devoted to portraying the reversal mechanism using a reduced
model constructed from DNS data. The effect of Q and Pr
on the reversal dynamics is detailed in Sec. V, and some
concluding remarks are drawn in Sec. VI.

II. PHYSICAL SYSTEM AND GOVERNING EQUATIONS

We consider a classical Rayleigh-Bénard geometry in
which an infinitely extended thin horizontal layer of electri-
cally conducting fluids is confined between two thermally and
electrically conducting horizontal plates in the presence of
an external uniform horizontal magnetic field B0 ≡ (0, B0, 0).
The bottom plate is heated uniformly to maintain a steady
temperature gradient β = �T /d = (Tl − Tu)/d across the
fluid layer, where Tu and Tl are, respectively, the temperature
of the upper and lower plates with Tl > Tu. We consider low-
Pr fluids for which the magnetic Prandtl number Pm (the ratio
of the kinematic viscosity and magnetic diffusivity) is vanish-
ingly small. Therefore, we consider quasistatic approximation
(Pm → 0). Following this approximation, the dimensionless
equations which govern the convective motion of the fluid
under Boussinesq approximation are given by

∂t v + (v·∇)v = − ∇π + ∇2v + Raθ ê3 + Q∂yb, (1)

∇2b = −∂yv, (2)

Pr[∂tθ + (v·∇)θ ] = v3 + ∇2θ, (3)

∇·v = 0, ∇·b = 0. (4)

In the above set of equations, v ≡ (v1, v2, v3), b ≡
(b1, b2, b3), θ , and π are, respectively, the convective velocity
field, the induced magnetic field, the convective temperature
field, and the modified pressure field. ê3 is the unit vector
along the vertical direction opposite the gravitational acceler-
ation g ≡ (0, 0, g). We choose the viscous diffusion timescale
d2/ν as the characteristic timescale to perform the nondimen-
sionalization procedure. Three dimensionless parameters are
the Rayleigh number Ra = α�T gd3/κν, the Chandrasekhar
number Q = B0

2d2/νλρ0, and the Prandtl number Pr = ν/κ .
The coefficients α, κ , ν, λ, and ρ0 are, respectively, the coeffi-
cient of the volume expansion, thermal diffusivity, kinematic
viscosity, magnetic diffusivity, and reference density of the
fluid. Stress-free and perfectly thermally conducting bounding
plates lead to the boundary conditions for the velocity field

and temperature field:

v3 = ∂zv1 = ∂zv2 = θ = 0, z = 0, 1. (5)

On the other hand, electrically conducting plates give the
boundary conditions for the magnetic field:

b3 = ∂zb1 = ∂zb2 = 0, z = 0, 1. (6)

The presence of horizontal magnetic field destroys the x �
y symmetry of the system [Eqs. (1)–(4)] and acts as an
imperfection parameter [27]. However, the system retains
the inversion symmetry, x → −x, y → −y, v1 → −v1, v2 →
−v2, and b3 → −b3, while other fields do not change sign
[19]. Linear stability analysis of the system shows that the on-
set of convection is independent of both Q and Pr. Therefore,
the critical Rayleigh number (Rac = 27π4/4) and associated
wave number (kc = π/

√
2) are not different from the non-

magnetic case. Now, to explore the effect of both Q and Pr
on the higher order instabilities, we perform DNS, which is
discussed in Sec. III.

III. DNS RESULTS

We use the pseudospectral code TARANG [28] to perform
the DNS of the system [Eqs. (1)–(4)] together with the
boundary conditions (5) and (6). In the simulation code, the
independent fields, i.e., vertical velocity, vertical vorticity ω3,
and temperature, are expanded using the set of orthogonal ba-
sis functions compatible with the boundary conditions. Thus,
the expressions of v3, ω3, and θ in the Fourier space become

(v3, θ ) =
∑

l,m,n

(Wlmn(t ), Tlmn(t ))ei(lkxx+mkyy) sin (nπz),

ω3 =
∑

l,m,n

Zlmn(t )ei(lkxx+mkyy) cos (nπz). (7)

Wlmn, Zlmn, and Tlmn are the Fourier modes or amplitudes,
with l , m, and n being the non-negative integers. kx and
ky are the horizontal wave numbers along the x and y di-
rections, respectively. For the present simulation, we choose

FIG. 1. The top two panels show the time series of
v3(π/kc, π/kc, 0.5) and the dominant Fourier mode W101 from
DNS at r = 7 for Q = 100 and Pr = 0.025. The bottom panels
display the convective flow profile: before the reversal (left) and
after the reversal (right).
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FIG. 2. The bifurcation diagram for Q = 100 and Pr = 0.025
shows the merging of chaotic attractors (CA1 and CA2) into a single
attractor (MCA). The dashed cyan (lighter gray) curve is the mediat-
ing saddle, the unstable conduction state M. The solid cyan (lighter
gray) circle and red (medium gray) diamonds denote the pitchfork
bifurcation and Hopf bifurcations.

kx = ky = kc = π/
√

2, where kc is the critical wave number
for the onset of convection. Simulations are performed in
a square simulation box of size (2π/kc) × (2π/kc) × 1 ≡
2
√

2 × 2
√

2 × 1 using random initial conditions. Periodicity
is considered for all the fields along horizontal directions.
This simulation box rules out roll-merging phenomena re-
ported by Yanagisawa et al. [12,14] [see ansatz (7)], but it
is a reasonable representation of flow in confined geometries,
while allowing more numerical exploration than would be
possible if explicit sidewall boundaries were introduced. We
consider a maximum of 643 spatial grid resolution, although
most of the simulations are carried out using 323 spatial grid
resolution. A fourth order Runge-Kutta integration scheme
with the Courant-Friedrichs-Lewy condition is used for time
advancement with the time step δt = 0.001. We introduce
a new parameter in the subsequent discussion, the reduced
Rayleigh number (r = Ra/Rac), where Rac is the critical
Rayleigh number for the convection onset.

We perform extensive DNSs for Pr = 0.025 by varying
the values of Q and r in the ranges of 10 � Q � 500 and
1 � r � 100, respectively. We find two different routes to
chaos, namely, period-doubling, corresponding to small Q,
and quasiperiodic for higher Q, as reported in Refs. [18,29].
To discern the fate of the chaotic attractor, we fix the Q
and gradually increase r. We notice the occurrence of flow
reversals as r crosses a critical value depending on Q. Figure 1
shows the reversal phenomena at r = 7 for Q = 100. The
top two panels in Fig. 1 display the time evolution of verti-
cal velocity at (π/kc, π/kc, 0.5) and dominant Fourier mode
W101. Both time series change sign frequently, indicating the
reversal phenomena. The bottom panels in Fig. 1 show the
velocity and temperature fields corresponding to two consec-
utive instants: before the reversal at t = 104.8 (left) and after
the reversal at t = 104.9 (right). Now, to understand the origin
of these reversals, we construct a low-dimensional model from
the DNS data. The derivation and results of the reduced model
are discussed in Sec. IV.

IV. REDUCED MODEL RESULTS

We construct a low-dimensional model from the DNS
data following the method described in Ref. [30]. The ba-
sic idea is to identify the set of large-scale Fourier modes
which principally contribute to the total energy. Following
the method, we identify 8 large-scale vertical velocity modes
(W101, W111, W301, W311, W202, W022, W121, W222), 13 vertical
vorticity modes (Z010, Z210, Z220, Z230, Z111, Z121, Z301, Z311,
Z012, Z202, Z212, Z222, Z030), and 9 temperature modes (T101,
T111, T301, T311, T202, T022, T121, T222, and T002). Projecting
the hydromagnetic system [Eqs. (1)–(4)] on these modes, we
obtain 30 coupled nonlinear ordinary differential equations,
which is our low-dimensional model. We analyze the model in
detail using open-source software, XPPAUT [31], to get insight
into the flow reversal phenomena. Note that in deriving the
low-dimensional model we choose only the real part of the
Fourier modes, which is consistent with the DNS results. As a
result, we do not observe the traveling roll solution which was
observed by Paul et al. in RBC in the absence of magnetic
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FIG. 3. Time evolution of the dominant Fourier mode W101 before and after the attractor-merging crisis obtained from both DNS and the
model for Q = 100 and Pr = 0.025.
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TABLE I. Different flow regimes obtained from DNS and the model corresponding to three different Q and two different Pr.

Flow Pr = 0.025 Pr = 0.1

Q
patterns

DNS (r) Model (r) DNS (r) Model (r)

100 2D rolls 1–1.68 1–1.72 1–5.82 1–10.78
PWR 1.69–1.87 1.73–3.33 5.83–10.61 10.79–19.58

QPWR 1.88–3.70 3.34–5.62 10.62–13.37 19.59–28.34
CWR 3.71–5.43 5.63–8.31 13.38–17.67 28.35–31.49

Flow reversals �5.44 �8.32 �17.68 �31.5

300 2D rolls 1–5.74 1–4.18 1–14.17 1–31.78
PWR 5.75–6.02 4.19–10.18 14.18–21.61 31.79–36.34

QPWR 6.03–7.37 10.19–14.39 21.62–24.01 36.35–44.87
CWR 7.38–16.99 14.40–23.43 24.02–80.54 44.88–46.60

Flow reversals �17.00 �23.44 �80.55 �46.61

500 2D rolls 1–12.87 1–8.17 1–22.78 1–46.39
PWR 12.88–13.82 8.18–20.83 46.40–46.53

QPWR 13.83–16.50 20.84–36.79 22.79-34.73 46.54-69.79
CWR 16.51–58.19 36.80–47.21 �34.74 69.80–77.34

Flow reversals �58.20 �47.22 �77.35

field [32]. Furthermore, in the current study the presence of
magnetic field along the y direction suppresses the growth of
W011. The linear growth of W101 is stopped by transferring
the energy to the wavy roll mode in the direction of the y
axis (Z010). Other modes are chosen following the nonlinear
corrections using the terms (v·∇)v and (v·∇)θ in Eqs. (1)
and (3), respectively.

To gain insight into the reversal dynamics, we first con-
struct a bifurcation diagram using the model. Figure 2 shows
the bifurcation diagram for Q = 100 and Pr = 0.025. From
Fig. 2, we see that convection sets in at r = 1 through a
supercritical pitchfork bifurcation in the form of steady two-
dimensional (2D) rolls [blue (dark gray) curves] and the
unstable conduction state [dashed cyan (lighter gray) curve]
continues to exist for higher r. At r = 1.73, both 2D roll
branches lose their stability via supercritical Hopf bifurca-
tions, and stable limit cycles appear, which are also called
the periodic wavy roll (PWR) solutions. Note that this Hopf
bifurcation is a secondary bifurcation of convection through
which time dependency enters in the system [18,33,34]. The
extremum of the limit cycles are shown with the red (medium
gray) curves. At r = 3.345, the limit cycles become unstable
through Neimark-Sacker bifurcations, and quasiperiodicity
appears in the system, followed by the chaos. The quasiperi-
odic and chaotic solutions, also known as quasiperiodic wavy
rolls (QPWRs) and chaotic wavy rolls (CWRs), are shown
with the brown (darker gray) and green (light gray) dots in
Fig. 2. Both chaotic attractors (CA1 and CA2) grow in size
with the increment in r, and at r = rMC ≈ 8.32 they collide
with the mediating unstable conduction state M and merge to-
gether to form a single chaotic attractor (MCA). Immediately
after this, we observe the occurrence of flow reversals in the
system. This is a scenario of the attractor-merging crisis due to
the presence of inversion symmetry in the system. The MCA
is shown with the gray dots.

Figure 3 exhibits the time series of the dominant Fourier
mode W101 before and after the attractor-merging crisis from
DNSs and the model. Figures 3(a) and 3(b) display the precri-

sis chaotic attractors (CA1 and CA2) from DNSs for r = 5,
while those from the model are shown in Figs. 3(d) and 3(e)
corresponding to r = 7. Figures 3(c) and 3(f) exhibit the
postcrisis attractors (MCA) from DNSs and the model cor-
responding to r = 7 and r = 9, respectively. Figure 3 also
establishes good qualitative agreement between the DNSs and
model results. Table I presents a more detailed comparison of
DNSs and model results for different values of Q and Pr. From
Table I, good qualitative agreement between DNSs and the
model results is observed, which validates the model. There-
fore, we use the model further to detail the attractor-merging
crisis.

To characterize the attractor-merging crisis we adopt a
suitable Poincaré map, defined as the 29-dimensional hyper-
plane given by W022 = 0, with d

dt W022 > 0. Then we study
the dynamics of the system by varying r for fixed Pr = 0.025
and Q = 100. It is interesting to note that the system always
has a stationary saddle point M for r > 1. This saddle point
is shown by the + symbol in Fig. 4. Figure 4(a) shows the
projection of the symmetrically located precrisis chaotic at-
tractors (CA1 and CA2) on the W101-T101 plane with their
basin of attraction for r = 8.213. Gray dots represent the

FIG. 4. (a) Projection of precrisis chaotic attractors CA1 and
CA2 on the W101-T101 plane with their basin of attraction for Q = 100
and Pr = 0.025. (b) Projection of postcrisis merged chaotic attractor
MCA on the W101-T101 plane for Q = 100 and Pr = 0.025.
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FIG. 5. Attractor-merging mechanism for Q = 100 and Pr = 0.025 corresponding to three different r. Blue (dark gray) and red (medium
gray) dots in (a) and (b) are projections of CA1 and CA2 on the W101-T101 plane. Black dots in (c) are the projection of MCA. Solid green (light
gray) and dashed cyan (lighter gray) curves are the stable and unstable manifolds of mediating saddle M.

points in the basin of CA1, while the white background repre-
sents the basin of CA2. At r = rMC both CA1 and CA2 collide
with the stable manifold of M and give rise to the merged
attractor. Figure 4(b) displays the projection of the postcrisis
attractor (MCA) on the W101-T101 plane for r = 8.517.

The collision of CA1 and CA2 with the stable manifold
of M is depicted in Fig. 5, in which projection of the chaotic
attractors is shown together with the stable and unstable man-
ifolds of M [solid green (light gray) and dashed cyan (lighter
gray) curves respectively] corresponding to three different r.
Comparing Figs. 5(a) and 5(b), we notice that both CA1 and
CA2 grow in size with the increment in r. Also, both of them
come closer to the stable manifold of M. Near r = 8.319, both
CA1 and CA2 touch the stable manifold of M simultaneously
and merge together to form the MCA [see Fig. 5(c)].

We further compute the variation of maximal Lyapunov
exponent (MLE) near the crisis point to elucidate the scenario
of the attractor-merging crisis. The MLE defines the degree
of chaoticity of a system and shows universal behavior during
the crisis phenomena [35]. During an attractor-merging crisis
MLE shows a knee as the control parameter is varied [35].
As a result, the rate of change of MLE decreases signifi-
cantly after the crisis. Figure 6(a) displays the variation of
MLE for Q = 100 in the range 7 � r � 9 computed using
the model. The blue (dark gray) dots represent the MLE
data calculated using XPPAUT, while black lines are the linear
fit. From Fig. 6(a), we notice that MLE shows a knee at

FIG. 6. (a) Variation of MLE near the crisis point for Q = 100,
Pr = 0.025. Blue (dark gray) dots are the MLE calculated from
XPPAUT, and black lines are the linear fit. (b) Onset of flow reversals
obtained from DNS as a function of Q for Pr = 0.025.

r = rMC ≈ 8.32, which also ensures the occurrence of the
attractor-merging crisis in the system.

V. EFFECT OF Q AND Pr ON FLOW REVERSALS

We also explore the effect of the strength of the magnetic
field on reversal phenomena by computing the onset of flow
reversals for different Q corresponding to Pr = 0.025. It is
well known that the increment in Q suppresses the time-
dependent solutions at the onset and enhances the regime of
2D rolls in low-Pr RBC [17,18]. As a result, the scenario of the
attractor-merging crisis which causes the reversals is delayed
to the higher values of r as we increase Q. In contrast, the
reversals occur near the onset for small Q. Figure 6(b) shows
the onset of flow reversals obtained from DNSs correspond-
ing to different values of Q for Pr = 0.025. We observe that
the reversal phenomena do not occur until higher r with the
increment in Q following a power law.

We use the model further to explore the influence of Pr
on the reversal dynamics. Figure 7 displays the appearance of
different flow regimes on the Q-r plane corresponding to two
different Pr. By comparing Figs. 7(a) and 7(b), we observe
that manipulation of Pr does not cause any qualitative change
in the flow dynamics, but it does bring quantitative changes
in the flow regimes. From Fig. 7, we notice that with the
increment in Pr the regions of 2D rolls and QPWR expand as
Q increases, while the region of PWR shrinks and eventually
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100 200 300 400 500
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FIG. 7. (a) and (b) display the variation of the different flow
regimes, namely, 2D rolls (cyan or lighter gray regions), PWR (yel-
low or white regions), QPWR (blue or dark gray regions), CWR
(green or light gray regions), and the regions where reversals occur
(red or medium gray regions) on the Q-r plane for two different Pr
as obtained from the model.
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becomes vanishingly small. Also, the onset of flow reversals
for fixed Q moves towards the higher r, and a phenomeno-
logical similarity with Q is observed in the sense that the
increment in Pr also delayed the flow reversal phenomena.

VI. CONCLUSIONS

In conclusion, we have studied the nonlinear dynamics
of flow reversals appearing in low-Pr Rayleigh-Bénard con-
vection in the presence of an external uniform horizontal
magnetic field. We have performed direct numerical sim-
ulations of the governing equations and low-dimensional
modeling of the system for this purpose. We have character-
ized an attractor-merging crisis which is found to cause the

random flow reversals in the system. We have also shown that
the increment in the strength of the magnetic field and Pr delay
the flow reversal phenomena until higher Rayleigh numbers
and enhance the region of two-dimensionality. These results
might be applicable to various industrial applications in which
efforts are made to minimize the effect of flow reversals.
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