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Enhanced dynamo growth in nonhomogeneous conducting fluids
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We address magnetic-field generation by dynamo action in systems with inhomogeneous electrical conduc-
tivity and magnetic permeability. More specifically, we first show that the Taylor-Couette kinematic dynamo
undergoes a drastic reduction of its stability threshold when a (zero-mean) modulation of the fluid’s electrical
conductivity or magnetic permeability is introduced. These results are obtained outside the mean-field regime,
for which this effect was initially proposed. Beyond this illustrative example, we extend a duality argument put
forward by Favier and Proctor (2013) to show that swapping the distributions of conductivity and permeability
and changing u → −u leaves the dynamo threshold unchanged. This allows one to make connections between a
priori unrelated dynamo studies. Finally, we discuss the possibility of observing such an effect both in laboratory
and astrophysical settings.
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I. INTRODUCTION

Temperature or concentration gradients in astrophysical
flows play a critical role in magnetogenesis, driving buoy-
ant overturning and generally constraining the structure and
intensity of fluid motions. These motions can in turn power
a dynamo instability in electrically conducting fluids when
they are morphologically favorable and vigorous enough to
overcome Ohmic dissipation. This results in the amplifica-
tion and persistence of long-lived, coherent magnetic fields
[1]. However, spatial variations in temperature, density, or
concentration of chemical species not only govern the flows’
dynamics but, importantly, they also induce spatial variations
of the electrical conductivity, which can reach considerable
amplitudes in astrophysical plasmas [2].

The combined effect of variable electrical conductivity and
density stratification on magnetic field morphology has been
investigated numerically for specific models of giant planets
[3,4]. Moreover, it has been shown that a spatially inhomoge-
neous conductivity can provide the condition for a dynamo
instability to build up in flow configurations and regimes
where no magnetic fields could be amplified otherwise: by
considering the interaction of magnetic field and conductivity
fluctuations over a spatial scale small compared to that of
the mean magnetic field, Pétrélis, Alexakis, and Gissinger
[5] recently demonstrated the existence of a new mean-field
amplification mechanism, which they refer to as ασ -effect
in reference to the classical α-effect associated with velocity
fluctuations [6]. They argued that such conductivity variations
could account for the magnetic field morphology of Neptune
and Uranus, and this model has been applied to also investi-
gate possible dynamo action in Jupiter’s atmosphere [7].
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Yet, mean-field models rely on scale and amplitude sep-
aration between the mean and perturbation fields. This
assumption becomes questionable for example in the nonlin-
ear flow regimes where magnetic fluctuations, amplified by
a small-scale dynamo, are no longer small compared to the
mean field. Further, the assumption that conductivity varia-
tions remain small compared to the mean value is likely to fail
in astrophysical plasmas where strong temperature variations
are met across the flow, inducing significant variations of the
magnetic diffusivity [2]. Therefore, it appears interesting to
test the possibility for a dynamo to be driven or enhanced by
conductivity variations in the general case where the hypothe-
ses of the mean-field theory no longer hold. The present article
aims at demonstrating that magnetic field generation can be
enhanced by the fluctuations of the electrical conductivity
of the fluid, far beyond the domain of validity of the mean-
field theory, as is likely to occur in astrophysical systems.
Finally, we show that the dynamo problem with varying con-
ductivity can be mapped onto a related dynamo problem with
varying magnetic permeability. This property draws a connec-
tion between two apparently unrelated flow configurations.
Using this result we justify that modulations of the mag-
netic diffusivity represent a powerful asset for the design of
experimental dynamos.

II. THE MODEL

Here we consider the kinematic dynamo problem where
a magnetic field B is exponentially amplified by a time-
independent velocity field u in a fluid characterized by a
spatially inhomogeneous electrical conductivity σ (x). For
convenience, the spatial variations of the conductivity are
defined here through the variations of its inverse, the electri-
cal resistivity ρ(x) = σ−1(x) = ρ0 + ρ ′(x), where ρ0 is the
mean resistivity and ρ ′ is the local deviation from the spatial
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mean. Note that, in what follows, we will consider significant
deviations ρ ′/ρ0 = O(1) as opposed to [5]. For now the mag-
netic permeability μ is assumed to be μ0 (classical vacuum
permeability).

The evolution of the magnetic field is governed by the
induction equation, made dimensionless using the typical do-
main size L as the unit length and the diffusive timescale
L2μ0/ρ0 as the time unit:

∂B
∂t

= Rm ∇ × (u × B) + �B − ∇ × (ρ ′/ρ0 ∇ × B), (1)

where the magnetic Reynolds number Rm = ULμ0/ρ0 is the
control parameter quantifying the ratio between induction
effects and (mean) Ohmic dissipation. The magnetic field is
subject to the solenoidal constraint

∇ · B = 0. (2)

In order to investigate the effect of a variable conductivity
on the dynamo threshold, we consider one of the simplest
possible flow configuration for laboratory experiments: the
Taylor-vortex flow generated between two coaxial cylinders
spinning at different rates. Taylor-vortex flow typically builds
up in a cylindrical or spherical Couette flow prone to cen-
trifugal instability, when the angular momentum decreases
outwards. It provides a simple example of incompressible,
swirling flow capable of generating a dynamo magnetic field
in both cylindrical [8–11] and spherical geometry [12]. The
Taylor-vortex is also known to be an interesting analog of
Rayleigh-Bénard convection, which is assumed to drive many
planetary and stellar dynamos [13].

Near their onset, Taylor vortices are axisymmetric, toroidal
vortices of alternating circulation and aspect ratio close to
unity in the r-z plane [14]. Here we consider a cylindrical
domain, periodic in the axial direction, with dimensionless
outer radius ro = 2 and vertical size � = 4. The inner region
(with inner radius ri = 1) rotates as a solid body at angular ve-
locity �i = 1. The region ri < r � ro corresponds to the fluid
domain, where the velocity field prescribed here essentially
reproduces the basic features of the saturated Taylor-vortex
pattern. The azimuthal velocity simply reduces to the classical
Couette solution for a viscous flow entrained by two infinite,
coaxial cylinders with the outer cylinder at rest (�o = 0):

u · eφ = �ir for r � ri, (3)

u · eφ = �i

r−2
i − r−2

o

(r−1 − r−2
o r) for ri < r � ro. (4)

The prescribed radial and axial velocities define two pairs of
axisymmetric, counter-rotating toroidal vortices:

u · er = ∂z	 and u · ez = −∂r	, (5)

where the stream function 	 is defined here as

	 = 0 for r � ri, (6)

	 = 6(r − ri )
2(ro − r)2 cos(πz) for ri < r � ro. (7)

Our use of a largely simplified flow to represent the saturated
Taylor-vortex flow evidently implies that the kinematic dy-
namo threshold is expected to differ quantitatively from that of

a true, laminar Taylor-Couette flow with the same domain as-
pect ratio. Indeed it is important to emphasize that our purpose
here is not to quantitatively reproduce full magnetohydrody-
namic (MHD) simulations, but rather to show the effect of
inhomogeneous fluid properties on the dynamo threshold in
a simple but realistic flow configuration, where variations of
both 	 and ρ ′ are explicitly formulated.

Finally, the prescribed electrical resistivity deviation ρ ′
is axisymmetric and exhibits periodic variations along the
axial direction:

ρ ′/ρ0 = 0 for r � ri, (8)

ρ ′/ρ0 = 4λ (r − ri )(ro − r) cos(2πz) for ri < r � ro (9)

where λ is a tunable coefficient 0 � λ < 1 describing the
intensity of the spatial variations. The choice for the partic-
ular resistivity modulation (9) will be made clear in the next
section. Note that the resistivity modulation prescribed here
has zero mean, so that a possible modification of the dynamo
threshold cannot be related to a modification of the effective
magnetic Reynolds number.

The induction equation (1) with variable electrical re-
sistivity is discretized in space using a second-order, finite
differences method on a cylindrical, staggered mesh [15] for
preservation of the magnetic field divergence. The numeri-
cal scheme used here for time-integration is a second-order
semi-implicit backward differentiation scheme, where the dif-
fusion operator is dealt with implicitly, whereas the induction
operator is treated explicitly and linearly extrapolated to the
upcoming time step [16].

Ferromagnetic (pseudovacuum) boundary conditions
(infinite-permeability boundary yielding B × n = 0, where
n is the normal vector to the boundary) are prescribed on
the outer cylinder r = ro. The domain is periodic in the axial
direction. The typical resolution used for the direct numerical
simulations presented in the next section is 128 × 32 × 128
grid points, which convergence tests (up to 192 × 64 × 256)
have shown to be sufficient for the purpose of the
present study.

III. RESULTS

When no spatial variations of electrical resistivity are in-
cluded in our model (λ = 0), a nonaxisymmetric, nonpurely
toroidal magnetic field perturbation eventually undergoes ex-
ponential amplification if the magnetic Reynolds number
exceeds the critical value Rmc ∼ 73.5. Note that Rmc depends
on both the flow structure and (importantly) the chosen mag-
netic boundary conditions [17]. As a result, the value of Rmc

found here with our simplified flow model cannot be quantita-
tively compared with the kinematic dynamo threshold Rmc =
134.9 found in the same geometry by [8] for Taylor-Couette
flow using different boundary conditions. Nevertheless, the
first magnetic eigenmode B(r)ei(mBφ+kBz) is characterized by
mB = 1 in the azimuthal direction and kB = 1

2 kV in the axial
direction (where kV = π describes the velocity field axial
mode), thus displaying the same magnetic field morphology
as the kinematic dynamo in [8]. Importantly, it also displays
the same magnetic field morphology as the fully nonlinear
dynamos found by [9,10] for realistic, axisymmetric Taylor-
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FIG. 1. From left to right: Axial slices of (a) the azimuthal magnetic field in the fluid domain (color map), with streamline pattern
superimposed (	 isocontours); (b) magnetic energy density (averaged in the azimuthal direction); (c) electrical energy density (again, averaged
in the azimuthal direction); all of them corresponding to the reference case Rm = 100, λ = 0. (d) Isocontours of the eletrical resistivity
modulation ρ ′/ρ0 as defined in (9). (e),(f) Isosurfaces of magnetic energy (drawn for 10% of the maximum value): (e) λ = 0, Rm = 100;
(f) λ = 0.9, Rm = 80. The inner cylinder boundary is shown for reference.

vortex flow using the same domain geometry. The structure of
the first dynamo mode is illustrated in Figs. 1(a)–1(c), where
an axial slice of the azimuthal magnetic field is shown along
with colormaps of the (azimuthally averaged) magnetic and
electrical energies. Streamlines are superimposed for refer-
ence, showing that magnetic energy typically builds up in the
stagnation region between two counter-rotating vortices and in
the vicinity of the inner cylinder boundary, where differential
rotation is stronger.

In what follows, the electrical resistivity is now spa-
tially modulated in the axial direction. In the context
of small-amplitude perturbations, Ref. [5] has shown that
the mean-field effect due to conductivity fluctuations (the
ασ -effect) operates when nondiagonal coefficients of the
ασ -tensor are nonzero. In practice, this corresponds to the
requirement that flow vorticity gradients coincide with σ

extrema (or conversely, that σ gradients coincide with vor-
ticity extrema). A following paper showed a similar effect
for anisotropic but spatially homogeneous conductivity: in
this case, the magnetic diffusivity η is no longer a scalar
field but a tensor, whose nondiagonal coefficients have to be
nonzero to observe a reduction of the dynamo threshold [18].
Bearing these results in mind, it would be natural to define the
electrical resistivity deviation ρ ′/ρ0 as a sinusoidal function of
z such that its variations are shifted by π/2 compared to the
stream function 	. Yet, the distribution of electrical currents
in the reference dynamo field (Fig. 1 with λ = 0) suggests that
a resistivity modulation such as (9), at twice the wavelength
of 	 in the axial direction, should provide an even more
efficient ρ ′ dynamo, as it would also enhance the secondary
peaks in current intensity [observable here at z ∼ −0.5 and
z ∼ 1.5 in Fig. 1(c)]. Such a modulation corresponds to the
case where the electrical resistivity becomes minimal (or con-
versely, where the conductivity becomes maximal) for each
zero of the vorticity field, regardless of the sign of the vorticity
variation [see Fig. 1(d)].

The resistivity modulation (9) induces no structural
changes in the dominant magnetic mode, as shown in

Figs. 1(e) and 1(f), where isosurfaces of the magnetic energy
density are drawn respectively for λ = 0 (reference case) and
λ = 0.9. The chosen conductivity modulation merely tends
to concentrate the magnetic energy in the regions (z ∼ −1.5
and z ∼ 0.5) where the stretching of magnetic field lines is
strongest, due to the combined effects of strong differential
rotation in the azimuthal direction (near the inner cylinder
boundary) and diverging flow pattern (near the stagnation
point between two counter-rotating vortices). Yet, the effect
of the resistivity modulation on dynamo onset is remarkable.
Figure 2 shows the critical magnetic Reynolds number Rmc

FIG. 2. Critical magnetic Reynolds number for kinematic dy-
namo Rmc as a function of the amplitude of the resistivity modulation
λ. Note that the prefactor in (9) ensures that, for example, λ = 0.5
corresponds to a maximum resistivity variation of 50% around its
mean value. Inset: Asymptotic kinematic growth rate for Rm =
70 and λ = 0.25, with different values of the phase shift 
 in
(10): 
 = π (�); π/2 (�); π/4 (�); π/6 (◦) and 0 (�). The sym-
bol ∗ corresponds to a different modulation wavelength with ρ ′ ∝
cos(πz + π/2), and the dashed line marks the value of the reference
growth rate (λ = 0).
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for kinematic dynamo action found for spatial variations of
increasing amplitude λ; for the largest-amplitude modulation
presented here (λ = 0.95), the dynamo threshold is reduced
by 38% compared to its reference value (λ = 0 case). Note
that (9) has been tailored here so as to efficiently lower the
dynamo threshold. The opposite can evidently occur with a
different modulation, in particular when a different phase shift
between the vorticity and the resistivity pattern is chosen. This
is illustrated by the inset of Fig. 2 where (9) has been replaced
by the modulation

ρ ′/ρ0 = 4λ (r − ri )(ro − r) cos(2πz + 
), (10)

and the kinematic growth rate is shown for different values of
the phase 
, with fixed λ and Rm.

IV. DISCUSSION

Using duality arguments, Ref. [19] showed that, up to a
change of sign in the velocity field, the problems of kinematic
dynamo growth in a fluid domain with either infinite elec-
trical conductivity (“perfect conductor”) or infinite magnetic
permeability (“ferromagnetic”) boundaries are equivalent. In
point of fact, this observation is extendable to the duality be-
tween the problems of inhomogeneous electrical conductivity
on the one hand, and inhomogeneous magnetic permeability
on the other hand. Indeed the induction equation for the po-
tential vector A (with B = ∇ × A) reads in the general case
where both the electrical conductivity σ and the magnetic
permeability μ are spatially inhomogeneous:

∂A
∂t

= L B ≡ u × B − 1

σ (x)
∇ ×

(
B

μ(x)

)
, (11)

where the Weyl gauge has been used. For any magnetic po-
tential vector A such that A × n = 0 on the (impermeable)
domain boundary ∂�, and for any magnetic field B̃ such that
B̃ × n = 0 on ∂�,〈

B̃, L ∇ × A
〉 = 〈∇ × L ∗B̃, A

〉
(12)

with the inner product 〈a, b〉 = ∫
�

a · b d�, and the linear

operator L ∗B̃ ≡ (−u) × B̃ − 1
μ(x)∇ × ( B̃

σ (x) ).
Because the eigenvalues of the induction operator (acting

on potential vectors) L ∇× are the complex conjugates of that
of its adjoint operator ∇ × L ∗ (acting on magnetic fields), the
kinematic induction problem (11) with infinitely conducting
boundaries (as ensured by A × n = 0 on ∂�) meets the same
dynamo threshold as the dual problem where ferromagnetic
boundaries (B̃ × n = 0 on ∂�) and the reverse velocity field
−u are considered, provided σ (x) and μ(x) are swapped in
the governing equation for the magnetic field:

∂B̃
∂t

= ∇ × (−u × B̃) − ∇ ×
[

1

μ(x)
∇ ×

(
B̃

σ (x)

)]
. (13)

The Taylor-vortex flow is left invariant by the sign-reversal
transformation u → −u, combined with (i) mirror symmetry
with respect to any plane containing the axis of rotation and
(ii) translation by half a period along the axial direction. As a
consequence, the numerical results presented in the previous
section (with ferromagnetic outer cylinder and inhomoge-
neous electrical conductivity) carry over to the equivalent

setup where the magnetic permeability is inhomogeneous in-
stead of the electrical conductivity, and the outer cylinder is a
perfect conductor.

Beyond the particular Taylor-vortex flow, the duality argu-
ments developed above can be extended to describe fluids and
boundaries with arbitrary electrical and magnetic properties.
Namely, the fields are defined over R3 and the distributions
μ(x) and σ (x) describe the local electrical and magnetic prop-
erties both inside the fluid domain and outside of it (i.e., inside
the boundaries). One readily concludes that the dual problem
is obtained by substituting u → −u and swapping μ(x) and
σ (x) both inside and outside the fluid. As a special case, we
recover the situation described above when the boundary is
perfectly insulating, σ → ∞ in the boundary, which is dual
to the case of a ferromagnetic boundary with μ → ∞. But
the result holds for any finite μ(x) and σ (x), whether or not
they are uniform. For instance, solid boundaries with either
inhomogeneous magnetic permeability [20,21] or inhomoge-
neous electrical conductivity [22] were shown independently
to be sources of dynamo action. The analysis above indicates
that these two dynamo setups are also dual problems that
can be mapped onto one another. As a consequence, for each
mode of the first problem with growth rate pi, there exists a
different mode of the second problem with growth rate p∗

i , im-
plying in particular that the onsets of instability are equal for
both setups.

We now discuss the possibility of observing this effect in a
laboratory experiment. Relying on full MHD simulations, [10]
showed that the onset of the (homogeneous) Taylor-vortex
dynamo is strongly decreased by inserting equally spaced
blades separated in the axial direction by a distance equal to
the width of the fluid domain, and alternatively attached to the
inner and outer cylinder. In this configuration, the threshold
decreases from Rmc ≈ 140 to Rmc ≈ 80, a value similar to
the one obtained for our synthetic flow in the homogeneous
case (λ = 0). This decrease is easy to understand: the full
MHD simulations presented in [10] for freely evolving Taylor-
vortex flow (without blades) show radial velocities of order
0.2 (let us recall that the velocity unit is set by the azimuthal
velocity on the inner cylinder), whereas introducing blades in-
duces O(1) azimuthal and radial velocities in the von Kármán
and Bödewadt layers attached to the blades upper and lower
boundaries. Hence, the additional fluid entrainment supplied
by the blades seems to contribute in multiple ways in lowering
the dynamo threshold: not only do the blades “channel” the
Taylor vortices and thus preserve coherent mean flow further
into the turbulent regime—the Taylor-Couette dynamo onset
being very sensitive to the coherence of the vortex structure
[10,12]—but they also tend to increase significantly the ra-
tio between toroidal and poloidal velocities, which has been
shown to favor Taylor-vortex dynamo action [9]. Interestingly,
the simple conductivity modulation described in the previ-
ous section precisely corresponds to this configuration: the
blades, having material properties different from that of the
stirred fluid, will also locally provide a very favorable resis-
tivity modulation, as the minima of ρ then coincide with the
interfaces between consecutive Taylor vortices. The bladed
configuration described above could be implemented in the
laboratory using soft iron blades (relative permeability μr =
100) and liquid sodium (μr = 1, σ = 107�−1.m−1), which
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is analogous to a resistivity modulation λ of order 1. In this
case, our simulations predict that the onset should be further
decreased from Rmc ∼ 80 to Rmc ∼ 45: for a cylinder of
inner radius ri = 15 cm, outer radius ro = 30 cm and height
60 cm, this leads to a critical rotation rate �c = 240 rad s−1.
Note that this reduction of �c by a factor 3 compared to
the non modified Taylor-vortex dynamo (�c ∼ 750 rad s−1)
translates into a factor 30 for the energy injection rate; indeed,
the rotation rates at stake here ensure that the Taylor-Couette
flow lies well in the inertial regime where the energy dissi-
pation rate is proportional to �3 [23,24]. The modulation of
magnetic diffusivity through the insertion of metallic blades
with high magnetic permeability could therefore provide a
very promising way of achieving a Taylor-Couette dynamo
in the laboratory.

This mechanism may also provide a simple explanation for
some results of the von Kármán sodium (VKS) laboratory
dynamo experiment, in which two coaxial counter-rotating
bladed disks drive a von Kármán swirling flow of liquid
sodium. Such a flow is prone to dynamo action at sufficiently
large Rm, but this was observed only when impellers made of
soft iron (i.e., ferromagnetic impellers) were used [25]. While
it has been shown numerically that increasing the magnetic
permeability of the impellers does indeed lower the dynamo
threshold (see, e.g., [26–28] and references therein), it is in-
teresting to note that the flow ejected by the centrifugal force
in the region close to the impellers is strongly helical due to
the generation of trailing vortices behind each of the ferro-

magnetic disk blades [29,30]. In other words, it is remarkable
that the threshold of the VKS dynamo seems lowered when
the vorticity pattern presents a strong correlation with the
distribution of magnetic permeability, which is reminiscent of
the mechanism described in the present paper.

The problem described here could also have interesting
astrophysical applications. For instance, the transition to tur-
bulence in accretion disks remains a puzzling mystery, and
one of the most promising explanation involves a nonlin-
ear coupling between a dynamo and a magnetorotational
instability [31,32], a problem which is deeply connected
to the destabilisation of quasi-Keplerian Taylor-Couette
flows [33,34]. Because the ionized gas of accretion disks
presents significant variations in density, taking into account
these density-induced resistivity fluctuations could fundamen-
tally modify the question of magnetic field generation in
these objects.
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