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Profiling a soft solid layer to passively control the conduit shape
in a compliant microchannel during flow
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The shape of a microchannel during flow through it is instrumental to understanding the physics that govern
various phenomena ranging from rheological measurements of fluids to separation of particles and cells. Two
commonly used approaches for obtaining a desired channel shape (for a given application) are (i) fabricating the
microchannel in the requisite shape and (ii) actuating the microchannel walls during flow to obtain the requisite
shape. However, these approaches are not always viable. We propose an alternative, passive approach to a priori
tune the elastohydrodynamics in a microsystem toward achieving a predetermined (but not prefabricated) flow
geometry when the microchannel is subjected to flow. That is, we use the interaction between a soft solid layer,
the viscous flow beneath it, and the shaped rigid wall above it to tune the fluid domain’s shape. Specifically, we
study a parallel-wall microchannel whose top wall is a slender soft coating of arbitrary thickness attached to a
rigid platform. We derive a nonlinear differential equation for the soft coating’s fluid-solid interface, which we
use to infer how to achieve specific conduit shapes during flow. Using this theory, we demonstrate the tuning
of four categories of microchannel geometries, which establishes, via a proof-of-concept, the viability of our
modeling framework. We also explore slip length patterning on the rigid bottom wall of the microchannel, a
common technique in microfluidics, as an additional “handle” for microchannel shape control. However, we
show that this effect is much weaker in practice.

DOI: 10.1103/PhysRevE.104.015108

I. INTRODUCTION

A ubiquitous component of micro-electro-mechanical sys-
tems [1], which finds place in applications spanning miniatur-
ized chemical analysis systems [2,3] (in micrototal analysis
systems (μ-TAS) [4,5]) to complex fluid rheometry [6–8], is
the microchannel. Having a requisite shape of the microchan-
nel under flow is instrumental for studies on morphology and
detection of cells, particles, or bubbles [3,9,10], viscoelas-
ticity of complex fluids [6–8,11], nano- and microparticle
segregation [12], among other applications [13]. A constric-
tion in a blood vessel often leads to accumulation of plaque
on the vessel wall, and therefore obtaining a constricted mi-
crochannel shape in an ex vivo analysis on a lab-on-a-chip
device is of interest [14–16]. Narrowing of a microchannel
can have a “stretching” effect on cells, vesicles and the like,
an aspect of their behavior that is being researched [17–20]. A
microchannel’s shape has significant bearing on the internal
flow’s extensional rate, a crucial variable in the characteriza-
tion of the viscoelasticity of complex fluids [11,21]. Going
further, the expansion of microchannels due to the hydrody-
namic forces within can be used to control the polydisperisty
of emulsions created by co-flow [22,23] and for segregating
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particles of different sizes via “nanosieves” [12], by simply
controlling the inlet pressure to tune the flow geometry in real
time.

However, obtaining a desired shape for a microchannel un-
der flow conditions is a nontrivial task due to, in no small part,
the potential for flow-induced deformation of a soft wall [24].
Two approaches are typically employed in practice: (i) fab-
ricating a close-to-rigid microchannel with a predetermined
shape [11,25–27] and (ii) fabricating a soft microchannel
that is then actuated by external stimulation during flow to
achieve a desired shape for the channel [28–32]. While these
approaches are useful and elegant, they are not always viable.
For instance, actuating the microchannel at the time of flow
can be challenging if the application requires the microchan-
nel to be undergoing motion when it is subject to flow, for
example, in a lab-on-a-CD device [33,34].

A third approach, which has often been overlooked, is as
follows: (iii) a priori attunement of the elastohydrodynam-
ics (EHD) of a microchannel to induce a desired shape on
achieving steady flow. The prime advantage of this approach,
over (i), is that the channel can be fabricated with simplistic
geometry (like constant-gap slit geometry or a constant-radius
cylindrical geometry) but will assume requisite shape due to
EHD when subjected to flow. Likewise, the prime advantage
of this approach, over (ii), is that there is no requirement to
physically access and handle the microchannel setup when
it is in operation, i.e., the operation is hands-off. These ad-
vantages make approach (iii) viable and useful alternative to
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approaches (i) and (ii) in certain situations. Possibly, the rea-
son that a gap in the literature pertaining to this third approach
exists is that the discipline of EHD [35] in microsystems, of
which fluid-structure interactions at low Reynolds number is
but one example [36], is in an inchoate stage. Therefore, be-
yond the aforementioned studies that have focused on actively
actuating microchannels, EHD in microchannels has been
studied only to account for its influence [37,38], rather than
to exploit its presence for a desired outcome. Nevertheless,
there is significant interest in such soft interface problems,
from a fundamental transport phenomena perspective [39].
Furthermore, recently, “peeling” mechanisms of EHD have
been demonstrated to allow for shape control of elastic mem-
branes actuated by fluid flow [40,41]. The passive approach
to a priori attunement of EHD is particularly relevant within
the scope for tunability of common microfluidics materials,
such as hydrogels [42–46]. Hydrogels are an emerging class
of material for biomimetics and artificial tissue engineering,
a common application area of elastohydrodynamics [42–44].
Since the early 2010s, the question of what is the shape
of a soft microchannel wall that has been deformed by a
steady viscous fluid flow has been explored [47]: from stud-
ies based on scaling correlations [24,48,49] to solving the
fluid-structure interaction problem in two-dimensional and
axisymmetric configurations [50–52] to solution of three-
dimensional problems that determine the effect of lateral
clamping of the channel walls [53,54] to studies accounting
for non-Newtonian fluid rheology [48,52,55].

Here we propose to harness this new understanding pro-
vided by the latter fundamental studies to enable a priori
attuning of EHD in microsystems to recover a desired shape
for the flow passage in a microchannel, under steady flow. To
this end, we study an infinite parallel plate (two-dimensional)
microchannel whose top wall is a soft coating of arbitrary
thickness attached to a rigid platform. We propose to achieve
a desired axial variation of the microchannel top wall (i.e., the
fluid-solid interface) due to the hydrodynamic forces under
imposed flow by controlling the thickness of the soft coating
via the bounding rigid platform’s shape.

In addition, we assess slip length patterning on the rigid
bottom wall, as is common in microfluidics [56,57], as another
“handle” to control the system’s behavior. Although we will
show that slip length patterning has limited use for control-
ling the microchannel shape under flow, it is a promising
approach to modulating the bottom-wall shear rate, which
has significant influence on particle migration and physio-
logical processes in flow [58–61]. For example, the shear
rate is known to have an impact on behavior of biological
cells under flow, leading to phenomena like detachment from
the wall, chemical release from cells, alterations in platelet
function, and so on [20,62,63]. For instance, it can be desir-
able to enhance bacterial cell detachment in therapy based
on displacement by antibodies [63]. On the other hand, in a
biomimetic studies of cell migration for angiogenesis in tumor
microenvironments, it is crucial that the shear rate does not
play a role (i.e., that it does not affect the migration of cells),
so that their response to chemical gradients can be delineated
[64].

To these ends, the remainder of this work is organized
as follows. In Sec. II, we describe the physical problem

FIG. 1. Schematic representation of the physical problem setup.
The blue region is the flow conduit (fluid domain), the gray region is
the elastic layer (solid domain), and the black region is the confining
rigid platform. The solid domain has an initial variable thickness
along the flow-wise, x∗, direction. Due to fluid-structure interac-
tion, each domain’s thickness varies with x∗ on achieving steady
conditions.

that we are studying, including the requisite notation for
its mathematical treatment. In Sec. III, we formulate the
problem mathematically. Specifically, starting from governing
equations and boundary conditions (given in Appendix A),
a scaling analysis (Sec. III A) leads to the lubrication ap-
proximation, and the model is simplified asymptotically to
two coupled equations (Sec. III B)—an ordinary differential
equation (ODE) for the fluid pressure and a linear algebraic
expression for the wall deflection. A set of inverse solutions
is formulated in Sec. III C. We briefly discuss the numerical
approach for solving the obtained system of equations in
Sec. III D. In Sec. IV, we present our numerical results on
passive control, focusing on four desired canonical shapes
under flow. We conclude our study in Sec. V, highlighting its
salient features and avenues for future work.

The major outcome of our study, which also demonstrates
the application-worthiness of our theoretical framework, is
comprised by two complementary components. The first com-
ponent is a simplified mathematical description of the system
behavior in terms of an ODE for the pressure. The second
component is the accompanying detailed characterization of
“inverse problems” based on this ODE, which take in the
desired microchannel fluid-solid interface shape and bottom
wall shear rate as the input and return the required solid layer
profiling and slip length patterning, respectively, as the output.

II. MODEL SETUP

The physical setup for this study is presented in Fig. 1.
The “into-the-paper” width of the geometry is considered to
be substantially larger than its length in the flow-wise, x∗,
direction, such that the setup is effectively two-dimensional
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(2D). We consider the flow of an incompressible Newtonian
fluid of density ρ and dynamic viscosity μ in the initially rect-
angular microchannel. The bottom wall of the microchannel
has been patterned to generate hydrodynamic slip, which is
captured by the linear Navier model [65,66] with slip length
b(x∗), which varies along the flow-wise direction (i.e., along
the channel’s length). The region between the rigid bottom
wall and the deformed elastic interface (which represents the
top wall of the microchannel) is referred to as the “fluid
domain.” The top wall of the channel constitutes the interface
with a layer of linearly elastic solid material with first Lamé
parameter λ and shear modulus G. The solid layer is attached
to a rigid platform on top. The interface of the solid layer
with the rigid platform varies with x∗, i.e., the solid layer
has a varying thickness along the flow-wise direction. This
variable-thickness layer is referred to as the “solid domain.”

Two coordinate systems, O and Ō, are employed to avoid
ambiguity: one for the fluid domain, (x∗, y∗), attached to the
rigid bottom wall, and one for the solid domain, (x∗, ȳ∗),
attached to the undeformed fluid-solid interface. Note that the
vertical axis is y∗ in the fluid domain and ȳ∗ in the solid
domain. The horizontal axis is denoted by x∗ for both do-
mains. We denote the flow velocity field by �v∗(x∗, y∗) and
the solid displacement field by �u∗(x∗, ȳ∗), with the individual
components expressed employing appropriate subscripts. The
horizontal extent of both the domains is from x∗ = −L at
the inlet (on the left) to x∗ = L at the outlet (on the right).
The undeformed thickness of the fluid domain is H , such that
H/L = γ is the aspect ratio. The undeformed thickness of
the solid layer is �(x∗) such that maxx∗ �(x∗)/L = β. The
volumetric flow rate per unit width is Q, and the hydrody-
namic pressure at the outlet is p∗

0. We restrict our analysis to
infinitesimal strains in the solid. We assess the steady-state
response of the system, which corresponds to steady flow in
the fluid domain and a suitably equilibrated deformation in the
solid domain.

III. MATHEMATICAL FORMULATION

The flow in the fluid domain is governed by the 2D conti-
nuity and incompressible Navier-Stokes equations, subject to
Navier slip and no penetration conditions at the rigid bottom
wall, no-slip and no-penetration conditions at the deformed
fluid-solid interface, and imposed pressure at the outlet. At
steady state, the continuity equation requires that the flow
rate is equal across any two axial cross section and equal to
the imposed flow rate at the inlet. The deformation of the
solid domain is governed by the equilibrium equations of
linear elasticity, subject to a zero-displacement condition at
the solid-platform interface and a traction-balance condition
at the fluid-solid interface. All the governing equations and
requisite boundary conditions and constraints are given in
Appendix A.

A. Scaling analysis

Since the fluid domain is subjected to slip length patterning
at the bottom wall, and the solid domain’s thickness varies
axially as well, the x∗ scale will be the smallest of the three
available length scales. Since the geometric axial scale of the

system is L, we take the scale for x∗ to be x∗
c = κL, where κ

is to be determined for each physical situation, depending on
the particular slip length patterning and solid layer profiling
imposed.

The scale for y∗ is H = γ L, and the scale for ȳ∗ is βL.
Importantly, we assume that the solid domain’s thickness,
over the entire axial length, is substantially smaller that the
axial scale of the system, i.e., β � κ . The v∗

x scale is given
by the mean axial speed at inlet, i.e., Q/(γ L). Subsequently,
the v∗

y scale is found to be Q/(κL) by balancing the conti-
nuity Eq. (A1). From lubrication theory [39,67], we expect
that the axial pressure gradient balances the viscous forces
in this microflow. Then, scaling the pressure and viscous
terms in Eq. (A2) gives us (κ/γ 3)(μQ/L2) as the p∗ scale.
In this scaling, (γ /κ )(ρQ/μ) plays the role of the lubrication
Reynolds number, and γ /κ � 1 is the slenderness parameter
for the fluid mechanics problem. We take the scales for u∗

x , u∗
y ,

and h∗ to all be φ0L, where φ0 is obtained self-consistently
from Eq. (1) below from the traction balance (A16). The
expressions of the pertinent dimensionless quantities are sum-
marized in Table I.

In Appendix B, we make the governing equations and
boundary conditions (from Appendix A) dimensionless with
the characteristic scales discussed above. The dimensionless
variables retain the same notation as the dimensional variables
but with the superscript ∗ dropped.

B. Lubrication approximation and asymptotic reduction

As is common in microfluidics [13], we make the lubri-
cation approximation [39,67]. This slenderness assumption
works the same way in both the fluid and solid domains.
This approximation allows us, as we will see ahead, to obtain
a generalized Winkler-like relation between pressure on the
solid layer and the layer’s deformation. To further justify
the approximations made, we give a concise discussion, in
Appendix D, on the validity of our proposed modeling frame-
work.

Noting that the fluid-solid interface deflection is primarily
in the y direction (or, equivalently, ȳ direction), it follows that
the ȳ component of the traction balance condition [Eq. (B13)],
reiterated below,

∂uȳ

∂ ȳ
+ β

κ

[(
λ

λ + 2G

)
∂ux

∂x

+
( G

λ + 2G

)(
φ0

κ

∂uȳ

∂x
+ φ0

β

∂ux

∂ ȳ

)
∂h

∂x

]

= − βκ

γ 3φ0

μQ

(λ + 2G)L2

×
[

p − γ

κ

{
2γ

κ

∂vy

∂y
+ φ0

κ

(
∂vx

∂y
+ γ 2

κ2

∂vy

∂x

)}]
,

at y = 1 − φ0h(x)

γ
, ȳ = −φ0h(x)

β
≈ 0, (1)

should be balanced asymptotically. In other words, the force
from the fluid domain and the force from the solid domain
should scale the same way. Hence, we scale the leading-order
contribution of the left-hand and right-hand sides of Eq. (1)
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TABLE I. Pertinent dimensionless quantities describing the sys-
tem and their definitions.

Parameter Definition

γ H/L
β maxx∗ �(x∗)/L

κ x∗
c /L

φ0
βκ

γ 3
μQ

(λ+2G)L2

ξ (x) = 1/φ̄(x) �(x∗ )
maxx∗ �(x∗ ) = �(x)

maxx �(x)

equally and obtain

φ0 = βκ

γ 3

μQ

(λ + 2G)L2
. (2)

Now, under the lubrication approximation, we retain only
the leading-order terms and obtain the simplified version of
equations (B2), (B3), (B9), (B10), (B12), and (B13):

0 = −∂ p

∂x
+ ∂2vx

∂y2
, (3)

0 = −∂ p

∂y
. (4)

∂2ux

∂ ȳ2
= 0, (5)

∂2uȳ

∂ ȳ2
= 0, (6)

∂ux

∂ ȳ

∣∣∣∣
ȳ=0

= 0, (7)

∂uȳ

∂ ȳ

∣∣∣∣
ȳ=0

= −p. (8)

Equations (B1), (B4), (B5), (B7) (B8), (B6), and (B11) remain
unchanged by this approximation.

Now Eq. (3) can be integrated and subjected to the bound-
ary conditions in (B4) and (B6) to yield:

vx(x, y) = 1

2

d p

dx

⎧⎨
⎩y2 −

[
1 − φ0h(x)

γ

]2[
y + b(x)

γ L

]
[
1 − φ0h(x)

γ
+ b(x)

γ L

]
⎫⎬
⎭. (9)

Note that Eq. (4) implies that p is no longer explicitly depen-
dent on y; thus, p = p(x) only in Eq. (9) as well as the rest of
the analysis ahead.

From Eq. (9), we also obtain expressions for shear rate in
the flow:

∂vx

∂y
= 1

2

d p

dx

⎧⎨
⎩2y −

[
1 − φ0h(x)

γ

]2

[
1 − φ0h(x)

γ
+ b(x)

γ L

]
⎫⎬
⎭. (10)

Substituting the expression for vx from Eq. (9) into
Eq. (B8), we obtain a first-order ODE for the pressure:[

1 − φ0h(x)

γ

]3[
1 − φ0h(x)

γ
+ 4b(x)

γ L

]
d p

dx

+ 12

[
1 − φ0h(x)

γ
+ b(x)

γ L

]
= 0. (11)

Next, Eqs. (5) and (6) are integrated and subjected to the
boundary conditions (B11), (7), and (8) to yield:

ux(x, ȳ) = 0, (12)

uȳ(x, ȳ) = [ξ (x) − ȳ]p(x). (13)

These equations provide us with the relationship between the
fluid-solid interface deflection h(x), which is equal to −uȳ

evaluated at ȳ = 0, and the hydrodynamic pressure p(x) as

h(x) = −ξ (x)p(x) ⇒ p(x) = −φ̄(x)h(x), (14)

where we have introduced the notation φ̄(x) ≡ 1/ξ (x). Gener-
alizing previous results [50,51] to the case of axially varying
confinement, Eq. (14) is essentially with a Winkler-like
pressure-deformation relation [68] with an axially varying
dimensionless stiffness ξ (x).

Now, substituting h from Eq. (14) into Eq. (11) yields our
final governing equation,[

1 + φ0 p(x)

γ φ̄(x)

]3[
1 + φ0 p(x)

γ φ̄(x)
+ 4b(x)

γ L

]
d p

dx

+ 12

[
1 + φ0 p(x)

γ φ̄(x)
+ b(x)

γ L

]
= 0, (15)

which captures all the physics of the system. This equation,
which is a first-order ODE for p(x), is subject to the outlet
boundary condition in Eq. (B7). Equation (15) is the key math-
ematical result that we employ below to formulate the forward
and inverse problems for controlling the microchannel shape.

C. Inverse problems and solutions

We can define an inverse problem, “Inverse Problem A,”
for which we are asked to find a function b(x) that would
yield a prescribed wall deflection shape h = h̄(x). To obtain
a solution to this inverse problem, we first substitute p from
Eq. (14) into (11) and rearrange to obtain

b(x) = − [γ − φ0h̄(x)]L

4

×
{

12γ 3 − [γ − φ0h̄(x)]3 d
dx [φ̄(x)h̄(x)]

3γ 3 − [γ − φ0h̄(x)]3 d
dx [φ̄(x)h̄(x)]

}
. (16)

Similarly, we substitute p(x) from Eq. (14) into Eq. (B7) to
get:

p̄0 = −[φ̄(x)h̄(x)]x=1/κ , (17)

as the boundary condition. Equations (16) and (17) repre-
sent the first “inverse solution” obtained by our mathematical
approach. Essentially, we compute what b(x) and p̄0 [equiva-
lently p∗

0, see Eq. (B7)] should be imposed in order to obtain
the desired deflection shape h = h̄(x), for a preset thickness
variation φ̄(x) [equivalently, a preset ξ (x)].

We can also define another inverse problem, “Inverse Prob-
lem B,” in which we seek a φ̄(x) [equivalently, a ξ (x)] that
would yield a prescribed wall deflection shape h = h̄(x). To
obtain a solution for this inverse problem, we first substitute
p(x) from Eq. (14) into (11) and rearrange to obtain an ODE
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for φ̄(x):

d (φ̄h̄)

dx
=

12
[
1 − φ0 h̄(x)

γ
+ b(x)

γ L

]
[
1 − φ0 h̄(x)

γ
+ 4b(x)

γ L

][
1 − φ0 h̄(x)

γ

]3 , (18)

Equation (18) is a first-order ODE in φ̄(x), whose solu-
tion gives us ξ (x) = 1/φ̄(x). To solve Eq. (18), we require
one boundary condition, which we take to be at the outlet,
ξ (1/κ ) = 1. After a solution is obtained, Eq. (17) gives us the
outlet pressure.

It is well known that solutions to inverse problems may
not be unique (or physically valid), often requiring a regular-
ization. Thus, solving each of the proposed inverse problems
requires some care to ensure a valid solution. Specifically,
given a desired wall deflection shape, it is possible that the
solution to Eq. (16) or (18) will yield negative values of b or ξ ,
respectively, which is unphysical. Therefore, in the event that
we obtain negative values, we offset the obtained solution up
by the magnitude of the most negative value, which generates
a new guess for the solution, now having a minimum value
of zero. Now, however, the patterned slip length b∗(x∗) can
have values that are significantly higher than the undeformed
channel height H . In such a case, we scale the obtained b∗(x∗)
so that the slip length maximizes to a value on the order of
10H . Similarly, we scale the solid layer profile ξ (x) so that
it has a maximum value of 1 along the channel length, i.e.,
ξ (x) �→ 1

maxx ξ (x)ξ (x). We also rescale β �→ maxxξ (x)β so that
the dimensional solid layer profile is as close as possible to
what is desired. This procedure ensures that we converge to a
physically relevant solution to the inverse problem. Whenever
these rescalings become necessary, it is indicative that the
desired wall deflection h̄(x) is unrealistic. Nevertheless, in
such situations, we still expect that the obtained shape (via the
regularization just explained) would be similar to the desired
shape.

For a setup in which we have utilized attuning of the solid
layer profiling to obtain a desired wall deflection, we can
additionally utilize the slip length patterning b(x) to target a
desired bottom wall shear rate axial variation. This amounts to
another inverse problem: “Inverse Problem C,” for b(x), with
h̄(x) already known. Evaluating Eq. (10) at the bottom wall,
y = 0, substituting d p/dx from Eq. (11) into the latter, and
performing further algebraic manipulations yields the sought-
after expression for b as:

b(x) = −γ L

4

[
1 − φ0h(x)

γ

]{
1 − 6(∂vx/∂y)|y=0

[1 − φ0h(x)/γ ]2

}−1

,

(19)

where (∂vx/∂y)|y=0 is the desired axial variation of the shear
rate along the bottom wall of the fluid domain, which could
be specified based on physiological considerations (for, say,
cells) in a microfluidic experiment (as discussed in Sec. I).

D. Forward problem and numerical scheme

Equation (15), subject to the boundary condition in
Eq. (B7), represents the “forward” problem mathematically.
Once the solution for p(x) is obtained, h(x) is found from
Eq. (14). Thus, to solve equations (15) and (B7), we discretize

the derivatives in Eq. (15) using finite differences, except at
x = 1/κ , where Eq. (B7) is applied. We solve the resulting
nonlinear algebraic system of equations using the multivari-
able Newton-Raphson method (described in Appendix C).

IV. RESULTS

With the theory formulated in Sec. III in hand, our objec-
tive now is to achieve desired shapes for the microchannel,
i.e., to obtain predetermined fluid-solid interface deflection
shapes during flow. We demonstrate four types of wall shapes.
We first discuss, in Sec. IV A, these general categories of ge-
ometric shape variations, specifically presenting two versions
of each. For each set, the first shape is obtained predominantly
using slip length patterning by solving Inverse Problem A,
where either we do not use any solid layer profiling [Figs. 2(a)
and 3(a)] or we use simplistic solid layer profiling to comple-
ment the slip length patterning as slip length patterning alone
falls short in recovering the desired channel shape [Figs. 4(a)
and 5(a)]. The second shape for each set is an exaggerated ver-
sion of the first shape, which is obtained by solely attuning the
solid layer profiling (by solving Inverse Problem B), without
considering any slip. Thus, we show that attunement of the
solid layer profiling is a significantly more effective tool for
controlling the fluid-solid interface’s shape. Subsequently, in
Sec. IV B, we present the consequence of the extent of imple-
mentation of the obtained slip length patterning (by solving
Inverse Problem A) and the obtained solid layer profiling (by
solving Inverse Problem B) on the recovered channel shape
under flow, for one of the canonical shapes. Last, in Sec. IV C,
we discuss the necessary pressure drop across the channel
required to maintain a given flow rate.

A. Canonical channel shapes

The four sets of canonical shapes are presented in and dis-
cussed using Figs. 2 to 5. For each set, the solutions obtained
using slip length patterning are presented in subfigures (a) (on
the left), while those obtained by using solid layer profiling
are presented in subfigures (b) (on the right). In each subfigure
(a), we plot four quantities. The bottom-most plot shows the
patterned slip-length made dimensionless by the undeformed
channel height, i.e., the variation of b(x)/H with x. The curve
second from the bottom is the dimensionless deformed height
of the channel, i.e., the variation of 1 − φ0h(x)/γ with x. For
reference, the top channel wall in the absence of any deforma-
tion is presented as the thin gray line. In the plot third from
bottom, we present a “heat map” of the dimensionless shear
rate in the deformed fluid domain, i.e., a heat map of ∂vx/∂y
in the deformed fluid domain. On top of this heat map, we
have also presented the fluid velocity profile using the arrows
as depicted. Finally, in the topmost plots, we show a grayscale
heat map of the ratio of ȳ deformation referenced to local solid
layer thickness, i.e., the ratio

uȳ∗ (x∗ ,ȳ∗ )

�∗(x∗ ) , whose dimensionless

version reads φ0φ̄uȳ

β
. We emphasize that this heat map, which

has been presented in the deformed solid domain, remains
identical in the undeformed solid domain (not presented),
a consequence of being restricted to the infinitesimal-strain
regime of deformation. Each of subfigures (b) shows three
plots, which convey the same variations as in the second, third
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FIG. 2. The “slow-converging” deformed channel shape; description of individual panels is provided in the text. Here (a) is obtained using
slip length patterning, keeping the solid layer uniform constant: ξ (x) = 1; (b) is obtained using solid layer profiling without slip: b(x) = 0. The
dimensionless parameter values used are as follows: γ = 2 × 10−4, κ = 0.2, β = 0.02 (a) and 0.11 (b), φ0 = 2.85 × 10−6 (a) and 1.53 × 10−5

(b), p̄0 = 35 (a) and 5.9 (b); the description of variables presented in the plots is available in the first paragraph of Sec. IV A.

FIG. 3. The “fast-converging” deformed channel shape; description of individual panels is provided in the text. Here (a) is obtained using
slip length patterning, keeping the solid layer profiling uniform: ξ (x) = 1; (b) is obtained using solid layer profiling without slip: b(x) = 0. The
dimensionless parameter values used are as follows: γ = 2 × 10−4, κ = 0.2, β = 0.02 (a) and 0.06 (b), φ0 = 2.85 × 10−6 (a) and 8.24 × 10−6

(b), p̄0 = 35 (a) and 3.5 (b); the description of variables presented in the plots is available in the first paragraph of Sec. IV A.
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FIG. 4. The converging-diverging deformed channel shape; description of individual panels is provided in the text. Here (a) is obtained
using slip length patterning aided by solid layer profiling and (b) is obtained using solid layer profiling without slip. The dimensionless
parameter values used are as follows: γ = 2 × 10−4, κ = 0.2, β = 0.02 (a) and 0.02 (b), φ0 = 2.85 × 10−6 (a) and 2.85 × 10−6 (b), p̄0 = 35
(a) and 137.0 (b); the description of variables presented in the plots is available in the first paragraph of Sec. IV A.

and fourth plots from the bottom in subfigure (a). Last, in
Fig. 6, variants for two of the canonical shapes have been
presented (where the solution has been obtained using Inverse
Problem C), and the scheme of plots for both subfigures of
Fig. 6 is the same as subfigures (a) of Figs. 2–5.

The first two example shapes, which are converging along
channel length and “slow-converging” near the middle of the
channel, are presented in Fig. 2. The shape in Fig. 2(a) is
obtained using slip length patterning, keeping the solid layer
profiling uniform: ξ (x) = 1. This shape exhibits a slower
variation of the deformed top wall of the channel near the
center, with faster variations near the inlet and outlet. This
variation is accomplished by a patch of slip flow near the
center of the channel, with no-slip for the rest. The central
region of the fluid domain exhibits significantly lower shear
rate due to slip, with the shear rate being large on either side.
The shape presented in Fig. 2(b) is obtained by solid layer
profiling without considering slip. Now we observe significant
deflection of the upper boundary of the fluid domain, unlike in
Fig. 2(a). Similarly, the variations near the inlet and the outlet
are more pronounced in Fig. 2(b) than in Fig. 2(a).

The next two example shapes, which are converging along
the channel length and “fast-converging” near the middle of
the channel, are presented in Fig. 3. The shape in Fig. 3(a)
is obtained using slip length patterning, keeping the solid
layer profiling uniform: ξ (x) = 1. This shape exhibits faster
variation of the deformed top wall of the channel near the
center, with slower variations near the inlet and outlet. This
variation is accomplished by having two patches of slip near

the inlet and the outlet of the channel, with no-slip in the
middle. The central region of the fluid domain exhibits a
high shear rate in the rapidly converging channel shape. The
shear rate is lower on either side, due to slip there. The shape
presented in Fig. 3(b) is obtained using solid layer profiling
without considering slip. Like the slow-converging example
above, we observe significant deflection of the fluid domain’s
top boundary in Fig. 3(b) compared to Fig. 3(a).

The next two example shapes generated by our passive
control strategy, which are “converging-diverging” shapes, are
presented in Fig. 4. The shape in Fig. 4(a) is obtained using
slip length patterning with simplistic solid layer profiling to
complement. At first, a solution for ξ (x) with no-slip is ob-
tained such that when subjected to flow, the fluid domain’s
height bulges and assumes a linearly convergent shape, i.e.,
1 − φ0h(x)/γ decreases linearly from 1.62 at the inlet to 1.5 at
the outlet. Subsequently, on applying slip length patterning as
presented in the bottom panel of Fig. 4(a), the shape exhibits a
dip near the channel center, i.e., the deformed fluid domain has
a converging-diverging shape. This is accomplished by having
no-slip for the first half of the channel length and enhanced
slip for the second half. The channel exhibits a converging
shape with high shear rate near the inlet, and significantly
lower shear rate and a diverging shape near the outlet. The
shape presented in Fig. 4(b) is obtained using solid layer
profiling without considering slip. Like the former two sets,
we observe significant deflection of the fluid domain’s top
boundary. Furthermore, the fluid domain (channel) is practi-
cally undeformed near the center (x = 0). Nevertheless, we
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FIG. 5. The diverging-converging-diverging deformed channel shape; description of individual panels is provided in the main text. Here
(a) is obtained using slip length patterning aided by solid layer profiling, and (b) is obtained using solid layer profiling without slip. The
dimensionless parameter values used are as follows: γ = 2 × 10−4, κ = 0.2, β = 0.02 (a) and 0.03 (b), φ0 = 2.85 × 10−6 (a) and 3.90 × 10−6

(b), p̄0 = 31.6 (a) and 70.3 (b); the description of variables presented in the plots is available in the first paragraph of Sec. IV A.

emphasize that the channel is overall bulged in both Figs. 4(a)
and 4(b), i.e., the deformed top wall position at any point is
higher than the undeformed state.

The next two example shapes, which have the “diverging-
converging-diverging” shape, are generated by our passive
control strategy and are presented in Fig. 5. The shape in
Fig. 5(a) is obtained using slip length patterning with simplis-
tic solid layer profiling to complement. At first, a solution for
ξ (x) with no-slip is obtained such that when subjected to flow,
the fluid domain’s height bulges and assumes a linearly con-
vergent shape, i.e., 1 − φ0h(x)/γ decreases linearly from 1.5
at the inlet to 1.45 at the outlet. Subsequently, we apply two
patches with slip near the inlet and the outlet of the channel,
with no-slip in the middle [i.e., the slip length patterning along
the bottom panel of Fig. 5(a), which is very similar to the
slip length patterning in the bottom panel of Fig. 3(a)]. With
this slip length patterning implemented, the channel shape
we obtain under flow is a wavy one. It is evident that the
“rotation” of the deflected wall shape from the fast-converging
of Fig. 3 to the diverging-converging-diverging one here is
the outcome of attuning the solid layer profiling. The shape
presented in Fig. 5(b) is obtained using solid layer profiling
without slip. As with the three example sets of shapes above,
we observe significant deflection of the fluid domain’s top
boundary. Furthermore, the fluid domain (channel) is practi-
cally undeformed at x = 2.5. Again, we emphasize that the
channel is overall bulged for both Figs. 5(a) and 5(b).

Two features are common to the four sets of example
shapes presented above. First, for each of the shapes presented

in Fig. 5(b), the shape that is its mirror image about x = 0 is
also obtainable using solid layer profiling without considering
slip. Second, when we apply the slip length patterning of
Fig. 5(a) on the solution from Fig. 5(b), the shear rate variation
in Fig. 5(a) is superimposed onto the shear-rate variation in
Fig. 5(b), without significant change in the top wall shape.
This observation leads us to conclude that the slip length
patterning is a weak mechanism when it comes to controlling
the channel shape under flow, but it is effective for controlling
the shear rate in the flow.

Next, we present two shapes that have been obtained
using solid layer profiling without considering slip, and
subsequently, slip length patterning has been obtained (by
solving Inverse Problem C) to target a desired axial variation
of bottom wall shear rate. Specifically, we obtain analogs
of the fast-converging [Fig. 3(b)] and converging-diverging
[Fig. 4(b)] setups for this purpose. These analogs are pre-
sented in Fig. 6. The deformed channel shape for each analog
is the same as the original. However, we have applied slip
length patterning for each, such that the shear rate at the
bottom wall has a low magnitude, as well as a smaller
gradient—observe the bottom region (at and near y = 0) of
the heat map of the shear rate, presented in the second panel
from top in Figs. 6(a) and 6(b) each.

Last, in Fig. 7, we present some key aspects of the flow
in the converging-diverging channel. The solid curves corre-
spond to no slip at bottom wall [corresponding to Fig. 4(b)]
and the dashed-dotted curves correspond to slip pattern-
ing at bottom wall targeted at arresting the flow shear rate
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FIG. 6. Analogous solutions of (a) fast-converging [Fig. 3(b)] and (b) converging-diverging [Fig. 4(b)] shapes, now using slip length
patterning to maintain a low shear along the rigid bottom wall of the fluid domain; description of individual panels is provided in the main
text The dimensionless parameter values used are as follows: γ = 2 × 10−4, κ = 0.2, β = 0.18 (a) and 0.02 (b), φ0 = 2.60 × 10−5 (a) and
2.85 × 10−5 (b), p̄0 = 3.56 (a) and 137 (b); the description of variables presented in the plots is available in the first paragraph of Sec. IV A.

[corresponding to Fig. 6(b)]. The channel shape control is
done by solid layer profiling for both line types. The axial
flow velocity and the flow extensional rate as presented in the
bottom panels of Fig. 7, for either of the slip-patterning situa-
tions, exhibit appreciable qualitative similarity to the targeted
variations of these variables by Zografos et al. [11] in their
study on designing of converging-diverging microchannels.

Given the nondimensional nature of our analysis, appreciable
quantitative similarity is also expected to be obtainable on
a per-application basis, with a suitable choice of materials,
geometry and flow conditions. Additionally, it can be ob-
served that, as we introduce slip to arrest bottom wall shear
rate (transitioning from solid curves to dashed-dot curves),
the axial velocity and the flow extensional rate, although

FIG. 7. Axial variation of (a) pressure (top) and axial velocity at y = (1 − φh/γ )/2 (bottom), and, (b) flow shear rate at y = 0 (top panel)
and flow extensional rate at y = (1 − φh/γ )/2 (bottom panel), for the converging-diverging channel without slip [corresponding to Fig. 4(b),
represented by solid curves here] and the converging-diverging channel with bottom wall slip length patterning to reduce the shear rate
[corresponding to Fig. 6(b), represented by dashed-dotted curves here]; the subscript “c.l.” denotes central-line and the subscript “bot.” denotes
bottom wall. Note that the central line, represented by y = (1 − φh/γ )/2, is actually not a straight line but a curve because of the top wall
deformation.
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FIG. 8. Parametric variation (note the logarithmic scale) of the dimensionless deformation shape of the fluid domain’s top boundary with
(a) slip length patterning (controlled via b0/H ) and (b) via solid layer profiling (controlled via m), for the converging-diverging case (Fig. 4).

decreased in magnitude, retain their general form. However,
the shear rate transitions from being finite to infinitesimal.
This indicates that the design of a converging-diverging chan-
nel as presented in Fig. 6(b) can be useful for applications in
which a hyperbolic flow behavior is desired near the channel
center, even while we may want the shear rate at the bottom
wall to be arrested in magnitude.

B. Implementation of obtained solid layer profiling
and slip length patterning

In Fig. 8, we present the parametric variation of deformed
shape of the fluid domain’s top boundary, for the converging-
diverging shape (Fig. 4). In Fig. 8(a), we show the shape
change with increasing slip magnitude (b0/H), as obtained

from Inverse Problem A. The slip length has the same x de-
pendence as in Fig. 4(a) but the magnitude of the slip is varied.
The solid layer profiling is also the same as presented in
Fig. 4(a). We see that augmenting slip leads to a converging-
diverging shape, compared to a monotonically decreasing one
without slip. However, as is to be expected, the variation is
weak; that is, we cannot achieve an arbitrary deformation with
only slip length patterning of the bottom rigid wall.

Meanwhile, in Fig. 8(b), we show the shape change with
increasing extent of solid layer profiling (quantified by m).
We have applied a solid layer profiling:

ξ (x) = 1 + m[ξobtained(x) − 1], (20)

where ξobtained(x) is the solution to Inverse Problem B for the
converging-diverging shape. We vary m from 0.01 to 1, which

FIG. 9. Normalized pressure drop, �p∗/�p∗
des [where �p∗

des = (κ/γ 3)(μQdes/L2)], versus normalized flow rate, Q/Qdes, as the flow rate
is increased from a hundredth of the design flow rate (Q = 0.01Qdes) to the design flow rate (Q = Qdes); we have defined �p∗ as �p∗ =
p∗|x=−1/κ − p∗|x=1/κ ; panels (a) and (b) correspond to panels (a) and (b) of Figs. 2–5; panel (c) corresponds to Fig. 6; in (b), all solid curves
overlap and are represented by the black curve; the legend above the figure associates the channel shape to color combinations, as well as the
solution categories to the linetype combinations used.
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is equivalent to implementing the ξobtained incrementally on
the solid layer. Significant deformation can be achieved for
m ≈ 1. This result indicates that the deformed channel shape
is strongly sensitive to variations in ξ and, therefore, a suffi-
ciently accurate implementation of the obtained ξ is needed
to recover a deformed fluid domain shape that is appreciably
close to the desired one.

C. Pressure drop across the channel

For many microscale applications, the pressure drop across
the microchannel is one of the key measurables, as it can be
determined noninvasively [69]. We can evaluate the pressure
drop from our mathematical model. In Fig. 9, we present
dimensionless pressure drop versus flow rate curves for the
canonical channel shapes from Sec. IV A. Dimensional coun-
terparts can be obtained by simply scaling the curves shown.

First, in Fig. 9(a), we present the situations for which slip
length patterning leads to the desired channel shapes [pan-
els (a) of Figs. 2 to 4]. It is clear that the pressure drop is
significantly smaller for deformable channels (dashed-dotted
curves) than for rigid ones (solid curves). This is the expected
situation (see, e.g., Ref. [24]) as the channel can bulge by
40–80% [see panels (a) of Figs. 2 to 4]. Second, in Fig. 9(b),
we present the situations for which solid layer profiling is used
to obtain the desired channel shapes [panels (b) of Figs. 2 to
4]. Again, softness of the top wall leads to much smaller pres-
sure drop compared to the rigid case, which is again expected
because the channel can bulge by as much as 200% [see panels
(b) of Figs. 2 to 4]. The pressure drop for a rigid top wall,
represented by the black solid line, follows the relation:

�p∗
rigid = 24μQL

H3
⇒ �prigid = 24

κ
. (21)

Last, in Fig. 9(c), we present the pressure drop–flow rate
curves for the situations in which solid layer profiling is used
to obtain the desired channel shapes, while slip length pattern-
ing is used to control the bottom wall shear rate (Fig. 6). The
inferences are identical to those discussed regarding Figs. 9(a)
and 9(b).

From the analysis in this subsection, we highlight two key
conclusions. First, no clear pattern or correlation emerges
between the pressure drops for the four channel shapes. Sec-
ond, for any of the canonical shapes studied, the trends are
distinct for each of the three situations—rigid solid layer,
constant-thickness solid layer, and profiled solid layer. Both
these inferences are an outcome of the individual nature of
the complex interplay of slip length patterning, solid layer
profiling and imposed outlet pressure. Nevertheless, as shown
in Fig. 9, the the pressure drop (a practical figure of merit for
microsystem design) can be quantified by the mathematical
framework proposed in our study, specifically Eq. (15), which
captures the key details of this coupled multiphysics problem.

V. CONCLUSION

In this study, we have presented a theoretical framework
for designing passive control of the shape of a the flow conduit
inside of a compliant microchannel. Specifically, we demon-
strated how the fluid–soft solid interface, between the fluid
domain and a compliant wall coating, can be tuned under flow

in a “slit” setup commonly used in modeling. To this end, we
modeled the top wall of the microchannel as a soft coating of
given axially varying thickness, attached to a rigid platform
above it. The variation of thickness, and its coupling to the
viscous fluid flow via low Reynolds number fluid-structure
interaction [36], allowed us to tune the flow conduit pas-
sively. Additionally, we incorporated patterned hydrodynamic
slip along the rigid bottom wall, which is commonly used
in microfluidics (enabled by nanopatterning of the channel
surfaces), to manipulate the magnitude of the shear rate in
the flow. The latter is desirable when dealing with cells and
biofluids in labs-on-a-chip [61]. Within the broad context of
passive shape control, we presented “Inverse Problems,” in
which we fed-in the desired axial upper wall shape variation
and the bottom wall axial shear rate variation as inputs, and
then we solved for a suitable solid layer profile and a slip
length pattern. Specifically, these calculations were enabled
by the central mathematical result of this work, Eq. (15),
which connects the hydrodynamic pressure, the fluid-solid
interface deformation, and the slip length variation, all in a
single ordinary differential equation.

Using this passive EHD approach, we demonstrated several
categories of possible axial fluid-solid interface shapes that
can be achieved under steady flow, starting from a profiled
(but undeformed) configuration. The first pair of canonical
shapes have decreasing channel height in the flow-wise di-
rection. Specifically, the first shape exhibits faster decrease in
channel height (i.e., larger axial gradient of channel height)
near the inlet and outlet, and slower decrease in channel height
(i.e., smaller axial gradient of channel height) in the middle.
The second canonical shape exhibits slower decrease in chan-
nel height near the inlet and outlet, and faster decrease in
channel height in the middle. In particular, the second shape is
useful for applications in which flow-focussing is desired [70].
The third type of canonical shape presented is converging-
diverging, which can find applications in rheological studies
[11]. The fourth type of canonical shape exhibits a diverging
shape near the inlet and outlet and a converging shape in the
middle. Using slip length patterning at the bottom wall, we
controlled the shear rate magnitude at the bottom wall for the
“flow-focusing” and the “converging-diverging” shapes.

Since our model is dimensionless, it follows that the
canonical shapes described above can arise in a multitude of
practical systems, in terms of system geometry, flow rate and
material properties. As an illustration, in each of Tables II and
III, we present two representative physical systems, separated
in geometric scale by one order of magnitude, for which the
solutions presented in this study would be applicable.

Having showcased passive EHD [termed approach (iii) in
Sec. I and the focus of this study] as a useful design tool
for controlling microchannel conduit shape under flow, we
highlight two disadvantages it has in comparison to active
EHD [termed approach (ii) in Sec. I]. First, implementation
of passive EHD requires an a priori theoretical analysis be-
cause the approach is “hands-off” during operation (it should,
however, be noted that implementation of active EHD can also
require significant efforts in calibrating the force–deformation
relationships [31]). Second, on a per-setup basis, passive EHD
offers less versatility compared to active EHD, while active
EHD allows actuating a particular microchannel setup to
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TABLE II. Dimensional parametric values for two representative systems for the microchannel fluid domain shapes presented in Sec. IV
and Appendix D.

Material Property Value Geometry and Flow 1st Rep. Syst. 2nd Rep. Syst.

μ 1 mPa s L 5 cm 50 cm
ρ 1 g/cm3 H 10 μm 100 μm
EY = 3λG+2G2

λ+G 9.5 kPa maxx �(x) ∼1 cm ∼5 cm
ν = λ

2(λ+G) 0.46 Qdes 6.25 × 10−10 m3/s 6.25 × 10−8 m3/s

obtain multiple kinds of shapes, passive EHD enables only
a prespecified shape designing a priori. In this study, we have
provide the theory for passive EHD, thus it is now available as
an alternative to active EHD in situation in which the latter is
not available. Indeed, it might also be of interest to couple the
two approaches in the future.

Our passive EHD theory can be used to obtain predeter-
mined fluid domain shapes in compliant microchannels. These
shapes can find applications in multiple areas of microflu-
dics research. An example is the use of converging-diverging
channel shapes toward replicating extensional flows [11] (as
discussed at the end of Sec. IV A as well) for studies on,
e.g., dynamics of DNA during flow focusing [9]. This shape
can also be utilized to obtain a desired extent of constric-
tion in the flow conduit, finding use for mimicking stenosis
[15] and manipulating polydispersity of droplet generation
using softness of the microchannel [22]. On the other hand,
the diverging-converging-diverging geometry can be attuned
further to obtain slow divergence followed by sudden con-
vergence and subsequently sudden divergence again [18] or
even a chain of such configurations [19], which can find use
in studies of red blood cell dynamics in blood vessels. The
converging (fast and slow) channel shapes can be utilized
to optimize cell capture and release [3] and particle trap-
ping strategies [12]. Extensions of this work could include
consideration of axial variation of the soft coating’s elastic-
ity parameters [16], thick structures and the absence of a
platform on top of the solid layer [54], shear-dependent vis-
cosity of a non-Newtonian fluid passing through the conduit
[55,71], electrokinetic effects and nonhydrodynamic forces
[72], among others.
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APPENDIX A: GOVERNING EQUATIONS

The flow in the fluid domain satisfies the continuity equa-
tion,

∂v∗
x

∂x∗ + ∂v∗
y

∂y∗ = 0, (A1)

and the steady 2D incompressible Navier-Stokes equations,

ρ

(
v∗

x

∂v∗
x

∂x∗ + v∗
y

∂v∗
x

∂y∗

)
= −∂ p∗

∂x∗ + μ

(
∂2v∗

x

∂x∗2
+ ∂2v∗

x

∂y∗2

)
, (A2)

ρ

(
v∗

x

∂v∗
y

∂x∗ + v∗
y

∂v∗
y

∂y∗

)
= −∂ p∗

∂y∗ + μ

(
∂2v∗

y

∂x∗2
+ ∂2v∗

y

∂y∗2

)
. (A3)

The system is closed by the Navier slip and no-penetration
boundary condition at the rigid bottom wall:

v∗
x |y∗=0 = b(x∗)

∂v∗
x

∂y∗

∣∣∣∣
y∗=0

, (A4)

v∗
y |y∗=0 = 0, (A5)

respectively, in addition to the no-slip and no-penetration
boundary condition at the deformed fluid-solid interface:

v∗
x |y∗=H−h∗(x∗ ) = v∗

y |y∗=H−h∗(x∗ ) = 0. (A6)

The pressure at the outlet is imposed:

p∗|x∗=L = p∗
0, (A7)

and the flow rate of Q per unit width, at any given cross section
of the channel, is ∫ y∗=H−h∗(x∗ )

y∗=0
v∗

x dy∗ = Q. (A8)

TABLE III. Dimensional parametric values for another two representative systems, having nearly-incompressible solid layer material, for
the microchannel fluid domain shapes presented in Sec. IV and Appendix D.

Material Property Value Geometry and Flow 1st Rep. Syst. 2nd Rep. Syst.

μ 1 mPa s L 5 cm 50 cm
ρ 1 g/cm3 H 10 μm 100 μm
EY = 3λG+2G2

λ+G 9.695 kPa maxx �(x) ∼1 cm ∼5 cm
ν = λ

2(λ+G) 0.49 Qdes 3.7 × 6.25 × 10−10 m3/s 3.7 × 6.25 × 10−8 m3/s
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The deformation of the soft elastic layer (the solid domain)
is governed by the elastostatic equilibrium equations:

∇∗ · σ ∗ = �0. (A9)

The solid’s Cauchy stress tensor is given in terms of the
displacement gradient as,

σ ∗ = λ(∇∗ · �u∗)I + G[∇∗�u∗ + (∇∗�u∗)�], (A10)

where I is the identity tensor and a � superscript denotes the
transpose. Substituting Eq. (A10) into Eq. (A9) yields the two
components of the mechanical equilibrium equation:

(λ + 2G)
∂2u∗

x

∂x∗2
+ G

∂2u∗
x

∂ ȳ∗2
+ (λ + G)

∂2u∗
ȳ

∂x∗∂ ȳ∗ = 0, (A11a)

G
∂2u∗

ȳ

∂x∗2
+ (λ + 2G)

∂2u∗
ȳ

∂ ȳ∗2
+ (λ + G)

∂2u∗
x

∂x∗∂ ȳ∗ = 0. (A11b)

This system is closed by zero-displacement boundary con-
ditions at the solid-platform interface:

u∗
x |ȳ∗=�(x∗ ) = u∗

ȳ |ȳ∗=�(x∗ ) = 0, (A12)

and the traction balance condition at the fluid-solid interface,

σ ∗ · n̂∗ = σ f ∗ · n̂∗. (A13)

Here σ f ∗ is the Newtonian fluid’s stress tensor:

σ f ∗ = −p∗I + μ[∇∗�v∗ + (∇∗�v∗)�], (A14)

and n̂∗ is the normal to the fluid-solid interface:

n̂∗ = ∂h∗

∂x∗ î + ĵ. (A15)

Thus, the traction balance condition, at y∗ = H − h∗(x∗) and
ȳ∗ = −h∗(x∗), can expressed in component form as[

(λ + 2G)
∂u∗

x

∂x∗ + λ
∂u∗

ȳ

∂ ȳ∗

]
∂h∗
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)
, (A16a)
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y
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(
∂v∗

x
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APPENDIX B: DIMENSIONLESS GOVERNING
EQUATIONS

1. Fluid domain

∂vx

∂x
+ ∂vy

∂y
= 0, (B1)

γ

κ

ρQ

μ

(
vx

∂vx

∂x
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∂vx
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)
= −∂ p

∂x
+ ∂2vx

∂y2
+ γ 2

κ2

∂2vx

∂x2
, (B2)

γ 3

κ3

ρQ
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(
vx
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∂x
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∂vy

∂y

)

= −∂ p

∂y
+ γ 2

κ2

(
∂2vy

∂y2
+ γ 2

κ2

∂2vy
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)
, (B3)

subject to:

vx|y=0 = b(x)

γ L

∂vx

∂y

∣∣∣∣
y=0

, (B4)

vy|y=0 = 0, (B5)

and

vx|y=1−φ0h(x)/γ = vy|y=1−φ0h(x)/γ = 0, (B6)

as well as,

p|x=1/κ = γ 3

κ

p∗
0L2

μQ
= p̄0, (B7)∫ y=1−φ0h(x)/γ

y=0
vx dy = 1. (B8)

2. Solid domain
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subject to

ux|ȳ=ξ (x)=�(x)/βL = uȳ|ȳ=ξ (x)=�(x)/βL = 0, (B11)

as well as
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]
,

at y = 1 − φ0h(x)

γ
, ȳ = −φ0h(x)
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≈ 0, (B12)
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and
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≈ 0. (B13)

APPENDIX C: NEWTON-RAPHSON METHOD FOR EQUATION (15)

We discretize the x axis into n points as xi = −1/κ + 2(i − 1)/[(n − 1)κ], i = 1, . . . , n. We used n = 1001 points in the
implementation of the numerical scheme, having verified this number is sufficient to ensure grid independence of solutions. The
components Ri of the residual vector �R and Ji, j of the requisite Jacobian matrix J are defined as:

Ri =
(

1 + φ0 pi

φ̄iγ

)3(
1 + φ0 pi

φ̄iγ
+ 4bi

γ L

)3 j=2∑
j=0
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(
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γ L

)
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γ L

)3 j=2∑
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a(CD)
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(
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γ L

)
, i = 2 to n − 1;

Ri = pi − γ 3

κ
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0L2
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, i = n; (C1)
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; i = 1, j = 0 to 2,

Ji,i = 1, i = n. (C2)

where pi ≈ p(xi ), φ̄i ≈ φ̄(xi ), and bi ≈ b(xi ) are the nodal value approximations. Here, as
i, j represents the coefficients for the

node i + j corresponding to the finite-difference approximation of the derivative d/dx at the node i, the superscript “s” is “CD”
for central-difference and “FD” for forward difference; δi, j is the Kronecker delta symbol, i.e., δi, j = 1 when j = i and δi, j = 0
when j = i.

To obtain the numerical solution, we iterate �p �→ �p − J−1 �R until ‖ �R‖ becomes smaller than a prescribed tolerance, which we

took to be 10−5.

APPENDIX D: EXPLORING THE VALIDITY
OF THE 2D MODEL

In this study, several simplifications have been made to-
ward reducing the complete system behavior to the single
ODE, Eq. (15). While some of the assumptions are standard
to the research area of flows through microchannels (including
deformable ones), some assumptions warrant extra examina-
tion to ascertain the validity of our model. We identify three
concerns:

(i) We have considered the setup to be sufficiently wide in
the plane perpendicular to the flow, i.e., we have considered a
2D setup. While this “slit” setup is commonly assumed when
modeling microchannels [24], the mathematical expression of
this assumption, W � L, where 2W is the width “into-the-
paper,” might not always be realizable.

(ii) Aggressive solid layer profiling leads to variations
in the solid layer thickness over short axial distances. The
characteristic length over which the solid domain varies is
then liable to be smaller than its physical axial length. This

indicates that the pressure at a point on the fluid-solid interface
can affect deflection of not only that point but also its neigh-
boring points. This effect is not captured by the Winkler-like
relation [Eq. (14)].

(iii) We have obtained the Winkler-like relation [Eq. (14)]
by an asymptotic reduction of the governing equations and
boundary conditions for the solid domain. This calculation
rests on the scaling assumption that both uy and ux scale as
φ0L, which is admissible only when λ and G are of the same
scale, i.e., the solid layer is appreciably compressible (see
Appendix B in Ref. [72] and the fourth paragraph of Sec. II in
Ref. [73]).

Toward addressing these potential limitations, we have
conducted 2D as well as 3D COMSOL simulations of the
fluid-structure interactions for two situations (which are the
most extreme ones in the context of the concerns listed above),
corresponding to Figs. 3(b) and 6(a), which were discussed
in Sec. IV. The consolidated results of these simulations are
presented in Fig. 10.
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FIG. 10. Dimensionless deformed shape of the fluid domain as obtained from 3D COMSOL simulations, 2D COMSOL simulations, and
the solution of Eq. (15). Panels (a) and (b) correspond to Figs. 3(b) and 6(a), respectively. The legend in (a) applies to both panels. In each panel,
the solid curves and circle markers represent the solution based on parameter values in Tables II and III, respectively. For the 3D COMSOL
simulations, the axial variation of the gap height (presented as the main plot in the panels) is at the midplane z∗ = 0. The insets represent the
spanwise dimensionless deformed shape of the fluid domain, across the x = 0 plane, from the 3D COMSOL simulations.

We first address concern (i). To investigate whether W � L
must be strictly satisfied for the validity of our theory, we have
conducted 3D numerical simulations corresponding to the 2D
systems from Figs. 3(b) and 6(a), taking the two situations of
W = L and W = L/10. We emphasize that these simulations
solve the complete 3D elastostatic equations, two-way cou-
pled to the steady incompressible Navier-Stokes equations,
without any assumptions of slitlike geometry and slenderness.
We have additionally conducted simulations for the 2D system
as well (i.e., the slitlike geometry is assumed but slenderness
is not assumed). Figure 10 shows that the numerical solutions
(2D simulations and 3D simulations with W = L) and the
solution of our proposed model all match well. Even the re-
sults from the 3D simulations with W = L/10 are appreciably
close. Furthermore, examining the insets, we observe that,
for the 3D systems, the edge effects are restricted to a small
region near the edge planes (z∗ = −W and z∗ = W ), and the
solid layer deformation close to the central plane z∗ = 0 is not
appreciably affected by edge effects. Hence, we deduce that
our framework captures the solid layer deformation behavior
well for 3D setups, even the ones for which the width is
comparable to the axial length.

Next, concerns (ii) and (iii) are about the applicability
of the Winkler-like relation, Eq. (15). The Winkler mattress
model is a simple yet effective model, which was designed to
study the deformation behavior of beams and plates resting on
elastic foundations. In this model, the elastic foundation was
a forteriori likened to a collection of springs, with each spring
responding to the load applied only on its point of attachment
with the beam or plate. The spring constant is expected to be a
function of the solid layer elastic properties. This model, with
some refinements and generalizations, has been found to be
fruitful for analyzing many mechanics problems [68]. On the
other hand, the Winkler-like relation we obtained, although
having the same functional form, is derived starting from the
complete elastostatic equations, and hence, it is not based
on an assumption like the original Winkler mattress model.
Nevertheless, the derived Winkler-like relation’s validity rests

on two conditions: (a) the solid layer should be slender and
(b) the solid layer should be sufficiently compressible. Thus,
concerns (ii) and (iii) are really about whether and when
conditions (a) and (b), respectively, break down.

Addressing first concern (ii), we observe that the slender-
ness of the solid layer, for our setup, is represented by β/κ .
For the cases we have studied in Sec. IV, the maximum value
of β/κ occurs for the case of Fig. 6(b) (β/κ ≈ 1). However,
as we can see in Fig. 10(b), even for this case, the solution
from our framework (blue) and the solutions from COMSOL
(red and green) match. In other words, our framework is able
to represent the solution of the complete elastostatic equations
(as found by numerical simulations using COMSOL). Hence,
even for β/κ ≈ 1, the assumption of slenderness of the solid
layer remains admissible.

Addressing concern (iii) next, we recall that some of the
materials commonly used in microfluidics, an example being
polydimethylsiloxane [13,74], are often considered incom-
pressible, with ν ≈ 0.499 being one commonly used value.
However, it has long been conjectured that such materials are
bound to have some compressibility (“[a] definitive value for
the Poisson’s ratio... is not readily available in the literature”
[75, p. 6]), and more recent measurements have suggested that
the Poisson’s ratio can be as low as ν ≈ 0.46 [52,76]. Keeping
this fact in mind, we have considered the solid layer to be
“sufficiently” compressible, and we took ν = 0.46 in Table II
and ν = 0.49 in Table III.

Here we observe that a condition for the applicabil-
ity of the classical Winkler mattress model, which is also
expected to apply to our Winkler-like relation derived as
Eq. (14), is that (1 − 2ν) � (β/κ )2. This condition is ob-
tained based on scaling principles applied to the complete
elastostatic equations—see the last paragraph of Sec. 2 in
Ref. [77] and Appendix B in Ref. [72]. For the cases stud-
ied in Sec. IV and with dimensional parameter values taken
from either of Tables II and III, the example presented
in Fig. 3(b) satisfies this condition, whereas the example
presented in Fig. 6(a) is the most adverse in terms of
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fulfillment of this condition. Therefore, we have compared
the solution from our model with the solution from COM-
SOL simulations of these two cases in Figs. 10(a) and 10(b),
respectively. The match between our model and simulations,
especially in Fig. 10(b), indicates that even when the condition
(1 − 2ν) � (β/κ )2 is not strictly satisfied, the prediction of
Eq. (15) is reasonably close to the numerical solution of the
fluid-structure interaction problem. This indicates that our

framework can apply to solid layer materials that are close to
incompressible.

However, we caution that for materials that are extremely
close to being incompressible, i.e., (1 − 2ν) � (β/κ )2, the
deflection is expected to be O(β2) smaller and proportional
to the Laplacian of the pressure (see Appendix A in Ref. [77]
and Appendix B in Ref. [72]). This case was not considered
in this study and is beyond the scope of the present work.
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