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Self-consistent, high-order spatial profiles in a model for two-fluid turbulent mixing

Brandon E. Morgan
Lawrence Livermore National Laboratory Livermore, California 94550, USA

(Received 23 March 2021; revised 4 June 2021; accepted 7 July 2021; published 22 July 2021)

A Reynolds-averaged Navier-Stokes model is presented with the property that it admits self-consistent,
high-order spatial profiles in simulations of two-fluid turbulent mixing layers. Whereas previous models have
been limited by the assumption of a linear mixing profile, the present paper relaxes this assumption and, as a
result, is shown to achieve much better agreement with experimental profiles. Similarity analysis is presented
to derive constraints on model coefficients to enforce desired self-similar growth rates that are fully consistent
with the high-order spatial profiles. Through this similarity analysis, it is shown that care must be taken in model
construction, as it is possible to construct certain terms in such a way as to leave growth rates unconstrained. This
model, termed the k-φ-L-a-V model, is then applied in simulations of Rayleigh-Taylor, Richtmyer-Meshkov, and
Kelvin-Helmholtz mixing layers. These simulations confirm that the expected growth parameters are recovered
and high-order spatial profiles are maintained.
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I. INTRODUCTION

Significant effort has been devoted over the years to the
development of Reynolds-averaged Navier-Stokes (RANS)
models for variable density turbulent mixing [1–22]. A com-
mon approach in the development of many such models is
to rely on self-similarity analysis to determine constraints on
model coefficients that will reproduce certain expected growth
parameters [5,6,10,14,15,21,22]. The self-similarity approach
generally begins with an ansatz approximation that turbulence
quantities can be written as separable functions of space and
time. For instance, for an arbitrary model variable g, one might
make the approximation

g(x, t ) = G0(t ) f (χ ) . (1)

In Eq. (1), the assumed form of f determines the spatial
profile of g and is only a function of the self-similar coordinate
χ ≡ x/h, where h is the mixing layer half width. Starting with
this separability ansatz, it then becomes possible to derive
algebraic constraints on model coefficients that will enforce
the ansatz. The approach is quite powerful in that its applica-
tion can be used to derive constraints that will allow a model
to exactly reproduce desired behavior such as the Rayleigh-
Taylor (RT) growth parameter α, the Richtmyer-Meshkov
(RM) growth parameter θ , and the Kelvin-Helmholtz growth
parameter δ.

In previous models such as the k-L [5], k-L-a [10], and
k-L-a-V [15] models, f is assumed to take a quadratic form
for most turbulence variables, and profiles of the primary
mixing quantity (i.e., density in RT mixing or velocity in KH
mixing) are assumed to take a linear profile. These approxima-
tions simplify the analysis significantly but ultimately lead to
mixing profiles that disagree with data in the tails. That is, data
from high-fidelity simulation and experimental measurements
generally suggest that profiles of turbulence kinetic energy

(TKE) are more closely represented by a Gaussian and mixing
profiles more closely represented by an error function or a
hyperbolic tangent.

Some authors have attempted to minimize this discrep-
ancy by adjusting turbulent diffusion coefficients in an ad
hoc fashion after first determining self-similarity constraints
under the assumption of a linear mixing profile [6]. This
approach can improve agreement to an extent but violates the
self-similarity constraints, which can lead to unintended and
hard-to-predict discrepancies in anticipated growth rates. In
addition, this approach tends to have relatively little impact
on the mixing profile, leading to continued discrepancy with
data. More recently, Zhang et al. [21] introduced an approach
for setting model coefficients in the k-L model that relaxes the
assumption of a quadratic profile for k to an extent. However,
even this approach maintains significant restrictions on the
polynomial power of the self-similar profiles for k and L, and
it also relies on the ansatz of a linear mixing profile.

The present paper introduces a model termed the
k-φ-L-a-V model, which is developed with the explicit in-
tent of designing a model that will admit high-order profiles
for both mixing profiles and turbulence variables through
self-similarity analysis. To accomplish this, the k-φ-L-a-V
model solves a transport equation for the turbulence velocity φ

(which can alternatively be thought of as the dissipation rate of
the turbulence length scale) in addition to transport equations
for turbulence kinetic energy k, turbulence length scale L,
mass-flux velocity ai, and scalar variance V . A self-similarity
analysis of this model will be presented, demonstrating
that constraints on model coefficients can be derived that
will enforce expected growth rates while maintaining the
desired high-order profiles. The model is then applied in
simulations of 1D RT, RM, and KH layers to verify that ex-
pected growth rates are recovered and high-order profiles are
maintained.
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The remainder of this paper is laid out as follows. First, in
Sec. II, the k-φ-L-a-V model is presented. Then, in Sec. III,
self-similarity analysis is presented to derive constraints on
model coefficients necessary to reproduce expected RT, RM,
and KH growth parameters. The model is then applied in
simulations of 1D RT, RM, KH, and combined RT-KH mixing
layers in Sec. IV to verify that the desired behavior is in
fact obtained. Results with the k-φ-L-a-V model are com-
pared with results of the k-2L-a-V model [14–16,22] and it
is demonstrated that the high-order profiles obtained with the
k-φ-L-a-V model are a much closer match to data. Finally,
in Sec. IV, conclusions are drawn and recommendations are
made regarding the direction of future research.

II. MODEL EQUATIONS

The k-φ-L-a-V model is derived from the compressible
RANS equations for a two-component, nonreactive gas mix-
ture. In the present paper, an overbar denotes Reynolds
averaging, and a tilde denotes mass-weighted (Favre) averag-
ing. An arbitrary scalar, f , is decomposed as

f = f + f ′ = f̃ + f ′′ , (2)

where the Favre average is related to the Reynolds average
through the density, ρ, according to

f̃ = ρ f

ρ
. (3)

The Reynolds stress tensor, mass-flux velocity vector, and
density–specific-volume covariance are defined, respectively,
in terms of the velocity vector, ui, and the specific volume,
1/ρ, by

ρτi j ≡ −ρu′′
i u′′

j , (4a)

ai ≡ −u′′
i , (4b)

b ≡ −ρ ′
(

1

ρ

)′
. (4c)

Equations (5)–(18) below summarize the k-φ-L-a-V
model, where Ỹ is the mass fraction, v is the volume fraction,
μt is the eddy viscosity, g j is the gravitational acceleration
vector, e is the specific internal energy, φ is the turbulent
velocity, L is the turbulent length scale, and V is the model
variable for variance of the mass fraction. Subscripts H and
L, as in YH or vL, indicate scalar fractions associated with the
heavy and light species, respectively. The model coefficients
CA, CB, CD, Cp1, Cp2, Cp3, CL1, CL2, CL3, CV 1, CV 2, CV 3, Na, Ne,
Nk , Np, NL, NV , NY , and Cdev are determined through similarity
analysis. The model equations are

Dρ

Dt
= −ρ

∂ ũi

∂xi
, (5)

ρ
DỸk

Dt
= ∂

∂xi

(
μt

NY

∂Ỹk

∂xi

)
, (6)

ρ
Dũ j

Dt
= ρg j − ∂ p

∂x j
+ ∂

∂xi
(ρτi j ) , (7)

ρ
Dẽ

Dt
= − p

∂ ũi

∂xi
− ai

∂ p

∂xi
+ CD

ρφk

L
+ ∂

∂xi

(
μt

Ne

∂ ẽ

∂xi

)
, (8)

ρ
Dk

Dt
=ρτi j

∂ ũi

∂x j
+ ai

∂ p

∂xi
− CD

ρφk

L
+ ∂

∂xi

(
μt

Nk

∂k

∂xi

)
, (9)

ρ
Dφ

Dt
= Cp1ρ

φ2

L
+ Cp2

1

φV 3/8
ρτi j

∂ ũi

∂x j

+ Cp3
ai

φV 3/8

∂ p

∂xi
+ ∂

∂xi

(
μt

Np

∂φ

∂xi

)
, (10)

ρ
DL

Dt
= CL1ρφ + CL2ρL

∂ ũi

∂xi

+ CL3ρτi j
L

k

∂ ũi

∂x j
+ ∂

∂xi

(
μt

NL

∂L

∂xi

)
, (11)

ρ
Daj

Dt
=CB

b

V 3/8

∂ p

∂x j
− CAρ

φ

L
aj

+ ρτi j

V 3/8

∣∣∣∣ ṽH

ỸH
− ṽL

ỸL

∣∣∣∣∂ỸH

∂xi
+ ∂

∂xi

(
μt

Na

∂a j

∂xi

)
, (12)

ρ
DV

Dt
= CV 1μt

∂ỸH

∂xi

∂ỸH

∂xi
− CV 2ρ

φ

L
V

+ CV 3V
ai

k

∂ p

∂xi
+ ∂

∂xi

(
μt

NV

∂V

∂xi

)
, (13)

where

D

Dt
≡ ∂

∂t
+ ũi

∂

∂xi
, (14)

μt = ρLφ , (15)

S̃i j = 1

2

(
∂ ũi

∂x j
+ ∂ ũ j

∂xi

)
− 1

3

∂ ũk

∂xk
δi j , (16)

ρτi j = Cdev2μt S̃i j − 2

3
ρkδi j , (17)

and

b =
(

ṽH

ỸH
− ṽL

ỸL

)2

V . (18)

The k-φ-L-a-V model as presented above is formulated un-
der the assumption of two-fluid mixing, as this form lends
itself most easily to self-similarity analysis. As discussed in
the Appendix, it is possible to formulate the model for an
arbitrary number of mixing species. For simplicity, however,
the remainder of the present paper will focus on the special
formulation for two-fluid mixing.

It has long been recognized that a transport equation may
be derived for any turbulence model variable of the form φmLn

for arbitrary exponents m and n [23–25]. Moreover, transport
equations of this form are generally expected to include right-
hand-side contributions due to shear production, buoyancy
production, dissipation, and diffusive transport [25]. Although
the transport equation for φ given by Eq. (10) is arrived at
fairly heuristically, we note that it is dimensionally correct,
Galilean invariant, and includes terms corresponding to the
four contributions previously mentioned. Although models
involving a transport equation for turbulence velocity (i.e.,
m = 1, n = 0) are not frequently encountered, there have been
some explorations of this form [26].

Generally speaking, what sets the present paper apart from
previous models that have explored use of the turbulence
velocity as a primary turbulence variable is the presence of

015107-2



SELF-CONSISTENT, HIGH-ORDER SPATIAL PROFILES … PHYSICAL REVIEW E 104, 015107 (2021)

a second turbulence velocity in the present model in the form
of

√
k. As similarity analysis will reveal in Sec. III, the ratio

φ√
k

is expected to approach a constant value at the center
of a mixing layer in both buoyancy-driven and shear-driven
mixing regimes. However, the constant that is approached is
different for the two regimes, similar to the behavior of the
ratio of transport to destruction length scales in two-length-
scale models [14]. Thus, the utility of having two turbulence
velocities is in providing the necessary degree of freedom
to simultaneously match growth rates in both the buoyancy-
driven and shear-driven regimes. While it may be possible
to develop a two-length-scale model conforming to the same
high-order spatial profiles as the present two-velocity model,
the analysis was found to simplify considerably using the
two-velocity form of the present paper.

A peculiar feature of the k-φ-L-a-V model worth noting
at this time is the appearance of the scalar variance V in the
denominator of production terms in Eqs. (10) and (12). The
necessity for this development will be discussed in greater
detail in Sec. III, but the presence of V in shear production
terms indicates that the present model requires scalar trans-
port. In other words, the k-φ-L-a-V model would not correctly
predict free shear growth in a single fluid flow unless one fluid
stream has been injected with a passive scalar. In this sense,
the k-φ-L-a-V should be thought of as a model specifically
for two-fluid mixing. With this caveat noted, the next section
discusses development of the model under the assumption of
high-order spatial profiles.

III. SIMILARITY ANALYSIS

Self-similarity analysis is a powerful tool that has been ap-
plied previously to derive constraints on model coefficients in
the k-L [5,12], k-L-a [10], k-2L-a [14], and k-2L-a-V [15,22]
models. In the present paper, we relax the assumption of a
linear mass fraction profile that was utilized in all of these
previous works. To begin, a change of variable is introduced
in terms of the mixing layer half width h(t ) such that χ ≡ x/h.
In the following sections, it is assumed that a scalar profile
across the mixing layer is given by

Y (χ ) = 1

A

∫ χ

−1
(1 − χ̂2)nY dχ̂ . (19)

In Eq. (19), nY is an arbitrary exponent and A is a normal-
ization constant given in terms of the gamma function 
 by

A = √
π


(nY + 1)



(
nY + 3

2

) . (20)

In the case of an RT or RM mixing layer, the scalar profile
represents species mass fraction across the mixing layer, while
in the case of a KH mixing layer the scalar profile is a passive
tracer in one fluid stream.

In all cases, the self-similarity ansatz is applied such that
we assume turbulence variables are separable functions of
time and space. From prior work [10], it has been shown
that L must assume a spatial profile of the form f 1/2, where
f = 1 − χ2 to constrain the relationship between L and h.
Additionally, it is recognized that to maintain consistency with
the diffusive terms, the eddy viscosity must assume a spatial

profile of the form f 1, which constrains the spatial profile of φ

to also follow a profile of the form f 1/2. With these constraints
in place, the separability ansatz is summarized according to

k(χ, t ) = K0(t ) f nk (χ ) , (21a)

φ(χ, t ) = P0(t ) f 1/2(χ ) , (21b)

L(χ, t ) = L0(t ) f 1/2(χ ) , (21c)

a(χ, t ) = A0(t ) f nk (χ ) , (21d)

V (χ, t ) = V0(t ) f 2nY +1(χ ) . (21e)

Generally speaking, there is no reason why the subsequent
analysis could not be performed for arbitrary exponents nY

and nk ; however, a priori observation suggests that optimal
agreement with experimental data occurs when nk = nY + 1.
Moreover, it is found that best agreement occurs when nY ≈
3/2. Thus, to simplify the algebra required, moving forward it
is assumed nY = 3/2 and nk = 5/2.

As a final comment before continuing on to the details
of self-similarity analysis, it is interesting to note that the
k-φ-L-a-V model does not utilize separate transport equations
for production and destruction length scales like the k-2L-a or
k-2L-a-V models [14,22]. By instead utilizing the φ equation,
the k-φ-L-a-V model effectively transports two different tur-
bulent velocities: (1) φ which is utilized in both destruction
and diffusive transport terms and (2)

√
k which couples back

to the momentum equation through the isotropic Reynolds
stresses. As the following analysis will show, this approach
is able to recover the same self-similar growth parameters for
RT and KH flow as the two-length-scale models.

A. Similarity of an RT mixing layer

1. Similarity of the L equation

For a 1D RT mixing layer in the limit of zero Atwood
number, Eq. (11) reduces to

ρ
DL

Dt
= CL1ρφ + ∂

∂x

(
μt

NL

∂L

∂x

)
. (22)

Assuming L0 = βh for some proportionality constant β and
substituting Eqs. (21) into Eq. (22) then results in the follow-
ing expression after some algebra:

L̇0 = P0

[
2
β2

NL
− CL1

]
χ2 + P0

[
CL1 − β2

NL

]
, (23)

where the dot notation has been used to indicate differenti-
ation with respect to time. The separability ansatz requires
the term that is quadratic in χ must vanish, which is satis-
fied if β2 = CL1NL/2. Utilizing this constraint further reduces
Eq. (23) to

L̇0 = CL1

2
P0 . (24)

2. Similarity of the a equation

Similarly, for a 1D RT mixing layer, Eq. (12) reduces to

ρ
Da

Dt
= CB

b

V 3/8

∂ p

∂x
− CAρa

φ

L

− 2

3

ρk

V 3/8

∣∣∣∣ ṽH

ỸH
− ṽL

ỸL

∣∣∣∣∂ỸH

∂x
+ ∂

∂x

(
μt

Na

∂a

∂x

)
. (25)
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Note at this point the presence of V 3/8 in the denominator
of the production terms in Eq. (25). Since V is unitless and
approaches a predictable steady-state value, it is used here
effectively as a correction to the expected spatial profiles for
the two production terms such that each term on the right-
hand side of Eq. (25) should conform to the expected f nk

profile. Recognize that this is only necessary because of the
high-order nature of the mixing profile. If low-order profiles
are assumed, as in previous models, no such correction is
necessary.

By applying the low-Atwood number approximation that
ρ ≈ (ρH + ρL )/2, it can be shown(

ṽH

ỸH
− ṽL

ỸL

)2

=
(

2AT

1 − A2
T

)2

, (26)

where AT ≡ (ρH − ρL )/(ρH + ρL ) is the conventional At-
wood number. Utilizing Eq. (24) to expand the material
derivative, recognizing for a hydrostatic mixing layer that
∂ p
∂x = −ρg, and substituting Eqs. (21) and (26) into Eq. (25)
leads to an expression similar in form to Eq. (23). The result-
ing expression contains second-moment terms proportional to
χ2 which must simultaneously go to zero with zero-moment
terms. Satisfaction of this requirement introduces the con-
straint that Na = 5NL, which reduces both second-moment
and zero-moment terms to the same expression:

Ȧ0 = −
(

CA + 4AT β

3AV 3/8
0

K0

A0P0
+ CL1

2

)
A0P0

L0
− 4CBV 5/8

0 A2
T g .

(27)

3. Similarity of the φ equation

For the 1D RT mixing layer under consideration, Eq. (10)
reduces to

ρ
Dφ

Dt
=Cp1ρ

φ2

L
− Cp3ρ

a

φV 3/8
g + ∂

∂x

(
μt

Np

∂φ

∂x

)
. (28)

Following the same approach as before, Eqs. (21) and (24) are
substituted into Eq. (28) and the resulting expression requires
Np = NL. Substitution of this constraint back then reduces the
φ equation to

Ṗ0 =
(
Cp1 − CL1

2

)P2
0

L0
− Cp3

A0

P0V
3/8

0

g . (29)

In addition, it is anticipated that A0 and P0 should be related
according to A0 = CaP0, for some proportionality constant Ca.
One way to reduce Eqs. (27) and (29) to the same expression
is if the following constraints are satisfied:

Ca = −2AT
√

CB , (30)

Cp3 = V0 , (31)

and

CA = 2β

3AV 3/8
0

√
CB

K0

P2
0

− Cp1 . (32)

If we now invoke the ansatz that h = αAT gt2, we can utilize
Eq. (24) and substitute into Eq. (29) to arrive at an expression

for the RT growth parameter α:

α = CL1V
5/8

0

√
CB

2β
(
3 − 4Cp1

CL1

) . (33)

At this point, it is somewhat easier to highlight the utility
of having V 3/8 in the denominator of the buoyancy production
term in the φ equation. To derive similarity constraints, each
term in Eq. (28) must conform to the same spatial profile.
As discussed previously, β can only be fixed as a constant
when L takes an f 1/2 profile. This requirement fixes the profile
for φ to be f 1/2 as well. Since a must have the same spatial
profile as k, which we want to have a higher-order profile of
the form f nk , the buoyancy production term in the φ equation
must assume a form ρaF−1g, where F has units of velocity
and a spatial profile f nk−1/2. A second consideration for the
form of F is that one must be able to derive a constraint on
α, which arises from the reduced φ equation as in Eqs. (29)
and (33). It turns out that if the construction of F = k/φ is
used, α assumes a dependence on the ratio P2

0 /K0, which
cannot be uniquely constrained through similarity analysis.
Similarly, if F = k/φ, the RT growth rate also cannot be
constrained. Thus, it is desirable to construct F in such a way
as to avoid this outcome, which is what motivates the current
form. As the next subsection will discuss, V0 can be shown to
reach a predictable steady-state value, which enables α to be
constrained according to Eq. (33).

4. Similarity of the V equation

For a 1D incompressible mixing layer, the RT mixedness
parameter is defined by

RT ≡
∫ 1
−1 YHYLdχ∫ 1
−1 Y HY Ldχ

= 1 −
∫ 1
−1 V dχ∫ 1

−1 Y HY Ldχ
. (34)

To simplify Eq. (34), recognize for nY = 3/2,

V0

∫ 1

−1
(1 − χ2)2nY +1dχ = V0

256

315
, (35)

and ∫ 1

−1
Y HY Ldχ =

∫ 1

−1

[
1

A

∫ χ

−1
(1 − χ̂2)nY dχ̂

]
×

[
1 − 1

A

∫ χ

−1
(1 − χ̂2)nY dχ̂

]
dχ

≈ 0.234 . (36)

Substituting Eqs. (35) and (36) back into Eq. (34) and rear-
ranging to solve for V0 gives

V0 ≈ 0.288(1 − RT) . (37)

The V equation for a 1D RT mixing layer is then given by

ρ
DV

Dt
= CV 1μt

∂ỸH

∂x

∂ỸH

∂x
− CV 2ρ

φ

L
V

+ CV 3V
a

k
ρg + ∂

∂x

(
μt

NV

∂V

∂x

)
. (38)

Recognizing from Eq. (37) that V̇0 = 0 and substituting
Eqs. (21) and (26) into Eq. (38), one arrives at an expression
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that requires NV = 8NL. When this constraint is applied, the
following expression is obtained:

0 = CV 1CL1NL

2A2
−

(
CV 2 + CL1

2

)
V0 + 2CV 3

√
CBV0

K0

L0
AT g .

(39)

Equation (39) can then be rearranged to solve for a constraint
on CV 3,

CV 3 = 1

2
√

CBV0AT g

L0

K0

[(
CV 2 + CL1

2

)
V0 − CV 1CL1NL

2A2

]
,

(40)

where V0 has been determined previously in Eq. (37).

5. Similarity of the k equation

For the hydrostatic 1D RT mixing layer, Eq. (9) becomes

ρ
Dk

Dt
= − ρag − CD

ρφk

L
+ ∂

∂x

(
μt

Nk

∂k

∂x

)
. (41)

As before, substituting into Eq. (41) results in an expression
that requires Nk = 5NL to simultaneously satisfy the second-
moment and zero-moment terms. Imposing this constraint
then reduces the k equation to

K̇0 = 2
√

CBP0AT g −
(
CD + CL1

2

)P0K0

L0
. (42)

Continuing, it is assumed that K0 should be proportional to the
mixing layer growth rate according to

√
K0 = γ ḣ = 2γαAT gt

for some proportionality constant γ . Substituting this expres-
sion back into Eq. (42), the following expression for γ can be
obtained:

γ 2α = β
√

CB

2CL1
( CD

CL1
+ 1

) . (43)

This allows one to write

K0

L0
= 4γ 2α

β
AT g = 2

√
CB

CL1
( CD

CL1
+ 1

)AT g . (44)

In addition,
√

K0

P0
= 2γαAT gt

4
CL1

βαAT gt
= CL1

2

γ

β
, (45)

or, after substituting Eqs. (43) and (33),

K0

P2
0

= 1

4V 5/8
0

3 − 4Cp1

CL1

CD
CL1

+ 1
. (46)

Then, substituting Eq. (46) back into Eq. (32) results in the
following complete constraint for CA:

CA = β

6AV0
√

CB

3 − 4Cp1

CL1

CD
CL1

+ 1
− Cp1 . (47)

Similarly, substituting Eq. (44) back into Eq. (40) results in a
complete constraint for CV 3:

CV 3 = 1

V0CL1
( CD

CL1
+ 1

)[(
CV 2 + CL1

2

)
V0 − CV 1CL1NL

2A2

]
.

(48)

6. Energy balance in an RT mixing layer

The energy balance within a 1D RT mixing layer can be
written as

EK (t ) = �PE − � , (49)

where EK is the total turbulence kinetic energy integrated
across the layer, �PE is the change in potential energy over
time, and � is the energy dissipated into internal energy given
by

�(t ) =
∫ t

0

∫ h

−h
CDρ

φk

L
dxdt . (50)

By substituting Eqs. (50), (19), and (21) into Eq. (49) and then
differentiating with respect to time, the following additional
constraint is derived:

CB = 1

8n2
kA2

CL1

NL
= 1

50A2

CL1

NL
. (51)

7. Similarity of the scalar and internal energy equations

The procedure for performing similarity analysis of the
scalar and internal energy equations follows closely the ap-
proach outlined in previous subsections. Equations (21) and
(24) are substituted into Eqs. (6) and (8) and constraints are
sought that simultaneously satisfy the second-moment ex-
pressions and the zero-moment expressions. For the sake of
brevity, the details of these analyses are omitted here but the
result is the derivation of the following additional constraints
on diffusion coefficients Ne and NY :

Ne = NY = Nk . (52)

B. Similarity of a KH mixing layer

The case of a quasi-1D shear layer is now considered such
that ux is a linear function of a single spatial dimension, y, and
uy = 0. In terms of the similarity variable, χ = y/h(t ),

ũx(χ ) =

⎧⎪⎨⎪⎩
U2, χ � 1

Uc[1 − A + 2AYu(χ )], −1 < χ < 1

U1, χ � −1,

(53)

where Yu is an indicator function that takes a similar form to
Eq. (19),

Yu(χ ) = 1

Au

∫ χ

−1
(1 − χ̂2)nu dχ̂ . (54)

In Eq. (54), a priori observation suggests that nu = 3/4 should
provide good agreement with experimental velocity profiles.
Thus, for nu = 3/4,

Au = √
π



(

3
4 + 1

)



(
3
4 + 3

2

) ≈ 1.4378 . (55)

The convective velocity is then defined as

Uc = U2 + U1

2
, (56)

and A is the KH-analogue Atwood number defined by

A = U2 − U1

U2 + U1
. (57)
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1. Similarity of the L equation

For the quasi-1D KH mixing layer, Eq. (11) reduces to

ρ
DL

Dt
=CL1ρφ + CL3

L

k

[
CdevρLφ

(
∂ ũx

∂y

)2]
+ ∂

∂y

(
μt

NL

∂L

∂y

)
.

(58)

Following a similar approach as before, it is assumed that L0

is proportional to h such that L0 = βh. Substituting Eqs. (21)
and (53) into Eq. (58) results in second-moment and zero-
moment expressions that are reduced only if

β2 = CL1NLA2
u

2A2
u − �NLCL3Cdev

, (59)

where � is the inverse of the KH turbulence intensity defined
according to

� ≡ �U 2

K0
. (60)

Utilizing Eq. (59) reduces the L equation to

L̇0 = CL1A2
u

2A2
u − �NLCL3Cdev

P0 . (61)

2. Similarity of the momentum equation

For an incompressible shear layer described by Eq. (53)
with no body force, Eq. (7) reduces to

ρ
Dũx

Dt
= ∂

∂y
(ρτxy) . (62)

Substituting into Eq. (62) gives

Dũx

Dt
= CdevL0P0

(
∂ f

∂y

∂ ũx

∂y
+ f

∂2ũx

∂y2

)
. (63)

Evaluating the derivatives and substituting Eqs. (59) and (61)
into Eq. (63) yields the following constraint:

2

7NL
= Cdev . (64)

3. Similarity of the V equation

For the KH mixing layer under consideration, it is assumed
that one of the fluid streams is injected with a passive tracer
Y . As before, it is assumed that this tracer has a profile given
by

Y (χ ) = 1

AY

∫ χ

−1
(1 − χ̂2)3/2dχ̂ , (65)

where

AY = √
π



(

5
2

)

(3)

= 3π

8
. (66)

The model equation for the variance of Y in the pseudo-1D
KH mixing layer is then given by

ρ
DV

Dt
=CV 1μt

∂Ỹ

∂y

∂Ỹ

∂y
− CV 2ρ

φ

L
V + ∂

∂y

(
μt

NV

∂V

∂y

)
. (67)

Following the familiar procedure, Eq. (67) is reduced when
NY = 8NL, which results in the following expression:

CV 1
β2

A2
Y

− CV 2V0 − β2

NL
V0 = 0 . (68)

Similar to the approach described in Eqs. (34)–(36), it is rec-
ognized that V0 should reach a constant value V0 ≈ 0.288(1 −
KH) in terms of the KH mixedness, KH. Then, rearranging
Eq. (68) to solve for CV 1 gives

CV 1 = 0.288(1 − KH)

×
[

2CV 2A2
Y A2

u − CV 2A2
Y �NLCL3Cdev + CL1A2

Y A2
u

NLCL1A2
u

]
.

(69)

4. Similarity of the k equation

Equation (9) reduces to the following for the KH mixing
layer under consideration:

ρ
Dk

Dt
=ρτxy

∂ ũx

∂y
− CD

ρφk

L
+ ∂

∂xi

(
μt

Nk

∂k

∂y

)
. (70)

Recognizing for a steady-state shear layer that K̇0 = 0 and
simplifying as before, Eq. (70) is reduced when Nk = 5NL,
which reduces it to

Cdev
β2�U 2

A2
u

P0

L0
− 5β2

Nk

K0P0

L0
− CD

K0P0

L0
= 0 . (71)

Substituting Eq. (59) into Eq. (70), the following expression
can then be obtained for the KH turbulence intensity:

�−1 = NLCdev
(
1 + CL3

CD
CL1

)
A2

u

(
1 + 2 CD

CL1

) . (72)

Or alternatively, by rearranging Eq. (72), the following con-
straint can be determined for CL3:

CL3 = CL1

CD

(
A2

u

(
1 + 2 CD

CL1

)
�−1

NLCdev
− 1

)
. (73)

5. Similarity of the φ equation

The φ equation for the quasi-1D KH mixing layer is given
by

ρ
Dφ

Dt
=Cp1ρ

φ2

L
+ Cp2

1

φV 3/8
ρτxy

∂ ũx

∂y
+ ∂

∂y

(
μt

Np

∂φ

∂y

)
.

(74)

Similar to the approach for the k equation, it is also recog-
nized that Ṗ0 = 0 for a steady-state KH mixing layer. Then,
substituting into and simplifying Eq. (74) requires Np = NL,
which results in the following:

Cp1
P2

0

L0
+ 1

A2
u

1

L0V
3/8

0

Cp2Cdev�U 2β2 − β2

Np

P2
0

L0
= 0 . (75)

Substituting Eq. (59) into Eq. (75) and rearranging leads to the
following expression:

P2
0

�U 2
= Cp2NLCdev

A2
uV

3/8
0 − V 3/8

0
Cp1

CL1

(
2A2

u − �NLCL3Cdev
) . (76)
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TABLE I. Summary of physical parameters used to constrain
k-φ-L-a-V model coefficients.

α RT n m �−1 δ/A KH

0.06 0.80 1.11 1.33 0.035 0.08 0.80

6. Mixing layer growth parameter

For the case of a spatially evolving shear layer, the nondi-
mensional growth rate δ is defined as

δ ≡ dh

dx
. (77)

It is therefore possible to write for a temporally evolving shear
layer:

ḣ = dh

dx

dx

dt
= δUc . (78)

Recalling that L0 = βh and substituting Eqs. (59) and (76)
into Eq. (78), the following additional constraint is deter-
mined:

Cp2 =
(

δ

A

)2 [
2A2

u − �NLCL3Cdev
]

4A2
uCL1Cdev

×
[
A2

uV
3/8

0 − V 3/8
0

Cp1

CL1

(
2A2

u − �NLCL3Cdev
)]

. (79)

C. Decaying homogeneous isotropic turbulence

In the absence of mean velocity or pressure gradients, the
model equations reduce to

dk

dt
= −CD

φk

L
, (80)

dL

dt
= CL1φ, (81)

dφ

dt
= Cp1

φ2

L
, (82)

dV

dt
= −CV 2

φV

L
. (83)

These equations are solved in terms of a reference time, t0 and
decay exponents, n and m:

k = K0

(
1 + t

t0

)−n

, (84a)

L = L0

(
1 + t

t0

)1−n/2

, (84b)

φ = P0

(
1 + t

t0

)−n/2

, (84c)

V = V0

(
1 + t

t0

)−m

. (84d)

Substituting Eqs. (84a) through (84d) back into Eqs. (80)–
(83) leads to the following constraints after some algebra:

CD

CL1
= 2n

2 − n
, (85)

Cp1

CL1
= n

n − 2
, (86)

CV 2

CL1
= 2m

2 − n
. (87)

D. Summary of constraints

Equations (31), (33), (48), (47), (51), (64), (69), (73), (79),
and (85)–(87) represent 12 constraints on model coefficients
Cp3, NL, CV 3, CA, CB, Cdev, CV 1, CL3, Cp2, and the ratios CD

CL1
,

Cp1

CL1
, and CV 2

CL1
in terms of physical parameters α, RT, KH,

�−1, δ/A, n, and m. In addition, constraints have been de-
termined on diffusion coefficients such that Np = NL, Nk =
5NL, Np = 8NL, and Ne = NY = Na = Nk . We have thus deter-
mined 18 constraints on the 20 model coefficients previously
enumerated. To complete the model, the following constraint
is applied to CL2 to ensure that the total velocity divergence
contribution to the L equation is 1/3 [5,16]:

CL2 = 1
3 + 2

3CL3 . (88)

To resolve the remaining degree of freedom, a value should be
chosen for CL1 or one of the dissipation coefficients CD, Cp1,
or CV 2. For simplicity, the present work takes CD = 1, which
completes the set of constraints on model coefficients for the
k-φ-L-a-V model. Table I summarizes the values of physical
parameters used, while Table II summarizes the full set of
model coefficients through the similarity constraints. Note
that by selecting a different value for CD, one could derive a
different set of model coefficients consistent with the physical
parameters in Table I. The difference among such coefficient
sets would be the value of the proportionality constant β,
which effectively sets the scaling on most model coefficients.

IV. NUMERICAL RESULTS

The k-φ-L-a-V model is applied here to the simulation
of several one-dimensional RT, RM, and KH test problems.
The model is implemented in the Ares code, which is a
second-order arbitrary Lagrangian/Eulerian hydrodynamics
code developed at Lawrence Livermore National Laboratory
[12]. Results with the k-φ-L-a-V are compared with results
obtained with the k-2L-a-V model [14–16,22] to highlight dif-
ferences that are realized due to the high-order spatial profiles
of the k-φ-L-a-V model. While comparisons here are made
against the k-2L-a-V model specifically, they should be con-
sidered representative comparisons for all k-L-type models
which utilize the same assumptions of a linear mixing profile
and quadratic TKE profile in their construction. In addition,

TABLE II. Model coefficients for the k-φ-L-a-V model.

Cdev CB CD CL1 CL2 CL3 Cp1 Cp2 Cp3 CA CV 1 CV 2 CV 3 NY,e,k,a NL,p NV

24.0 0.485 1.00 0.400 0.472 0.208 −0.500 3.44 × 10−4 0.0576 0.893 30.5 1.20 0.985 0.0594 0.0119 0.0951
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FIG. 1. Three measures of evolution of a 1D RT mixing layer. (a) Mixing layer half-width h, turbulence kinetic energy K0, and turbulence
length scale L0 as a function of time for both the k-2L-a-V and k-φ-L-a-V models. Dimensions are in cm for h and L0 but in (cm/μs)2 × 10−9

for K0. (b) The RT growth parameter, α = h/(AT gt2) is plotted as a function of non-dimensional time for both k-2L-a-V and k-φ-L-a-V models.
(c) Steady-state mixedness with both the k-2L-a-V and k-φ-L-a-V models.

model results are compared with data from large-eddy simu-
lation (LES) or experiments where available.

A. Rayleigh-Taylor mixing layer

We first consider a one-dimensional hydrostatic RT mixing
layer between two ideal, monatomic gases subject to constant
acceleration at Atwood number AT = 0.05. This problem is
set up in a domain of size 1 cm with 1600 uniformly spaced
computational zones. Turbulence length scales are initialized
to zero everywhere except for the two zones bordering the in-
terface at y = 0, where L = λ0 = 4.0 × 10−6 cm. Turbulence
kinetic energy is initialized to zero everywhere except the two
interface zones, where k is initialized to 1.0 cm2/s2.

In Fig. 1(a), the mixing layer width, the maximum TKE
K0, and the maximum turbulence length scale L0 are plotted
for simulations using the k-2L-a-V and k-φ-L-a-V models. By
plotting these quantities against AT gt2, they increase linearly,
which implies quadratic growth of the form αAT gt2. While
the evolution of the mixing layer width h is nearly identical
for both models, the magnitudes of K0 and L0 are uniformly
lower for the k-φ-L-a-V model. Figure 1(b) illustrates that
for both the k-2L-a-V and k-φ-L-a-V models, the realized
growth parameter α = h/(AT gt2) asymptotes to the expected
value 0.06, which was used to set the model coefficients.

Figure 1(c) additionally plots the RT mixedness, as defined
by Eq. (34) for both the k-2L-a-V and k-φ-L-a-V models. As
expected, both models quickly achieve the self-similar value
of RT = 0.8. While the transient period is not very long for
either model, the k-φ-L-a-V model demonstrates a somewhat
shorter transient period. In Figs. 1(b) and 1(c), the reference
time t0 = √

λ0/(AT g).
Figure 2 highlights the main difference between the

k-2L-a-V and k-φ-L-a-V models as well as the chief ad-
vantage of the k-φ-L-a-V model. In Fig. 2, spatial profiles
of heavy species mass fraction, normalized TKE, and scalar
variance are plotted from 1D simulations using the two RANS
models along with comparison profiles from LES by Morgan
et al. [27]. As these plots show, the high-order spatial profiles
realized by the k-φ-L-a-V model match much more closely
with the LES results than the k-2L-a-V results. While the
peak magnitude in scalar variance [Fig. 2(c)] with k-φ-L-a-V
appears slightly overpredicted with respect to LES, it is inter-
esting to recall that the steady-state mixedness of both RANS
solutions is exactly 0.8. Given the close agreement between
LES and k-φ-L-a-V in the spatial profile of ỸH , one must
conclude that the mixedness of the comparison LES is slightly
greater than 0.8.

Figures 3–5 demonstrate the impact of increasing Atwood
number on spatial profiles of heavy species mass fraction,

FIG. 2. Comparison of RT spatial profiles between the k-2L-a-V model, the k-φ-L-a-V model, and LES by Morgan et al. [27]: (a) average
mass fraction of the heavy species, ỸH , (b) normalized turbulence kinetic energy k/K0, and (c) scalar variance V = ˜Y ′′

HY ′′
H are all plotted versus

the spatial similarity variable χ = x/h.
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FIG. 3. Comparison of spatial profiles of heavy species mass fraction YH in an RT mixing layer with increasing Atwood number: (a) with
the k-2L-a-V model and (b) with the k-φ-L-a-V model.

normalized TKE, and scalar variance. In each of these figures,
results with the k-2L-a-V model are plotted on the left and
results with the k-φ-L-a-V model are plotted on the right.
As the k-φ-L-a-V model is pushed toward a higher Atwood
number, the spatial profiles stay smooth due to the high-
order nature of the self-similarity solution. With the k-2L-a-V
model, the magnitude of discontinuity in the first derivative of
spatial profiles becomes exaggerated around χ = −1, which
could impact problem stability at higher Atwood number. In
addition, the k-2L-a-V profiles demonstrate some amount of
drift away from χ = 0 (previously observed with the k-L-a
model as well [10]), which is not present in the k-φ-L-a-V
model results.

B. Richtmyer-Meshkov mixing layer

We next consider simulation of the Mach 1.5 air/SF6 shock
tube experiment (AT ≈ 0.67) by Vetter and Sturtevant [28].
The shockwave is driven from air into SF6, reflected from the

end wall, and eventually reshocks the fluid interface. In this
particular experiment, a rarefaction wave additionally inter-
acts with the mixing layer shortly after the second shock.

Simulation results are found to be well-converged with
2560 zones in the 60.0 cm SF6 test section, 3840 zones of
shocked air (157 cm), and 80 zones of ambient air (6.0 cm).
An initially diffuse interface of width h0 = 0.11 cm is as-
sumed and the initial conditions are

YSF6 (y, 0) = 1

2

[
1 + tanh

( y

h0

)]
,

L(y, 0) = 4 λ0 YSF6 (y)[1 − YSF6 (y)],

k(y, 0) = 4 k0 YSF6 (y)[1 − YSF6 (y)]. (89)

The initial length scales and TKE are initialized with a smooth
profile, where k0 = 1.0 × 10−6 cm2/μs2, and λ0 is chosen to
give nearly the same behavior on first shock for both models.
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FIG. 4. Comparison of spatial profiles of normalized TKE, k/K0, in an RT mixing layer with increasing Atwood number: (a) with the
k-2L-a-V model and (b) with the k-φ-L-a-V model.
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FIG. 5. Comparison of spatial profiles of scalar variance V , in an RT mixing layer with increasing Atwood number: (a) with the k-2L-a-V
model and (b) with the k-φ-L-a-V model.

For the k-2L-a-V model, λ0 = 0.11 cm, and for the k-φ-L-a-V
model, λ0 = 0.02 cm.

Mixing layer width as a function of time is plotted for
both RANS models in Fig. 6 and compared against experi-
mental data from Vetter and Sturtevant [28]. By design, initial
conditions have been selected for both models to give nearly
identical behavior on first shock and to pass roughly through
the first-shock experimental data points. When compared in
this way, the k-φ-L-a-V model is observed to predict some-
what less growth immediately after the second shock has
passed. The most likely reason for this difference seems to
be the smoother profiles achieved by the k-φ-L-a-V model,
highlighted previously in Figs. 3–5, which should lead to
reduced-magnitude gradients that appear in buoyancy pro-
duction mechanisms during shock passage. As a result, for
this particular selection of initial conditions, the k-φ-L-a-V
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FIG. 6. Mixing width as a function of time for the Vetter and
Sturtevant shock tube experiment [28]. Symbols indicate experi-
mental data, while solid lines indicate simulation results with the
k-2L-a-V and k-φ-L-a-V models.

mixing layer width passes more or less through the cloud of
second-shock data points. Of course, it is worth pointing out
that by reducing the choice of λ0 for the k-2L-a-V model,
it is possible to achieve a nearly equivalent result for the
second-shock data points with a lower crossing point through
the first-shock data.

C. Kelvin-Helmholtz mixing layer

Next, we consider KH mixing layer simulations run with
960 uniformly spaced computational zones on a domain ex-
tending from y = −48.0 cm to y = 48.0 cm. Turbulence
length scales are initialized to zero everywhere except for
the two zones bordering the interface at y = 0, where L =
0.44 cm. Turbulence kinetic energy is additionally initialized
to zero everywhere except for the two interface zones, where
k is initialized to 0.01(�U )2. The initial velocity profile is
chosen to match the Bell and Mehta experiment [29] such that
ũx = U1 = 900 cm/s for y < 0 and ũx = U2 = 1500 cm/s for
y � 0, corresponding to A = 0.25.

Figures 7 and 8 compare the basic measures of self-
similar behavior expected for a KH mixing layer between
the k-2L-a-V and k-φ-L-a-V models. In Fig. 7, the mixing
layer width as a function of time is plotted along with the
nondimensional growth parameter δ/A. From Fig. 7(b), it is
clear that both models approach the expected growth parame-
ter of δ/A = 0.08 and therefore result in the same KH growth
rate. However, the k-φ-L-a-V model is observed to have a
shorter transient period and reach the self-similar state quite
a bit sooner than the k-2L-a-V model. Similar behavior is
observed in Figs. 8(a) and 8(b) as well. These figures plot,
respectively, the KH mixedness and the turbulence intensity
k/(�U )2 as a function of time. Both models are observed
to reach the same expected self-similar values, 0.8 for the
KH mixedness and 0.035 for the turbulence intensity. As
with the growth parameter, however, the k-φ-L-a-V model
demonstrates a shorter transient period and reaches the steady-
state much sooner. Recall from Fig. 1(a) that in the 1D RT
simulations, at effectively the same mixing layer width, the
k-φ-L-a-V model predicted a lower magnitude for both L0
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FIG. 7. Mixing layer growth in a 1D KH mixing layer. (a) Mixing layer half-width h as a function of time for both the k-2L-a-V and
k-φ-L-a-V models. (b) KH growth parameter δ/A as a function of time for both k-2L-a-V and k-φ-L-a-V models.

and K0 compared to the k-2L-a-V model. Similar behavior
was observed in the RM results illustrated in Fig. 6, where the
initial turbulence length scale needed by the k-φ-L-a-V model
was about a factor of 5 less than that of the k-2L-a-V model to
achieve the same first-shock growth. This behavior indicates
that the proportionality constant β is greater for the k-φ-L-a-V
model than the k-2L-a-V model. Thus, in the present KH
simulation, results in which both models are initialized with
the same value of L, the k-φ-L-a-V model grows the mixing
layer width more rapidly initially until it becomes resolved
and begins to grow self-similarly. As a result, the transient
period is observed to be shorter.

Spatial profiles of average streamwise velocity ũx and TKE
are plotted in Fig. 9 with comparison results from LES by
Morgan [22]. As before with the RT profiles, the high-order
spatial profiles realized with the k-φ-L-a-V model demon-
strate much closer agreement with the LES than the k-2L-a-V
results. One interesting aspect of the comparisons in Fig. 9(b)
is that the TKE profile from LES appears to extend beyond
the bounds of the spatial similarity variable χ ∈ [−1, 1], a

characteristic which can also be observed in experimental data
by Bell and Mehta [29]. This behavior is in contrast to the
RT case [Fig. 2(b)] and could suggest that KH intermittency
effects are still not fully accounted for in the present simi-
larity analysis. However, the difference between RANS and
LES TKE profiles is nonetheless much improved with the
k-φ-L-a-V model.

D. Combined Rayleigh-Taylor–Kelvin-Helmholtz mixing

To consider model behavior during transition between
shear-dominated mixing and buoyancy-dominated mixing, the
k-φ-L-a-V model is now applied to the simulation of com-
bined RT-KH instability. In this case, the relative strength of
buoyancy to shear effects is given by the Richardson number:

Ri = − g∂ρ/∂y

(∂ ũ/∂y)2 ≈ − 2gAT h

(�U )2 . (90)

A quasi-1D mixing layer is simulated at AT = 0.05 and
A = 0.50 for varying intensity of gravitational acceleration.

FIG. 8. Two measures of evolution in a psuedo-1D KH mixing layer with both the k-2L-a-V and k-φ-L-a-V models: (a) steady-state
mixedness and (b) steady-state turbulence intensity, k/(�U )2.
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FIG. 9. Comparison of RT spatial profiles between the k-2L-a-V model, the k-φ-L-a-V model, and LES by Morgan [22]: (a) average
streamwise velocity, ũx , and (b) normalized turbulence kinetic energy k/(�U )2 are plotted versus the spatial similarity variable χ = y/h.

Figure 10 provides two representations of the relationship
between the two turbulence velocities, φ and

√
k, and how

this relationship changes as a function of Richardson number.
In Fig. 10(a), normalized spatial profiles of k and φ are plotted
along with the normalized ratio k

φ2 . As expected, k conforms

to an f 5/2 profile, and φ conforms to an f 1/2 profile; thus, the
ratio k/φ2 assumes a profile of the form f 3/2. The magnitude

of the normalization factor P2
0

K0
, however, is given by Eq. (46)

in the limit of RT mixing and by Eqs. (72) and (76) in the limit
of KH mixing. Substitution of the values in Tables I and II into

these equations gives expected limits of P2
0

K0
≈ 1.60 × 10−3 for

KH flow and P2
0

K0
≈ 2.94 × 10−1 for RT flow.

Figure 10(b) plots the magnitude of the normalization fac-

tor P2
0

K0
as a function of Richardson number. Note that the

black curve in Fig. 10(b) is generated as a composite from
several different simulations with varying intensity of gravita-
tional acceleration that overlap across Richardson numbers.

From this figure, we see that P2
0

K0
varies smoothly between

the expected limits as Richardson number increases from the
shear-dominated regime to the buoyancy-dominated regime.
Similar behavior was observed for the ratio of length scales
in simulations of combined RT-KH mixing with the k-2L-a
model [14]. Specifically, with the k-2L-a model, the ratio
of the destruction length scale Ld to the transport length
scale Lt was found to vary between two constant limits as
the Richardson number is increased from shear-dominated to
buoyancy-dominated flow. We observe that the two turbulence
velocities in the present k-φ-L-a-V model play a similar role
to the two turbulence length scales in the k-2L-a model in
allowing the smooth transition between shear-dominated and
buoyancy-dominated flow.

More generally, the magnitude of the ratio φ2

k is interesting

as a potential diagnostic because of this behavior. Since φ2

k is
expected to vary between two known self-similar values, the
magnitude of this ratio in more complicated simulations might
provide some indication about whether local mixing behavior
is dominated by shear or buoyancy effects.

FIG. 10. Two representations of the relationship between the turbulence velocities φ and
√

k in a combined RT-KH mixing layer:

(a) normalized spatial profiles and (b) the magnitude of
P2

0
K0

as a function of Richardson number.
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V. SUMMARY AND CONCLUSIONS

The present paper has introduced a RANS model for vari-
able density turbulent mixing, termed the k-φ-L-a-V model.
This model differs from other similar models in that it has
been designed to relax the assumption of a linear mixing
profile. In contrast to models which have attempted to achieve
similar behavior through ad hoc adjustment of diffusion co-
efficients, the k-φ-L-a-V model achieves high-order spatial
profiles that are self-consistent with similarity analysis. This
allows one to determine model coefficients that will exactly
reproduce desired growth rates while maintaining high-order
spatial profiles. Although the present model utilizes a trans-
port equation for scalar mass fraction variance V , it is worth
noting that the present approach could alternatively be ap-
plied to construct a similar model that might instead solve
for density variance, temperature variance, or the density-
specific-volume covariance, b.

In Sec. III, a full description of the self-similarity analysis
for the k-φ-L-a-V model was presented and a complete set
of constraints were determined for model coefficients. Using
these self-similarity constraints, a set of model coefficients
was then determined based on seven physical growth and
decay parameters from RT mixing, KH mixing, and homo-
geneous isotropic turbulence. The k-φ-L-a-V model was then
applied in simulations of RT, RM, and KH mixing layers and
compared with results from the k-2L-a-V model. Through
these comparisons, it was shown that the expected growth
parameters were recovered exactly and that, in contrast to
the k-2L-a-V results, the high-order spatial profiles achieved
by the k-φ-L-a-V model agreed more closely with data from
high-fidelity LES. In addition, it was found that transient
behavior prior to achieving steady-state behavior tended to
be shorter with the k-φ-L-a-V , and smooth spatial profiles
persisted at higher Atwood numbers which could potentially
contribute to improved numerical stability and reduced spuri-
ous growth.

While many practical problems of variable density mixing
may only be sensitive to low-order effects such as mixing
layer growth rates, work by Mackay and Pino [30] has sug-
gested that a linear mixing profile in applications of inertial
confinement fusion could contribute to inaccuracy in predict-
ing higher-order observables such as the reaction-weighted
ion temperature. In this regard, the k-φ-L-a-V model might
be expected to behave better than a model with linear spatial

profiles like k-2L-a-V . Of course, this remains to be shown
and should be explored in future work.
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APPENDIX: MODEL EXTENSION FOR
MULTICOMPONENT MIXING

It is possible to formulate the k-φ-L-a-V model in such a
way that it is not restricted to only two-fluid mixing. Broadly
speaking, the manner in which this extension is approached
is to replace the two-fluid closure for b with the multifluid
closure utilized by the k-L-a model [10]. In addition, the
shear production term involving gradient of mass fraction in
Eq. (12) is replaced by the gradient of density, and production
terms involving V are summed over all components. Equa-
tions (A1)–(A3) summarize the multicomponent extension of
the k-φ-L-a-V model:

ρ
Dφ

Dt
= Cp1ρ

φ2

L
+ Cp2

1

φ
∑

α V 3/8
α

ρτi j
∂ ũi

∂x j

+ Cp3
ai

φ
∑

α V 3/8
α

∂ p

∂xi
+ ∂

∂xi

(
μt

Np

∂φ

∂xi

)
, (A1)

ρ
Daj

Dt
= CB

b∑
α V 3/8

α

∂ p

∂x j
− CAρ

φ

L
aj

+ τi j∑
α V 3/8

α

∂ρ

∂xi
+ ∂

∂xi

(
μt

Na

∂a j

∂xi

)
, (A2)

b = ρ

∑
α

vα

ρα+cρ∑
α

vαρα

ρα+cρ

− 1 . (A3)

In Eq. (A3), c is a correction factor term that can be used to
avoid the closure diverging at high Atwood numbers. For low
and moderate Atwood numbers, c = 0. Note that since the
similarity analysis in Sec. III utilizes an ansatz on the form
of the mass-fraction profile rather than the volume-fraction
profile, the effect of replacing mass fraction gradients with the
density gradients in Eq. (A2) is that the self-similarity results
determined in Sec. III will only approximately hold for the
multicomponent extension except in the limit of low Atwood
numbers where vα ≈ Yα .
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