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Unsteady dynamics of a classical particle-wave entity
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A droplet bouncing on the surface of a vertically vibrating liquid bath can walk horizontally, guided by the
waves it generates on each impact. This results in a self-propelled classical particle-wave entity. By using a
one-dimensional theoretical pilot-wave model with a generalized wave form, we investigate the dynamics of
this particle-wave entity. We employ different spatial wave forms to understand the role played by both wave
oscillations and spatial wave decay in the walking dynamics. We observe steady walking motion as well as
unsteady motions such as oscillating walking, self-trapped oscillations, and irregular walking. We explore the
dynamical and statistical aspects of irregular walking and show an equivalence between the droplet dynamics
and the Lorenz system, as well as making connections with the Langevin equation and deterministic diffusion.
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I. INTRODUCTION

Vertically vibrating a bath of liquid can result in the emer-
gence of a self-propelled particle-wave entity in the form of
a walking droplet on the free surface of the liquid [1-4]. The
walking droplet, also known as a walker, on each bounce lo-
cally generates a slowly decaying standing wave. The droplet
then interacts with these self-generated waves on subsequent
bounces to propel itself horizontally. The walker emerges
for vibration amplitudes just below the Faraday instability
threshold where the liquid surface remains flat everywhere
except in the vicinity of the walker; above this threshold the
whole interface becomes unstable to standing Faraday waves
[S]. Very close to but below the Faraday threshold, the waves
created by a walker on each bounce extend far in space and
decay very slowly in time. In this regime, the droplet is not
only influenced by the wave it created from its most recent
bounce, but also by the waves it created in the distant past,
giving rise to memory in the system.

In the high-memory regime, walkers have been shown to
mimic several peculiar features that were previously thought
to be exclusive to the quantum realm. These include orbital
quantization in rotating frames [6—8] and harmonic potentials
[9-11], Zeeman splitting in rotating frames [12,13], wave-
like statistical behavior in confined geometries [14—18] as
well as in an open system [19], and tunneling across sub-
merged barriers [20-22]. Walkers have also been predicted to
show anomalous two-droplet correlations [23,24]. Recently,
efforts have also been made to develop a hydrodynamic
quantum field theory for the walking-droplet system [25,26].
Detailed reviews of hydrodynamic quantum analogs of walk-
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ing droplets have been provided by Bush [27] and Bush and
Oza [28].

To model the walking droplet, many theoretical descrip-
tions have been developed over the years. These range from
phenomenological stroboscopic models that average over the
vertical periodic bouncing motion of the droplet and only
capture the horizontal dynamics, to sophisticated models that
resolve the vertical and horizontal dynamics and the detailed
evolution of the surface waves created by the walker. A re-
view of the different models is given by Turton et al. [29]
and Rahman and Blackmore [30]. The latter work provides a
perspective through the lens of dynamical systems theory.

In experiments, a single walker or superwalker [4,31] is
typically observed to travel in a straight line at a constant
speed unless it encounters obstacles or other droplets. At high
memories, Bacot et al. [32] experimentally observed multiple
states of a free walker, where, in addition to rectilinear con-
stant speed motion, the droplet was also observed to walk with
oscillations in speed in the walking direction. Using a theoret-
ical model of walkers, Hubert et al. [33] showed that in the
very-high-memory regime the rectilinear constant speed mo-
tion of a walker becomes unstable and the walker’s horizontal
dynamics becomes bimodal, where it erratically switches be-
tween phases of linear motion and diffusive motion [33]. This
bimodal motion shows analogies with the run-and-tumble dy-
namics common in swimming micro-organisms and artificial
microswimmers [34-37].

Durey et al. [38] also explored this high-memory regime
for a walker using the stroboscopic model of Oza er al.
[39], by confining the motion of the walker to a line. Since
the steady walking is neutrally stable to lateral perturbations
[39], the key aspects of the instability of the steady walking
state may be captured by investigating the droplet’s dynamics
confined to one dimension [38,40]. They identified various
regimes of a walker in the parameter space, that give rise to
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oscillations in the walking speed and random-walk-like mo-
tion of the droplet, leading to a statistical wavelike signature
in the probability density function of the droplet’s position.
Wavelike statistics emerging from speed oscillations of a
walker has also been demonstrated in a hydrodynamic analog
of Friedel oscillations [19]. Recently, Durey [41] investigated
the high-memory regime using an idealized theoretical pilot-
wave model that implements a simplified sinusoidal wave
form for the waves generated by the droplet and found similar-
ities between the droplet’s dynamical system and the Lorenz
system.

In this paper, we revisit the dynamics of a single walker
restricted to move in one horizontal dimension, by extending
the stroboscopic model of Oza et al. [39] to a generalized
wave form, i.e., allowing a general spatial structure for the
underlying waves generated by the droplet, and exploring
the dynamics observed in the parameter space using different
wave forms. We investigate the role played by spatial decay of
the wave form and wave oscillations in the droplet’s dynamics
by employing Gaussian, Bessel, and sinusoidal wave forms,
and explore in detail the unsteady dynamics arising from a
sinusoidal wave form. In Sec. II we present the generalized
stroboscopic model and use it to perform a linear stability
analysis for both the stationary state and the steady walking
state of the droplet, in Secs. III and IV respectively. We then
in Sec. V explore the various unsteady behaviors observed
in the parameter space using different wave forms. In Secs.
VI and VII we explore, respectively, the dynamical and the
statistical aspects of the irregular walking motion realized in
the unsteady walking regime and draw connections with the
Lorenz equations, the Langevin equation, and deterministic
diffusion.

II. STROBOSCOPIC MODEL WITH A GENERALIZED
WAVE FORM

Oza et al. [39] derived a stroboscopic model to describe the
horizontal dynamics of a walking droplet by averaging over
its vertical periodic bouncing motion and employing a Bessel
function wave form of the first kind and zeroth order, Jy(+), for
the individual waves generated by the droplet on each bounce.
Here we extend this model to an arbitrary smooth, symmetric
standing wave form with exponential temporal decay, and
investigate the droplet’s dynamics by restricting the horizontal
motion of the droplet to one dimension.

As shown schematically in Fig. 1, consider a droplet at
position x,; walking horizontally with velocity x; and con-
tinuously generating waves with prescribed spatial structure
A(x) that decay exponentially in time. The equation of mo-
tion governing the horizontal dynamics of the droplet is
given by

. . oh
KXg +Xg = —B— . (D
Bx X=Xy
The left-hand side of this equation comprises an inertial term
kX4 and a drag term x;, where the overdot denotes differentia-
tion with respect to time ¢. The right-hand side of the equation
captures the forcing on the droplet by the underlying wave
field h(x, t). This force is proportional to the gradient of the
underlying wave field. The shape of the wave field h(x, t) is

Wave force

Drag force

FIG. 1. Schematic of the walking droplet particle-wave system,
showing a droplet of dimensionless mass « located at x; and walking
horizontally with velocity x,. The droplet experiences a wave force,
—pB dh/0x|,—x,, from the underlying wave field h(x, t) (blue curve)
and a drag force, —x;. The underlying wave field h(x,?) is the
superposition of the individual waves (black and gray curves), of
the spatial form A(x) and decaying exponentially in time, that are
continuously generated by the droplet along its trajectory.

calculated through integration of the individual wave forms
A(x) that are continuously generated by the particle along its
trajectory. This gives

t
h(x,t) = / Ax — x4(s)) e ds. 2)

—00
Combining Egs. (1) and (2) we obtain the integrodifferential
equation

Kig + %g = ﬁ/ Fa(t) —xa(s))e”Vds,  (3)

where f(x) = —A’(x) is the negative gradient of the wave
form and the prime denotes differentiation with respect to
the argument x. The two parameters in this dimensionless
equation of motion, ¥ > 0 and B > 0, follow directly from
Oza et al. [39] and may be usefully interpreted as the ratio of
inertia to drag and the ratio of wave forcing to drag respec-
tively. We note that k ~ 1/Me and 8 ~ Me?, where Me is
the memory parameter which represents the proximity to the
Faraday threshold [39].

III. THE STATIONARY SOLUTION AND ITS LINEAR
STABILITY ANALYSIS

We start by seeking stationary solutions of Eq. (3). Substi-
tuting x,(t) = xo in Eq. (3) we arrive at the condition

£(0) = —A'(0) = 0.

Since the wave form A(x) is assumed to be smooth and sym-
metric, the above equation is always satisfied and we have a
stationary solution.

To determine the stability of the stationary solution, we
follow the linear stability approach taken in Oza et al. [39] and
apply a perturbation x,(t) = xo + €x;(¢)H (¢) to the stationary
solution. Here H () is the Heaviside step function introduced
to apply the perturbation for + > 0, and € > 0 is a small
perturbation parameter. Substituting this in Eq. (3), we find
that the perturbation, x|, evolves according to

KX1 +x = ,Bf/(())[)ﬂ(l‘) —/ x1(t —2)H({t —2) et dZ]
0
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Taking the Laplace transform of both sides results in

(s + Dir[sx1(0) + x1(0)] + x,1(0)}
slks? + (1 +x)s+ 1 — Bf(0)]

In Eq. (4), X1(s) = L{x1(¢)} with L{-} denoting the Laplace

transform from the time domain ¢ to the (complex) frequency

domain s. The stability of the stationary state can be deter-

mined by finding the poles of X;(s) in Eq. (4) [39]. In the
present case, the poles are the roots of

slks> + (1 +x)s+ 1 — Bf(0)] =0.

The trivial s = 0 solution corresponds to translation invari-
ance of the system. The two nontrivial poles are the solution
of the quadratic factor. The stationary state becomes unstable
when one of the nontrivial poles becomes positive. This takes
place when

Xi(s) =

“4)

1
B=—rx.
10
IV. THE STEADY WALKING SOLUTION AND ITS LINEAR
STABILITY ANALYSIS
Once the stationary state becomes unstable for

B > 1/f'(0), we obtain a steady walking state. We look
for a steady walking solution with speed u of the generalized
stroboscopic model by substituting x;(¢) = ut in Eq. (3),
which results in

U= ,B/ f(uz)e *dz. %)
0

By making a change of variables uz = r in the integral, we
can rewrite this as

u'=p / N frye""dr = BF <1> (6)
0 u

where F(s) is the Laplace transform of f(r). Provided that
a solution to the above equation exists, we obtain the steady
walking speed u of the droplet for a given parameter 8 and
spatial wave form A(x) or equivalently its gradient function
Fo).

To determine the stability of the steady walking solution
in this generalized framework, we follow Oza et al. [39] and
apply a perturbation of the form x;(¢) = ut 4+ ex;(t)H(¢) to
the steady walking solution with speed u. By substituting this
in Eq. (3) and comparing the O(¢) terms, we get

ci i =Bln@) [ funedz
0

—f f’(uz)xl(t—z)H(t—Z)e’zdz]. (7
0

Integrating the first integral term on the right side by parts
gives
f0)

u

/ f(uz)e*dz = — + lf fuz)e *dz = l,
0 uJo B

where the constraint in Eq. (5) has been used. Substituting this
in Eq. (7) and Laplace transforming, we have

K [5x1(0) + %1 (0)] + x:(0)

X = T T 64 DIF(s + D)/ (]

®)

FIG. 2. Comparison of the following three different (a) wave
forms A(x) and (b) their gradients: a Gaussian wave form e~¢/2"
(yellow dash-dotted curve), a Bessel function wave form Jy(x) (blue
solid curve), and a sinusoidal wave form cos(x)/2 (red dotted curve).

As before, the stability of the inline walking motion can be
determined by finding the poles of X (s) in Eq. (8) [39].

To model the walking dynamics of the droplet, a Bessel
function wave form, A(x) = Jy(x), is typically used and has
been studied in detail [38,39]. This Bessel wave form has
two key features: (i) a spatial decay and (ii) spatial oscilla-
tions. We decouple these features by considering two alternate
wave forms: a Gaussian wave form A(x) = ¢~/ 2)2, which has
spatial decay but no oscillations, and a sinusoidal wave form
A(x) = cos(x)/2, which has oscillations but no spatial decay.
Both of these wave forms have been chosen such that their
first and second derivatives, f(x) and f’(x), match with the
Bessel function wave form at the location where the wave
is created. A comparison of the three wave forms and their
gradients is shown in Fig. 2. We investigate the linear stability
of steady walking using a Gaussian wave form in Sec. IV A,
a Bessel wave form in Sec. IV B, and a sinusoidal wave form
in Sec. IV C. To understand the effects of spatial decay and
spatial oscillations on the instability of the steady walking
state, we also consider in Sec. IVD a combined sinusoidal
Gaussian wave form A(x) = 1 cos(x)e~®/ 217 and study the
instability of the steady walking state as the spatial decay
length scale [ is varied.

A. A Gaussian wave form

Choosing a Gaussian wave form, A(x) = ¢~@/2”  results in
f@x) = (x/2)e~*/?" in Eq. (3). The corresponding equation
for steady walking speed u can be obtained from Eq. (6) with

<1> Jre " erfe(1/u)
Fl-]=1-——7-—7—.

u u

In the limit of large B, the speed scales as u ~ /B.

On performing the linear stability analysis by numerically
solving for the poles of X;(s) in Eq. (8), we find that the
steady walking solution always remains stable. Hence we
observe two qualitatively different behaviors when a Gaussian

wave field is considered [see Fig. 3(a)]: (i) No walking for
B < 1/f/(0) = 2 and (ii) stable steady walking for 8 > 2.

B. A Bessel wave form

Choosing a Bessel function wave form, A(x) = Jy(x), re-
sults in f(x) = —A’(x) = J;(x). Hence,

() -
u) 1+ +T+u?
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FIG. 3. Linear stability in the (k, §) parameter space for inline perturbations to the steady walking solution of a single droplet using (a) a
Gaussian wave form e~/ 2)2, (b) a Bessel wave form Jy(x), and (c) a sinusoidal wave form cos(x)/2. The gray dashed curve in (b) shows the
path traversed in the parameter space for typical experimental parameters as the driving acceleration (or the memory) is increased. In each of
(b) and (c), the inset shows the instability boundary using a logarithmic scale in both horizontal and vertical directions.

Substituting this in Eq. (6) for the steady walking speed, we
obtain [39]

1
U= ﬁ\/—l +28 —J/1+4p.

For B < 1/f'(0) = 2, the stationary droplet solution is sta-
ble, while for 8 > 1/f'(0) = 2 the steady walking solution is
realized. For 8 >> 1, the above equation for the walking speed
can be approximated by u ~ /B.

The linear stability analysis requires solving for the poles
of X;(s) in Eq. (8). This results in solving the equation [39]

(ks” +5— DVu + (s + D2 (s + 1L+ Vu2 + (s + 1)?)
+B(+1)=0. 9

For small « and large §, a complex conjugate pair of poles
cross the imaginary axis, i.e., pass through Re(s) = 0, result-
ing in a change in the stability of the steady walking solution.
We can find the stability boundary of the steady walking
solution in the (k, B) parameter space by setting Re(s) =0
and substituting s = iw in Eq. (9). The linear stability diagram
is shown in Fig. 3(b). We see that a lobe-shaped region appears
for small k and large 8, where steady walking is unstable. For
afixed ¥ < 0.14, as B is increased, we get stable steady walk-
ing for small 8, unstable steady walking for moderately large
B, and recover the stable steady walking state for very large §.
In typical experiments with walkers and superwalkers, as the
driving acceleration amplitude (or equivalently the memory)
is increased, the path traversed in the (k, §) parameter space is
shown by a gray dashed curve in Fig. 3(b). The linear stability
boundary for the Bessel wave form has been analyzed in detail
by Durey et al. [38], using a different dimensionless form for
the droplet’s equation of motion.

C. A sinusoidal wave form

Choosing a sinusoidal wave form, A(x) = cos(x)/2, results
in f(x) = sin(x)/2 and we get

1 u?
Fl-)=———.
(u) 2(1 + u?)

Thus, the steady walking speed, as determined by Eq. (6), is

u:,/é—l.
2

The linear stability analysis requires solving for the poles
of X (s) in Eq. (8), which results in the equation

(ks> +s—1)Q2s*+4s+ B)+ B(s+1)=0. (10)

Similar to the Bessel wave form in Sec. IV B, we can
find the stability boundary of the steady walking solution by
setting Re(s) = 0 and substituting s = iw in Eq. (10). This
gives

21+ 4k)
T k(1 —2k)

as the instability boundary in the parameter space [see
Fig. 3(c)] with an oscillation frequency of

»_ B2
w =
2k + 1
at the onset of instability. A similar analysis of the steady
walking solution and linear stability for the sinusoidal wave

form, using a different dimensionless form of the equation of
motion, was performed by Durey [41].

Y

D. A sinusoidal wave form with a Gaussian envelope

To further understand the effect of spatial decay of the
wave form on the structure of the instability boundary, we con-
sider a wave form A(x) = cos(x) e ~@/20"/2 and investigate
how the instability boundary in the (k, 8) parameter space is
changed as the decay length scale [ is varied.

Figure 4 shows the instability boundary for the steady
walking state for various values of / along with the wave
forms. We find that for large [ the spatial decay is very small
and it does not have a significant effect on the lower boundary
of the instability. However, we do see a qualitative change in
the upper boundary. For a pure sinusoidal wave form that has
no spatial decay, we find that the steady walking solution is
always unstable for a small range of « values as 8 — oo.
For a wave form with a small but nonzero spatial decay,
we recover stability of the steady walking state for large S.
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FIG. 4. Instability boundary of the steady walking solution in
the (k, B) parameter space for a wave form A(x) = cos(x) e~*/20/2.
Instability boundary (top panel) and the corresponding wave forms
(bottom panel) are shown for [ = 2.5 (blue dash-dotted curve), [ = 5
(yellow dotted curve), [ = 100 (purple dashed curve), and [ — oo
(green solid curve, wave form not shown).

Conversely, for small /, we find that the region of instability
shrinks rapidly with an increase in the spatial decay, indicating
that oscillations in the wave form are necessary for the steady
walking state to become unstable.

Thus, by homotoping from the sinusoidal wave form to an
exponentially decaying sinusoid with strong decay, we have
demonstrated that the oscillations in the wave form are the
key dynamic mechanism responsible for the instability of the
steady walker. These oscillations play important roles in the
unsteady walker regime enclosed by the lobe-shaped instabil-
ity boundary (Fig. 4), as we will show in the next section.

V. UNSTEADY WALKING DYNAMICS IN THE (x, B)
PARAMETER SPACE

Once the steady walking state becomes unstable in the
(k, B) parameter space, a variety of unsteady motions are
realized. We explore the resulting unsteady dynamics in the
parameter space for the Bessel and the sinusoidal wave forms.

A. Bessel wave form

We have explored the unsteady dynamics of a walker by
numerically integrating Eq. (3) with the Bessel wave form
in the (k, B) parameter space and the results are presented
in Fig. 5. The simulations were initialized with the droplet
in the steady walking state for + < 0. We refer the reader to
Appendix A for details of the numerical implementation.

We identify three distinct unsteady walking regimes from
simulations. These are (i) irregular walkers, (ii) oscillating
walkers, and (iii) self-trapped oscillations. The first of these
predominates. A typical trajectory of an irregular walker is
shown in Fig. 5(b). Here, the droplet performs oscillations
while walking and switches the walking direction erratically.
In small, isolated regions of the parameter space, we ob-
serve oscillating walkers and self-trapped oscillations. In the
oscillating walker state, the droplet drifts while undergoing
oscillations in the walking direction [see Fig. 5(c)]. The oscil-
lating walkers are reminiscent of the experimentally observed
velocity oscillations of a walker at high memory by Bacot
etal. [32]. In the self-trapped oscillation state, the droplet traps
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FIG. 5. Walking behaviors for a Bessel wave form. (a) Different dynamical behaviors observed in the (x, §) parameter space at + = 1000
from simulations initiated at t = O with the droplet in the steady walking state for < 0. We explore the parameter space region 0.005 < « <
0.15and 0 < B < 500 with resolution Ax = 0.005 and AB = 1. We observe steady walking (beige), oscillating walking (orange), self-trapped
oscillations (navy blue), and irregular walking (blue). The solid black curve is the linear stability curve separating the steady walking and the
unsteady walking regime. Typical trajectories of (b) irregular walking (x = 0.10, 8 = 101), (c) oscillating walking (x = 0.11, 8 = 149), and
(e) self-trapped oscillations (¢ = 0.12, 8 = 139) are shown along with the phase-space plots for (d) oscillating walking and (f) self-trapped

oscillations.
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FIG. 6. Walking behaviors for a sinusoidal wave form. (a) Different dynamical behaviors observed in the (x, ) parameter space at t =
1000 from simulations initiated at # = O with the droplet in the steady walking state for # < 0. We explore the parameter space region 0.025 <
k < 0.55and 0 < B < 500 with resolution Ak = 0.025 and A = 1. We observe steady walking (beige), oscillating walking (orange), self-
trapped oscillations (navy blue), and irregular walking (blue). The solid red curve is the linear stability curve separating the steady walking and
the unsteady walking regime. Typical trajectories of (b) irregular walking (« = 0.30, 8 = 71), (c) oscillating walking (« = 0.30, 8 = 221),
and two different kinds of self-trapped oscillations (d) (x = 0.30, 8 = 171) and (f) (¢ = 0.30, 8 = 401) are shown. Phase space trajectories
of self-trapped oscillations in (d) and (f) are shown in (e) and (g) respectively.

itself under its self-generated wave field and performs periodic
back-and-forth motion with no net drift [see Fig. 5(e)]. The
phase space dynamics for self-trapped oscillations shows a
closed loop due to the periodic nature of the oscillations, while
for oscillating walkers, we see a drift of the closed loop [see
Figs. 5(f) and 5(d)]. Durey et al. [38] also reported irregular
and oscillating walkers (referred to as jittering modes in their
paper) in their parameter space exploration of the droplet
dynamics using a Bessel wave form. In addition, here we also
observe stable self-trapped oscillations that were not reported
previously. However, we note that similar self-trapped peri-
odic oscillations were also observed by Durey er al. [42],
using their one-dimensional (1D) discrete-time pilot-wave
model. Self-trapped states have also been observed when the
walker is free to move in two horizontal dimensions. Here, the
walker’s self-generated wave field confines itself to a circular
orbit [11,13,43]. We note that, as shown in the supplemental
material of Durey [41], we also observe hysteresis near the
boundary separating steady and unsteady walking.

B. Sinusoidal wave form

By simulating in the (x, ) parameter space using the
sinusoidal wave form (see Appendix B for details of the
numerical implementation), we observe different unsteady
regimes as shown in Fig. 6. The three distinct unsteady be-
haviors identified in simulations with the Bessel wave form
are also realized with the sinusoidal wave form; however, the
region spanned by each of those behaviors changes signifi-
cantly. The oscillating walkers and the self-trapped-oscillation
states occupy a significantly larger region in the parameter

space compared to the small isolated regions identified using
the Bessel wave form. This is likely due to the absence of
spatial decay in the sinusoidal wave field compared to the
Bessel wave field, which enhances interference of the waves.
We find two distinct types of self-trapped oscillations in the
parameter space. Inside the unsteady lobe region for large «
and large B, or very small «, the self-trapped oscillations form
a simple closed loop in the phase space, as shown in Fig. 6(g).
In the other narrow self-trapped oscillation region, we find a
dumbbell-shaped closed loop in the phase space as shown in
Fig. 6(e). We note that irregular and oscillating walkers were
also observed by Durey [41], for a sinusoidal wave form using
a different dimensionless form for the droplet’s equation of
motion. Moreover, as in Durey [41], we also observe hystere-
sis near the boundary separating steady and unsteady walking.

Since the equation of motion with a sinusoidal wave form
is simpler than with the Bessel wave form, we explore the
chaotic and statistical aspects of irregular walking mainly us-
ing the sinusoidal wave form in Secs. VI and VII respectively.

VI. DYNAMICS IN THE IRREGULAR WALKING REGIME

In the irregular walking regime of the (k, 8) parameter
space, we observe that the position-time trajectory of the
droplet resembles a random-walk-like motion for both the
Bessel and the sinusoidal wave form. To explore this in more
detail, we investigate the velocity time series of the droplet
undergoing irregular walking. The velocity time series, the
phase space dynamics in (vg4, v4) space and the 1D return map
of the maxima of the absolute velocity for typical parameter
values for a sinusoidal wave form and a Bessel wave form are
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FIG. 7. Comparison of the chaotic behavior in the droplet’s dynamics using (a) a sinusoidal wave field (¢ = 0.2, = 35) and (b) a Bessel
wave field (x = 0.1, 8 = 90). For the droplet’s dynamics, the time series of velocity v, is shown in the left panel, the projection of the chaotic
attractor in the (vy, v4) phase space in the middle panel, and the 1D return map for the maximum speed in each oscillation in the right panel.

shown in Figs. 7(a) and 7(b) respectively. The velocity time
series has two distinct features: (i) oscillations that correspond
to speed oscillations in the walking direction and (ii) flip-flop
behavior that corresponds to the reversal of the walking direc-
tion. The projection of the dynamics into the (vy, U;7) phase
plane reveals the underlying chaotic attractor. A plot of the
maximum speed |v,41| on oscillation n + 1 versus the maxi-
mum speed |v,| on the previous oscillation n generates a cusp
map [44,45]. A discussion comparing the chaotic dynamics of
the sinusoidal and Bessel pilot-wave systems can be found in
the supplemental material of Durey [41].

To understand how the droplet’s dynamics change in the
parameter space, we have explored the velocity time series
using a sinusoidal wave form as a function of the parameter
B, by fixing «. Figure 8(a) shows the velocity bifurcation
diagram where the maxima and minima v,, in the velocity time
series are plotted against the parameter §, revealing regions
of periodic and chaotic dynamics. Figures 8(b)-8(e) shows
the velocity time series and the 1D map of consecutive speed
maxima at different 8 values. At low S, near the onset of the
unsteady regime, we find that this map has a single cusp-like
structure. At large 8, we see multiple cusps emerging in the
multi-valued map. Interspersed between the chaotic regimes
are periodic regimes where the 1D map collapses to a compact
region. For 8 2 330, the droplet transitions from the chaotic
regime to the oscillating-walker regime and remains in the
oscillating-walker state till 8 = 500.

The structures of the chaotic attractor and the cusp map
for the sinusoidal wave form in Fig. 7(b) have striking re-
semblance to the attractor and the 1D return map of the
Lorenz system [46]. Inspired by these similarities, we ex-
plore the connection between the two systems in the next
section.

A. Connection to the Lorenz system

One of the classic systems that exhibits chaotic be-
havior is the celebrated Lorenz system [47] defined as

follows:
dX
— =0 —X),
7 o( )
ay XZ+rX —-Y (12)
 _ X —Y,
dt
dz
— = XY - bZ.
dt

This system has three fixed points: (i) X =Y =Z =0
(unstable), (ii) X =Y = /b(r — 1) and Z = r — 1 (stable),
and (iii) X =Y = —/b(r — 1) and Z =r — 1 (stable) for
l<r<r.withr,=0(0c +b+3)/(c —b—1). The param-
eters o, r, and b are positive. When r > r, all fixed points
are unstable and the system exhibits either periodic or chaotic
behavior on a strange attractor [46].

Takeyama [48] showed that the system of Lorenz equations
in (12) can be recast into an integrodifferential equation for
the variable X. By eliminating the variable Y in the sys-
tem of ordinary differential equations (ODEs) in Eq. (12),
we get

X+(U4+0)X+0c(1=r+2)X =0, (13)

(14)

We can further eliminate Z by solving Eq. (14) for Z(¢) and
then substituting the solution into Eq. (13). This results in the
integrodifferential equation

Z+bZ=XX+X/o).

i} . 1
X+(1+U)X+0X[1—r+2—X2
o

+(1_i>/ X2 —2)e " dz| =0. (1)
20 0

In Eq. (15), we have dropped the terms due to
the initial values that decay exponentially in time and
assumed that the motion started at an infinite time in the
past [48,49]. If we assume that b > 1 and approximate the
exponential term ¢~ in the integral of Eq. (15) by a delta
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FIG. 8. (a) Velocity bifurcation diagram for the sinusoidal wave form showing the maxima and minima v, of the velocity time series as a
function of the parameter 8 and a fixed k = 0.2. The time series of velocity and the corresponding map for the maximum consecutive absolute
values are shown for (b) 8 = 35, (c) g = 220, (d) g = 240, and (e) g = 320.

function §(bz), then the equation reduces to

dUu
X+ X+ -— =0, 16
+d+o)X+ - (16)

with
1-— N 1 1y
4b

UX)=o0 < )

Equation (16) can be interpreted as one-dimensional mo-
tion of a particle with unit mass in a quartic potential well
U (X) with friction coefficient 1 + o [48,50]. For r > 1, the
quartic potential well takes the form of a double-well potential
with stable fixed points at X = £./b(r — 1) and an unstable

0151

fixed point at X = 0. The general expression in Eq. (15) can
be rewritten by splitting the ¢~%* terms into a delta function
and the deviation from it, giving

(-=2)r

X /OO [X*(t —2) - X*()]e®dz=0. (17)
0

b

du
X+(+0)X+——+ 5

dX

The above equation can be interpreted as a particle of unit
mass and a friction coefficient 1 4 o in a potential well U (X)
with an additional force that depends on the history of the
motion. Without the memory term, the particle would stop in
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one of the minima of the double-well potential U (x), due to
the damping force —(1 + o)X. The memory forcing sustains
the particle’s motion. The particle oscillates in one of the
minima with growing amplitude until it has sufficient energy
to cross the barrier at X = 0 [49,51].

Durey [41] found similarities between the droplet’s dy-
namical system and the Lorenz system by expressing the
integrodifferential trajectory equation in their pilot-wave
model as a system of ODEs and comparing with the Lorenz
system equations. By contrast, in this section, we show an
exact correspondence between the integrodifferential equation
that governs the droplet’s velocity and the integrodifferential
equation (15) of the Lorenz system.

Since the velocity of the droplet in the irregular walking
regime has a chaotic attractor and a cusp map similar to the
Lorenz system, let us rewrite the integrodifferential equation
describing the motion of the droplet in Eq. (3) in terms of the
velocity variable as

Kig +vg = B / Fa(t) — xq(s)) e “Vds.  (18)

By differentiating this equation with respect to time, we obtain
the integrodifferential equation

KVg + (1 +x)vg +vg = BLFO) + vaM(2)], (19)

for the velocity of the droplet, where the memory forcing term
is given by

t
M(t) = f FGa(t) = xa(s)e™ " ds.
—0Q
From the stationary solution, we know that £(0) = 0. Hence,

differentiating the above memory term with respect to time,
we get

M(t) = f'(0) + vg / [ Ga(t) = x4(s))e” " ds — M(1).
For the sinusoidal wave field, f/(0) = 1/2 and f"(x,(t) —

x4(8)) = —f(x4(t) — x4(s)). Using this in combination with
Eq. (18) we arrive at

/ [ (xa(t) = x4(s))e” " ds
= —f FOa®) = xa(s))e™ "~ ds

1
= ——(kvg + vg).
B
Hence, we get
. I v .
M([)"‘M(I)ZE—F(KUd‘i‘Ud).

Solving this ODE for M(t) gives

M) = / (% — %‘i(m)d + vd))e_(’_s)ds
1 K

=———v24 k-2 -/t v2(s) e U "9ds.
2 2847 28 )¢

Finally, substituting this into Eq. (19), we get
. IY. Vd B Kk,
14— —[(1—-—=4+=
Ud+(+K)Ud+K|: 2+2Ud

2 —«k / * . ]
+— vyt —2)e *dz| =0. (20)
2 Jo

By comparing Egs. (15) and (20), we find an exact corre-
spondence, with the parameters in the droplet system related
to the Lorenz system via

b=1, rzﬁ, and o:l.
2 K

Hence, using a sinusoidal wave form in the walker system,
the droplet’s velocity v, (¢) is equivalent to the variable X (7)
in the Lorenz system. Thus, similarly to the interpretation of
the variable X in the Lorenz system, one may interpret the
velocity variable v, in the above droplet’s integrodifferential
equation as the position of a fictitious particle of unit mass
and a friction coefficient 1 4+ 1/« in a double-well potential
U(vg), with an additional force that depends on the history
of the motion. Conversely, one may also interpret the variable
X in the Lorenz system as the velocity of a droplet of mass
1/0 which is subject to a drag force —X and propelled by the
memory force from the underlying sinusoidal wave that the
droplet generates continuously. We note that chaotic attractors
that are qualitatively similar to the Lorenz system have also
been reported in simulations of a walker with a Bessel wave
form in a central harmonic potential [52].

We have shown the precise sequence of transformations
that map the droplet dynamics to those of the Lorenz system
in the case of a sinusoidal wave form. As such, our droplet
dynamics immediately inherit the rich array of features that
the Lorenz system possesses, including but not limited to
chaotic dynamics, invariant manifold theorems, and bifur-
cations. The invariant manifolds of the Lorenz system are
notoriously difficult to compute but can be used to understand
the chaotic dynamics. For instance, it has been shown that
the 2D stable manifold of the fixed point at the origin is a
phase space separatrix, with all trajectories (including those
on the butterfly wings) sandwiched between the sheets of this
manifold [53,54]. Supported by the results of our simulations,
we expect that these invariant manifolds and the roles they
play in organizing the phase space, will persist when the
oscillations in the wave form are modulated, as in the Bessel
wave form.

B. Switching dynamics of irregular walking

Durey [41] made a connection between the particle’s irreg-
ular switching dynamics in the sinusoidal model and the 1D
cusp like map that arises by plotting consecutive maxima of
the local wave amplitude. Here we analyze this connection by
producing maps of consecutive maxima in speed oscillations.
As shown in Figs. 9(a) and 9(b), we find that the ascending
branch on the cusp map corresponds to maxima in speed oscil-
lations when the droplet is moving in a given direction (black
empty circles) while the descending branch corresponds to the
maxima in speed oscillations when a flip occurs in the velocity
time series or equivalently a reversal in the walking direction
(red filled circles).

015106-9



VALANI, SLIM, PAGANIN, SIMULA, AND VO

PHYSICAL REVIEW E 104, 015106 (2021)

(a) 10 T T T W T (b)11
P \ adl Tefl 16 °
S umH\\HH“HM ‘M “‘ ‘W‘ \‘ M H\HH “ H“ 9
‘umu‘m‘u‘ | m ‘ “‘M“\” “‘“H ““ il ‘M\ ‘ I ‘\“\\‘ R
Vd Ov“ ‘\‘ L ““ 1" N“‘U‘wf‘ J‘\ “ ¢ 7
| \“‘ i \‘ “‘ | \‘W“"\“““ “\“\ " il \“ ‘H\ =
sl | “\JM‘M n Il | ‘w‘\‘\ww ‘N‘H |
‘l l %\\ ﬂ R 4 s
) ) 4
! %00 920 940 960 980 1000 4 6 8 10
t |vn|
; 1
980 7 8 9 10
t | Fol

FIG. 9. Switching dynamics in the irregular walking regime for the sinusoidal wave form at x = 0.2 and g = 35. (a) The velocity time
series along with circles at the extrema of the oscillations are shown. The red filled circles indicate the extreme values of velocity before and
after the flip. (b) Return map of absolute value of consecutive extrema in the time series, i.e., the absolute value of the consecutive circles in
the left panel. The red and black branch corresponds to the red and black circles in the time series. (c) The same time series as in (a) but the
markers now highlight the extreme values after a flip with a fixed number N of oscillations between them. The N = 0 (red circles), N = 1
(yellow circles), and N = 2 (purple circles) points are shown. (d) The map showing consecutive absolute values of the extrema after a flip with

the N =0, N = 1, and N = 2 branches highlighted.

To analyze the particle’s switching dynamics further, we
look at the maximum absolute velocity after a flip occurs
with a fixed number N of oscillations between the consecutive
flips and plot these consecutive values against each other [see
Figs. 9(c) and 9(d)]. This map of consecutive values results
in a bandlike structure similar to the continued fraction map,
also known as the Gauss map [45,55]. We find that in this map
each band corresponds to a fixed number N of oscillations
between consecutive direction reversals. The branches corre-
sponding to N = 0 (red), N = 1 (yellow), and N = 2 (purple)
are shown.

VII. STATISTICAL ASPECTS OF IRREGULAR WALKING

We now turn to explore the statistical properties of the
random-walk-like dynamics observed in the irregular walking
regime with a sinusoidal wave form.

A. Statistical properties of irregular switching
of walking direction

Aizawa [56] analyzed the statistical aspects of the Lorenz
system by decomposing the time series for the system into
a flip-flop process and sinusoidal oscillations with increasing
amplitude [see Fig. 10(a)]. We take a similar approach for
the droplet’s velocity time series and focus on the statistical
aspects of the flip-flop process that dictates reversals in the
walking direction.

The flip-flop process can also be thought of as the switches
between the two attracting basins of the chaotic attractor
shown in the middle panel of Figs. 7(a) and 7(b). Denoting
the left and right attracting basins by L and R respectively,
the dynamics of the flip-flop process will generate a sequence
of states LLRRLR . .. for each trajectory [see Figs. 10(b) and
10(c)]. The probability of being found in each state, L or R,
is given by Pr(L) = Pr(R) = 1/2, due to the symmetry of the
system. We investigate the statistics of the flip-flop process
and compare it to a Markovian process. For a Markovian
flip-flop process, the transition probabilities are constant and
hence, calling p the probability of flipping or reversing the
walking direction, we have Pr(L|R) = Pr(R|L) = p, while the
probability of maintaining the walking direction is given by
Pr(L|L) =Pr(R|R) =1 — p [57].

For a sequence LLRLRRLRRL . .., we can generate a chain
NJJJNJJNJ ..., where J denotes an occurrence of a jump or
a walking direction reversal and N denotes that no jump has
occurred. If the process is Markovian, then the probability that
the phase-space trajectory will execute m turns after entering a
basin before it jumps out of the basin is given by the geometric
distribution [56,57]

Pr(m) = p(1 — p)"~". (21)

Similarly, for a Markovian process, the probability that J
jumps have occurred in a sequence of M turns is given by
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FIG. 10. Statistics of the flip-flop process for k = 0.2 and f = 65 using the sinusoidal wave field. (a) Schematic showing that a typical
velocity time series of the droplet in the irregular walking regime can be thought of as a sum of a flip-flop process and an exponentially
increasing sinusoid which dictates the flip after the amplitude reaches some threshold value [56]. (b) Time series of velocity for a typical
droplet’s trajectory in the irregular walking regime and (c) the corresponding projection of the chaotic attractor. The attractor has two basins
that are labeled left “L” and right “R”. (d) Probability distribution for having m oscillations between flips. (e) Probability distribution for the
number of jumps J in a given sequence of M = 30 steps. In both (d) and (e), the histogram is from the numerical simulations while the red

curves are best fits obtained using Eqgs. (21) and (22) respectively.

[56,57]

Pr(J|M) = (M)p’a - pM. (22)

J

We can estimate these probabilities from sufficiently long
chains of the flip-flop process for the walker from simulations
by using

N T
i dni g prgpa) = k=t
N T
Here 6 is the Kronecker delta, i; represents the number of
turns executed in the basin between the (k — 1)th and kth
jumps, N is the total number of jumps in the sample, and J; is
the number of jumps occurring in each of the T sequences of

M turns of the kth subdivided sample.

Figures 10(d) and 10(e) show the probability distributions
calculated from an ensemble average of 100 trajectories in
the simulations (histograms) and the corresponding best fits of
Egs. (21) and (22) for a typical « and § value in the irregular

Pr(m) = (23)

walking regime. For the parameters chosen in Fig. 10, we
obtain p = 0.376. We find a good fit for these parameters,
suggesting that the Markovian approximation is reasonable
in certain regions of the parameter space. However, we note
that this Markovian approximation does not give a good fit
in the entire irregular walking regime of the parameter space.
This is also true for the Lorenz system where the Markovian
approximation gives a good fit in some regions of parameter
space while in other regions there are sharp deviations from
the Markovian process [57]. We note that Durey et al. [38]
also described the irregular walking as a flip-flop process to
rationalize the Gaussian-like probability density function of
the droplet’s position at long times.

B. Connection with the Langevin equation

We also compare the equation of motion of the droplet
in Eq. (3), with a Langevin-type equation that describes the
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motion of a particle under stochastic forcing [58],

g+vqg=~§@). (24)

Here g is the dynamical variable, y is the friction coefficient
and &£(¢) is the stochastic forcing. Comparing this equation
with the droplet’s equation of motion for a sinusoidal wave
field,

. 1 B (1 . -

Vg + —vg = —/ —sinfx (t) —xg(t —z2)]e *dz, (25)

K K Jo 2

we see that the dynamical variable g is equivalent to the ve-
locity v, of the droplet, the friction coefficient y is equivalent
to 1/x, and the stochastic forcing in Eq. (24) takes the place of
the memory forcing in Eq. (25). The wave force on the walker
in the irregular walking regime has a time series similar to the
velocity time series where the oscillating force switches errat-
ically between positive and negative values. We can crudely
approximate the memory-force time series for the droplet as
a flip-flop process and ignore the oscillations. Then, the force
time series of the droplet resembles a dichotomous process
where the values of the force flip randomly between only
two possible values. If we choose the stochastic noise &(t)
in Eq. (24) to be a dichotomous process, then we can compare
the Langevin dynamics with the numerical simulations of the
droplet’s dynamics. We assume that £(¢) is a dichotomous
process that will have only two possible values £A with equal
probability and jumps between them at a rate A/2 [58]. This
form of the forcing has zero mean and autocorrelation

(EDE@R)) = A?e ™1,

For the droplet’s dynamics this value of A can be ap-
proximated by A ~ u/k where u = \/B/2 — 1 is the steady
walking speed for the sinusoidal wave form. For the Langevin
equation described in Eq. (24) with a dichotomous noise term,
the exact solution for the stationary probability distribution of
the variable g is [58]

Pu(q) = N(A* = y?q") /7, (26)
where
_ yI'(1/24+A/2y) . o
AMY=1T(1/2)L(A/2y)
The corresponding autocorrelation function is
(g(t)g(t)) = y(;z)»—iz)e_”’_’/) + VZA__ZMe—A(t—t’)_
(28)

A comparison of the Langevin model results with the nu-
merical results for the stationary probability distribution of
the droplet’s velocity and velocity autocorrelation function
is shown in Figs. 11(a) and 11(b) respectively. We find that
the Langevin model captures the qualitative features of both
of these plots. We note that Durey er al. [42] also used
a Langevin equation formalism to rationalize the wavelike
statistics emerging at long times when the droplet is confined
in a harmonic potential. Moreover, Hubert ez al. [33] also used
velocity autocorrelation functions to describe the statistical
properties of the long term dynamics in the irregular walking
regime of a free walker in two dimensions.
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FIG. 11. Stationary probability distribution and autocorrelation
for the velocity flip-flop process at k = 0.2 and B = 65 using the
sinusoidal wave field. (a) Stationary probability distribution for ve-
locity. (b) Velocity autocorrelation function. In both panels, the blue
curve is from numerical simulations of a walker while the green
curve is the fit obtained by using the Langevin model with dichoto-
mous noise. The steady walking speed u = /B/2 — 1 = 5.6125 is
very close to the boundary of the Langevin model (vertical green
line) in (a).

C. Analysis of the diffusionlike dynamics

In 1828, Robert Brown observed the erratic motion of
small particles suspended in water [59,60]. We now know this
as Brownian motion. Brownian motion plays a key role in
modeling many random behaviors in nature and is typically
modeled by considering random impulsive forces acting on
particles. However, numerous investigations have shown the
existence of Brownian-like motion from deterministic dynam-
ics (also known as deterministic diffusion) in both discrete
and continuous systems (see [49,61-65] and the references
therein). In particular, deterministic diffusion has been shown
in differential delay equations [49,66].

By investigating the trajectories in the irregular walking
regime of the droplet with a sinusoidal wave form, we also
obtain diffusion-like behavior for the droplet. The diffusive
behavior of a system can be characterized by calculating how
the mean squared displacement (MSD) scales with time, i.e.,
MSD = ((x4(t) — x4(0))*) ~ t* with a being the diffusion
exponent. If @ = 2 then the motion is ballistic while diffusive
motionhas 0 < o < 2 with0 < o < 1 indicating subdiffusive
behavior, @ = 1 indicating “normal” diffusive motion and
I < o < 2 indicating superdiffusive behavior. Some typi-
cal trajectories of the diffusion-like motion in the irregular
walking regime are shown in Figs. 12(a)-12(d). We ob-
serve time dependent diffusive behavior. To quantify this,
we define a time dependent diffusion exponent «(f) =
d[log(MSD)]/d[log(¢)] and plot it as a function of time
as shown in Fig. 12(e). We observe subdiffusion for the
timescales where the simulations have been performed and
it seems to be approaching “normal” diffusion, i.e., @ = 1
asymptotically. We note that Durey er al. [38] and Durey
[41] reported asymptotic diffusion of the 1D droplet dynam-
ics in certain parameter regimes, and Hubert et al. [33] also
reported diffusive dynamics at long times in their exploration
of the bimodal erratic motion of the walker in two dimensions.
Moreover, diffusive behavior has also been observed in theo-
retical models of confined walkers in 1D and 2D [15,67].

We also note that as previously described in Eq. (17),
the Lorenz system can be written as an integrodifferential
equation that describes a particle in a double-well potential.
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FIG. 12. Diftusion-like motion of the droplet in the irregular walking regime for the sinusoidal wave form. Typical trajectories at (a)
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of time for the trajectories shown in (a)—(d). For the statistical analysis, an ensemble of 5000 trajectories were simulated with each trajectory
run for t = 10° from which we sampled 1000 logarithmically spaced points. The 5000 trajectories were generated by adding a small random
perturbation in the range [0,0.1] in the droplet’s steady walking speed at the start of the simulation.

If in this equation the double-well potential is replaced by a
periodic potential, then diffusivelike behavior in the variable
X is observed [49] that is similar to what we see for the
droplet’s position x; in Figs. 12(a)-12(d).

VIII. DISCUSSION AND CONCLUSION

We have explored the dynamics of a particle-wave entity
in the (x, B) parameter space using the stroboscopic model
of Oza et al. [39] with different wave forms. We find that

the steady walking state is always stable for a Gaussian wave
form above the walking threshold, while, for both the Bessel
and the sinusoidal wave form, the steady walking becomes
unstable for large 8 and small k. By choosing a sinusoidal
wave form with a Gaussian envelope and varying the length
scale of spatial decay, we find that the instability region di-
minishes as the spatial decay is enhanced, suggesting that
oscillations in the wave form are an essential dynamic feature
for the instability of the steady walking motion. Moreover,
the presence of even small spatial decay in the wave form
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results in the revival of the steady walking state for very
large B. In the unsteady regime for the Bessel wave form and
the sinusoidal wave form, we describe a variety of unsteady
motions such as oscillating walkers, self-trapped oscillations,
and irregular walkers. The oscillating walkers and self-trapped
oscillations span an extended region in the parameter space for
a sinusoidal wave form, while the presence of spatial decay in
the Bessel wave form severely contracts the region spanned
by both oscillating walkers and self-trapped oscillations.

Investigation of the irregular walking regime reveals that
the projected chaotic attractor in the (vy, vy) space has a
striking resemblance to the Lorenz attractor, with the corre-
sponding 1D return maps showing a similar cusp structure.
In fact for the sinusoidal wave form, we find a one-to-one
correspondence between the droplet’s velocity v, and the
dependent variable X in the Lorenz system. Durey [41] also
explored bifurcations of the droplet’s dynamics using estab-
lished properties of the Lorenz system and identified several
pilot-wave phenomena. This suggests a deeper connection
between the dynamical system underlying walkers and the
Lorenz system, and warrants further investigation. We also
investigated the cusp map for the sinusoidal wave form and
identified the different structures in the map with the corre-
sponding physical dynamics of the droplet.

On exploring the statistical aspects of the time series for the
droplet’s velocity in the irregular walking regime, we find that
in certain regions of the parameter space the statistics of the
reversals in the walking direction can be well approximated
by a Markovian process. Moreover, by using the Langevin
equation with dichotomous noise, we are able to capture the
qualitative aspects of the stationary velocity distribution as
well as the velocity autocorrelation function in the droplet’s
dynamics.

In summary, we have made explicit connections of the
walking-droplet system to the Lorenz equations, the Langevin
equation and deterministic diffusion. In future, it would be
interesting to investigate the unsteady droplet dynamics in
the («, B) parameter space using a stroboscopic model that
allows the droplet to move in two spatial dimensions. The
extra dimension may reveal novel unsteady regimes and alter
the diffusive properties of the droplet dynamics.
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APPENDIX A: NUMERICAL SIMULATIONS
WITH THE BESSEL WAVE FORM

We numerically integrate Eq. (3) with the Bessel wave
form using a semi-implicit Euler method. The second-order
integrodifferential equation in (3) can be rewritten as

Xq = Vg, (A1)

t
04 = —[/3 / Ji(xa(1) = xa(s)) e ™ ds — vd]. (A2)
K —00
We assume the droplet is in the steady walking state with
velocity u for ¢ < 0. Discretizing Eqs. (A1) and (A2) using an
explicit and an implicit Euler step respectively, results in

Xq(tip1) = xq(t;) + At vg () (A3)

and

A
Vg (tiy1) = [vd(ti) + Arp (1(fi+1)
K

o

1+ At/

[ ) = e 0 ds)]
0

where the integral due to the initial condition /(#;11) is given
by

0
L) = / D Galtinn) — us) e ds. (AS)

oo

The dimensionless time step was fixed at At =278, The
integral in Eq. (A3) was performed using the MATLAB trape-
zoid function where we considered the contribution from all
the previous impacts for the first 5120 timesteps (t = 20 us-
ing At = 278) and then the contributions from the last 1280
timesteps for ¢ > 20. At 5120 previous impacts, the exponen-
tial time damping factor reached e=2° &~ 10~ so we neglected
all contribution from impacts beyond 5120 previous steps. We
used an implicit step for the velocity equation because the un-
steady motion of the droplet arises in the region of parameter
space with very small « and very large 8, where the inte-
grodifferential equation describing droplet motion becomes
stiff. The initial-condition integral I(#;+;) was performed us-
ing the MATLAB ““integral” function that uses global adaptive
quadrature.

APPENDIX B: NUMERICAL SIMULATIONS
WITH THE SINUSOIDAL WAVE FORM

To simulate the droplet’s dynamics for a sinusoidal wave
field, we can simplify the equation of motion by chang-
ing the integrodifferential equation into a finite system of
ordinary differential equations (ODEs). Substituting the sinu-
soidal wave form in Eq. (3) and using the addition formula for
sine, we obtain

t
cos[xy(s)] e ds

KXg + Xg = g[sin[xd(t)] /

—o0
— cos[xz(1)] ft sin[xz(s)] e_(’_s)ds}.
—o0
We define y(t) = fioo cos[xy(s)]e 9ds and z(t) =
fioo sin[x;(s)] e~*~9ds. These auxiliary variables satisfy
y+y = cos[xq(1)]
and

z 4+ z = sin[x,(1)].
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Further letting x; = vy, we obtain the system of ODEs
[68]

Xq = Vg, (B1)

Kby + vg = 2BIy sin(xs) — z cos(xy)], (B2)
y+y = cos(xg), (B3)
7+ z = sin(xy). (B4)

We solve the system of Eqgs. (B1) in MATLAB using the
inbuilt ode45 solver. We initialized the simulations with
the droplet in the steady walking state for ¢ < 0, which
results in the following initial conditions for the system
of ODEs: x4(0) =0, vy(0)=u, y(0)=1/(1+u*), and
2(0) = —u/(1 4+ u?). The simulations were run for a time
t = 1000.
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