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Evidence for enhancement of anisotropy persistence in kinematic magnetohydrodynamic
turbulent systems with finite-time correlations
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Using the field-theoretic renormalization group approach and the operator product expansion technique in
the second order of the corresponding perturbative expansion, the influence of finite-time correlations of the
turbulent velocity field on the scaling properties of the magnetic field correlation functions as well as on
the anisotropy persistence deep inside the inertial range are investigated in the framework of the generalized
Kazantsev-Kraichnan model of kinematic magnetohydrodynamic turbulence. Explicit two-loop expressions for
the scaling exponents of the single-time two-point correlation functions of the magnetic field are derived and it
is shown that the presence of the finite-time velocity correlations has a nontrivial impact on their inertial-range
behavior and can lead, in general, to significantly more pronounced anomalous scaling of the magnetic field
correlation functions in comparison to the rapid-change limit of the model, especially for the most interesting
three-dimensional case. Moreover, by analyzing the asymptotic behavior of appropriate dimensionless ratios
of the magnetic field correlation functions, it is also shown that the presence of finite-time correlations of the
turbulent velocity field has a strong impact on the large-scale anisotropy persistence deep inside the inertial
interval. Namely, it leads to a significant enhancement of the anisotropy persistence, again, especially in three
spatial dimensions.
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I. INTRODUCTION

One of the most interesting consequences of the existence
of anomalous scaling in developed turbulent environments
[1–6], i.e., the existence of deviations from the simple scal-
ing behavior predicted by the classical phenomenological
Kolmogorov-Obukhov (KO) theory [7], is the evidence for the
persistence of various types of symmetry breaking (such as
large-scale anisotropy, which are usually related to the form
of the energy pumping into strongly dissipative systems to
maintain steady state) even deep inside the inertial interval,
where, in accordance with the KO theory, one would expect
full restoration of homogeneity and isotropy of fully devel-
oped turbulent systems in the statistical sense.

Using the field-theoretic renormalization group (RG) tech-
nique together with the operator product expansion (OPE)
[8–12], significant successes were achieved especially in
investigations of the anomalous scaling behavior of single-
time two-point structures or correlation functions of scalar
(temperature, concentration of impurities, etc.) or vector
(e.g., weak magnetic) fields passively advected by given
turbulent environments. In this respect, a systematic inves-
tigation of the influence of large- and small-scale uniaxial
anisotropy [10,13–19], of spatial parity violation (helicity)
[20], and of compressibility of various turbulent environments
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[21–23] on the scaling behavior of structure or correlation
functions of scalar and vector fields was performed in the
framework of the Gaussian rapid-change Kraichnan model
of passively advected scalar fields [24] as well as in the
framework of the analogous Kazantsev-Kraichnan model of
kinematic magnetohydrodynamic (MHD) turbulence [25].
Here, it is worth mentioning that the anomalous scaling of
various passively advected quantities even within simplified
Gaussian models of developed turbulence is more strongly
pronounced than the anomalous scaling of the turbulent
velocity field in genuine models of fully developed turbu-
lence (see, e.g., Refs. [4–6,13,14,26–42] and references cited
therein).

However, very often the lowest first-order (one-loop)
approximation is insufficient and at least second-order (two-
loop) calculations are needed. For example, it is known that
the anomalous dimensions of the leading composite oper-
ators that drive the anomalous scaling of the correlation
functions of the magnetic field in the framework of the
Kazantsev-Kraichnan model of kinematic MHD turbulence
are completely the same as those in the Kraichnan model of
passive scalar advection, although the set of the leading com-
posite operators in this case is completely different [10,13].
But the two-loop calculations performed in Refs. [18,19] have
shown that this equivalence is only an artifact of the one-
loop level of approximation. Moreover, the same is also true
when the corresponding non-Gaussian models driven by the
stochastic Navier-Stokes equation are considered [43–45].
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A similar situation is true when some kinds of symmetry
breaking are considered. For instance, if one wants to inves-
tigate the influence of spatial parity violation (the presence
of helicity) on the properties of a turbulent system, then it is
necessary to analyze it at least in the two-loop approximation
since, due to the symmetry properties of the corresponding
Feynman diagrams, the helicity effects are invisible at the
one-loop level of approximation [20,23,46].

The same is true when one considers the finite-time cor-
relations of the turbulent velocity field. In this case, in the
one-loop approximation, the anomalous dimensions of the
leading composite operators that drive the scaling behavior of
the scalar and vector fields in the corresponding generalized
Kraichnan and Kazantsev-Kraichnan models are completely
the same and, moreover, do not depend at all on the parameters
that control the presence of the finite-time velocity correla-
tions in turbulent environments [40,47]. However, as recently
shown in Ref. [48], where the two-loop corrections to the
leading anomalous dimensions that drive the anomalous scal-
ing in the framework of the generalized Kazantsev-Kraichnan
model are calculated, these anomalous dimensions strongly
depend on the presence of finite-time velocity correlations in
the two-loop approximation and are significantly different in
comparison to those obtained in the generalized Kraichnan
model of passive scalar advection [49].

However, two important questions remain unanswered
here. The first of them is related to the dependence of the
critical exponents of the magnetic field correlation functions
of the model on the parameter that control the presence of
finite-time velocity correlations, i.e., how the presence of
finite-time velocity correlations influences the inertial-range
scaling behavior of the magnetic field in comparison to the
rapid-change limit of the model with δ-time correlations of
the turbulent velocity field. The second important but still
open question is related to the problem of the influence of
finite-time velocity correlations on the anisotropy persistence
deep inside the inertial interval. We try to find answers to
these two questions in the present paper. As we see, the strong
dependence of the anomalous dimensions of the leading com-
posite operators on the parameter that controls the amount of
finite-time velocity correlations in the model also leads to the
strong dependence of the critical exponents of the magnetic
field correlation functions on this parameter, especially in the
most interesting three-dimensional case. At the same time,
the performed analysis shows that the anomalous scaling is,
in general, more pronounced in the system with finite-time
velocity correlations than in the rapid-change limit of the
model. Even more interesting is the fact that the presence
of finite-time velocity correlations in the model leads to a
significant enhancement of the anisotropy persistence deep
inside the inertial range.

From the phenomenological point of view, it is known that
the synthetic Gaussian models of turbulent advection ana-
lyzed in the framework of the zero-mode technique allow one
to establish a direct relation between the anomalous scaling
and the statistical conservation laws (see, e.g., Ref. [29] as
well as lectures by Gawedzki in Ref. [50]). Moreover, the
existence of statistical conservation laws was also proven in
Navier-Stokes turbulence [51]. These results allow investiga-
tion of not only the deviations from scaling predicted by KO

theory but also the geometric structures formed in turbulent
flows. Although, in what follows, our aim is to investigate the
influence of finite-time correlations of the velocity field on
the anomalous indices using the corresponding field-theoretic
RG technique, nevertheless the obtained results also allow
us to make some general conclusions about their influence
on the formed geometric structures (regarding the connection
between the language of the statistical conservation laws and
the RG language, see Ref. [52]). First, the fact that the anoma-
lous scaling of the magnetic field is stronger for finite-time
velocity correlations means that one can also expect more
pronounced intermittent geometric structures formed in the
flow. Moreover, since the anisotropy persistence in the in-
ertial range is supported by the finite-time correlations, one
can also expect that the formed geometric structures will be
more anisotropic in the statistical sense under the influence of
finite-time correlations.

Note that although the passive advection of a weak mag-
netic field is considered in the framework of the Kazantsev-
Karichnan model with Gaussian statistics of the velocity field,
nevertheless, we suppose that the obtained results, at least at
the qualitative level, correctly describe the scaling behavior
of weak magnetic fields in electrically conductive turbulent
environments, a complete analysis of which in the frame-
work of the field-theoretic RG analysis of genuine MHD
turbulence is still missing because of its extreme complexity.
Therefore, we suppose that the obtained results not only are
important for a fundamental theoretical understanding of the
intermittency and anomalous scaling in turbulent systems with
finite-time velocity correlations but can also be interesting
from the phenomenological point of view for a potentially
deeper understanding of plasma physics experiments (see,
e.g., Refs. [53–60] and references cited therein) as well as
MHD turbulent phenomena in astrophysics, e.g., such as the
scaling properties of the solar wind (see, e.g., Refs. [61–72]
as well as references cited therein).

For completeness, it is necessary to mention that the very
presence of finite-time correlations of the velocity field vi-
olates the Galilean invariance of the studied model [26].
Therefore, the legitimate and natural question of the survival
of finite-time correlations deep inside the inertial interval
of various turbulent environments arises here. Although this
question is beyond the scope of our analysis, it is worth
mentioning that the first such investigation was performed
recently in the framework of Navier-Stokes turbulence driven
by a random force with finite-time correlations [73] in the
lowest (one-loop) approximation. There, it was shown that,
at the one-loop level of approximation of the corresponding
field-theoretic model, it seems that finite-time correlations
are completely suppressed in the inertial interval. However,
this conclusion cannot be considered the ultimate one since
higher-order corrections can change it.

The paper is organized as follows. In Sec. II, the model
is defined, its field-theoretic formulation is given, and the
already known basic facts are briefly discussed. In Sec. III, the
influence of finite-time velocity correlations on the anomalous
scaling of the magnetic field correlation functions is studied.
In Sec. IV, the anisotropy persistence deep inside the inertial
interval of the model is investigated. Obtained results are
briefly reviewed and discussed in Sec. V.

015101-2



EVIDENCE FOR ENHANCEMENT OF ANISOTROPY … PHYSICAL REVIEW E 104, 015101 (2021)

II. SCALING IN THE KAZANTSEV-KRAICHNAN MODEL
WITH FINITE-TIME CORRELATIONS

A. Kazantsev-Kraichnan model of kinematic
magnetohydrodynamics with finite-time correlations

of the velocity field

In this paper, we intend to study scaling properties of cor-
relation functions of the magnetic field b ≡ b(x), x ≡ {t, x}
in the framework of the Kazantsev-Kraichnan model of kine-
matic MHD turbulence with the assumption of finite-time
correlations of the turbulent velocity field and described by
the following stochastic equation:

∂t b = ν0�b − (v · ∂ )b + (b · ∂ )v + fb. (1)

Here, fluctuations of the magnetic field b are simulated by the
Gaussian random noise fb = fb(x) with zero mean and the
correlation function in the form

Db
i j (x1; x2) ≡ 〈

f b
i (x1) f b

j (x2)
〉 = δ(t1 − t2)Ci j (r/L), (2)

and the statistics of the turbulent velocity field v(x) of the
electrically conductive environment is also supposed to be
Gaussian with zero mean and with the correlator [40,47]

Dv
i j (x1; x2) ≡ 〈vi(x1)v j (x2)〉

=
∫

dωdk
(2π )d+1

g0ν
3
0 k4−d−2ε−η

ω2 + (u0ν0k2−η )2

× Pi j (k)e−i[ω(t1−t2 )−k·(x1−x2 )], (3)

which simulates the presence of finite-time correlations of the
velocity field.

In Eq. (1), ∂t ≡ ∂/∂t , ∂i ≡ ∂/∂xi, � ≡ ∂2 denotes the
Laplace operator, ν0 is the magnetic diffusivity ν0 =
c2/(4πσ0), c is the speed of light, and σ0 is the conductivity
(in what follows, subscript 0 always denotes bare param-
eters of the unrenormalized theory). Moreover, due to the
assumption of incompressibility, both vector fields v and b are
divergent-free (solenoidal), i.e, ∂ · v = ∂ · b = 0. In Eq. (2),
r = x1 − x2, L represents an integral scale related to the corre-
sponding stirring, and Ci j is a tensor function finite in the limit
L → ∞ that must decrease rapidly for |r| � L. Although, in
what follows, the explicit form of the tensor function Ci j is not
relevant, it is worth mentioning that large-scale anisotropy can
be introduced to the system through the correlator, (2), e.g., by
supposing that fb has the form (B · ∂ )v, where B represents a
constant large-scale (macroscopic) magnetic field (see, e.g.,
Ref. [13] for more details).

Finally, in Eq. (3), d represents the spatial dimension of
the studied turbulent system, Pi j (k) = δi j − kik j/k2 is the
ordinary transverse projector, k is the wave vector (the mo-
mentum), k = |k|, and g0ν

3
0 is a positive amplitude factor,

where the bare coupling constant g0 (formally small parameter
of the perturbation theory) is already extracted. The finite-time
correlations of the velocity field are described by the param-
eter u0 and by the additional exponent η in Eq. (3), which
control the relation between the frequency ω and the wave
number k in the form ω � u0ν0k2−η [29,30,33,47,74,75].
At the same time, the second exponent ε controls the en-
ergy spectrum: E (k) ∼ k1−2ε. The value ε = 4/3 leads to
the Kolmogorov “two-thirds law” for the spatial statistics of

the velocity field or to the “five-thirds law” for the energy
spectrum. Besides, η = 4/3 corresponds to the Kolmogorov
frequency. In addition, the needed infrared (IR) regularization
of the integral in Eq. (3) is reached by the cutoff from below
k = kmin ≡ 1/L, where L is an integral turbulent scale differ-
ent, in general, from the scale L used in Eq. (2). However, this
difference is not important in what follows.

Note that the model defined by Eqs. (1)–(3) is a gener-
alization of the standard Kazantsev-Kraichnan rapid-change
model [25] with δ-time correlations of the velocity field with
the correlator in the form

Dv
i j (x1; x2) = δ(t1 − t2)g′

0ν0

×
∫

dk
(2π )d

Pi j (k)k−d−2ε+ηeik·(x1−x2 ), (4)

obtained from (3) in the limit u0 → ∞ with g′
0 ≡ g0/u2

0 =
const.

On the other hand, in the limit u0 → 0 with g′′
0 ≡ g0/u0 =

const., one obtains the second nontrivial special case of the
general model, namely, the so-called quenched model with
a time-independent (frozen) velocity field, with the velocity
field correlator

Dv
i j (x1; x2) = g′′

0ν
2
0

2

∫
dk

(2π )d
Pi j (k)k2−d−2εeik·(x1−x2 ). (5)

B. Field-theoretic formulation and scaling regimes of the model

The stochastic model, (1)–(3), is equivalent to the corre-
sponding field-theoretic model with an additional solenoidal
auxiliary field b′ and with the action functional (see, e.g.,
Ref. [40] for details)

S(�) = −1

2

∫
dx1dx2 vi(x1)

[
Dv

i j (x1; x2)
]−1

v j (x2)

+ 1

2

∫
dx1dx2 b′

i(x1)Db
i j (x1; x2)b′

j (x2)

+
∫

dx b′ · [−∂t b + ν0�b − (v · ∂ )b + (b · ∂ )v].

(6)

Here, � = {v, b, b′}, dx = dtdd x, and the correlators Db
i j and

Dv
i j are given in Eqs. (2) and (3), respectively. Moreover,

the corresponding summations over all dummy indices are
assumed.

As follows from the two-loop RG analysis of the field-
theoretic model described by the action functional, (6), and
performed in Ref. [48], the model is multiplicatively renor-
malizable and, depending on the values of the exponents ε and
η, exhibits five IR stable fixed points that drive all possible
asymptotic inertial-range scaling regimes of the model. Two
of them are related to the rapid-change limit of the model—
one trivial with zero fixed-point value of the coupling constant
g′ and the second one nontrivial with g′

∗ > 0 (note that, in what
follows, the index “*” always denotes the fixed-point value of
arbitrary quantity)—and two of them are related to the frozen
limit of the model—again, one trivial with zero fixed-point
value of the coupling constant g′′ and the second one nontrivial
with g′′

∗ > 0.
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The fifth fixed point, which is the most interesting one
and plays a central role in what follows, describes scaling
properties of the model with finite-time correlations of the
velocity field with arbitrary finite fixed-point value of the
parameter u. In this case, the fixed-point value of the coupling
constant g depends explicitly on the chosen value of u∗ and,
in the two-loop approximation, is given as [48]

g∗
Sd

(2π )d
= 2du∗(1 + u∗)

d − 1
ε + 2du∗(d + u∗)

(d − 1)2(d + 2)(1 + u∗)2

× 2F1

(
1, 1; 2 + d

2
;

1

(1 + u∗)2

)
ε2, (7)

where Sd denotes the surface area of the d-dimensional unit
sphere

Sd ≡ 2πd/2

�(d/2)
(8)

and 2F1(a1, a2; b; c) is the hypergeometric function. This fixed
point is realized for ε = η (a detailed analysis of its IR stabil-
ity can be found in Ref. [48]).

C. Scaling behavior of the magnetic field correlation functions

The existence of an IR stable fixed point of the RG equa-
tions means that various correlation functions of the model
have asymptotic scaling form deep inside the inertial range
with well-defined critical exponents. In what follows, our
aim is to investigate in detail the influence of the finite-time
correlations of the velocity field on the IR scaling behavior
of equal-time two-point correlation functions of the magnetic
field defined as

BN−m,m(r) ≡ 〈
bN−m

r (t, x)bm
r (t, x′)

〉
, r = |x − x′|, (9)

where br denotes the component of the magnetic field b di-
rected along the vector r = x − x′ (see, e.g., Refs. [13,40]).
It can be shown [13,40,48] that, using the RG analysis, their
scaling behavior deep inside the inertial interval has the form

BN−m,m(r) � ν
−N/2
0 (r/l )−γ ∗

N−m−γ ∗
m RN,m(r/L) , (10)

where γ ∗
N−m and γ ∗

m are the anomalous dimensions of the
composite operators bN−m

r and bm
r (taken at the correspond-

ing fixed-point values g∗ and u∗) and the scaling functions
RN,m(r/L) remain unknown in the framework of the standard
RG analysis. However, their asymptotic behavior in the limit
r/L → 0 can be studied using the OPE technique [9].

In the framework of the OPE technique, the scaling func-
tions RN,m(r/L) have the power form

RN,m(r/L) =
∑

i

CFi (r/L)(r/L)�Fi , r/L → 0, (11)

where the summation is performed over all possible renormal-
ized composite operators Fi allowed by the symmetry of the

problem, �Fi are their critical dimensions, and the correspond-
ing coefficient functions CFi (r/L) are regular in r/L. It is clear
from representation (11) that scaling functions RN,m(r/L)
can significantly change the IR asymptotic behavior of the
correlation functions, (9), if there exist composite operators
(usually called “dangerous”) with negative critical dimensions
that give singular contributions to the OPE, (11), in the limit
r/L → 0 (see, e.g., Ref. [13] for details). Moreover, if there
exist more composite operators with negative critical dimen-
sions, then the leading contribution to the expansion, (11), is
given by the composite operators with the smallest critical
dimensions. Note also that this behavior is commonly known
as the anomalous scaling and is typical for fully developed
turbulent systems.

In the fully isotropic case, i.e., in the case when even large-
scale anisotropy is not present, the leading role in the scaling
behavior of the magnetic field correlation functions is played
by composite operators

FN = (b · b)N/2. (12)

Then the final asymptotic inertial-range behavior of the corre-
lation functions, (9), has the form

BN−m,m(r) ∼ r−γ ∗
N−m−γ ∗

m+γ ∗
N , (13)

where γ ∗
M for M = N, m, N − m are the fixed-point values of

the anomalous dimensions of the corresponding composite
operators, (12).

On the other hand, in the more general case with the
presence of uniaxial large-scale anisotropy given, e.g., by the
unit vector n = B/|B|, where B is the large-scale magnetic
field discussed above, the leading role in the description of
the scaling behavior of the model is played by the composite
operators [13,17,19,48]

FN,p = [n · b]p(b · b)l , N = 2l + p. (14)

Their fixed-point anomalous dimensions in the general case
of the model with the presence of finite-time correlations
of the velocity field were calculated in Ref. [48] up to the
two-loop approximation and can be written as (we present
their complete form here since they play the central role in
our analysis)

γ ∗
N,p = γ

∗(1)
N,p ε + γ

∗(2)
N,p ε2 + O(ε3) , (15)

where

γ
∗(1)
N,p = 2N (N − 1) − (N − p)(d + N + p − 2)(d + 1)

2(d + 2)(d − 1)
(16)

represents the first-order approximation (the one-loop approx-
imation) result and

γ
∗(2)
N,p = − (d + u∗)[(d + 1)k1 − 2k2]

2(1 + u∗)3(d − 1)2(d + 2)2 2F1

(
1, 1; 2 + d

2
;

1

(1 + u∗)2

)
− 2du2

∗
(d + 2)(d − 1)3

�
(

d
2

)
√

π�
(

d−1
2

)

×
∫ 1

0
dx(1 − x2)

d−1
2 x

{
[(d + 1)k1 − 2k2]X1 + 2(dk2 − k1)(x2 − 1)X2

+ 3

d + 4
[3((d + 1)k3 − 2k4)X3 + 2((d + 2)k4 − 3k3)(x2 − 1)X4]

}
(17)
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is the second-order (the two-loop) contribution, where

k1 = (N − p)(d + N + p − 2), (18)

k2 = N (N − 1), (19)

k3 = (N − 2)(N − p)(d + N + p − 2), (20)

k4 = N (N − 1)(N − 2), (21)

X1 = W11(Y1 + Y2) + W12Y3 + W13Y4 + W14Y5

2u3∗(u2∗ − 1)[1 + u2∗ + 2u∗(2x2 − 1)]
, (22)

X2 = W21(Y1 + Y2) + W22Y3 + W23Y4 + W24Y5

2u3∗(u∗ − 1)[1 + u2∗ + 2u∗(2x2 − 1)]
, (23)

X3 = W31(Y1 + Y2) + W32Y3 + W33Y6

9u2∗(u∗ − 1)2
, (24)

X4 = −u∗(Y1 + Y2) + Y3 + u2
∗Y6

3u2∗(u∗ − 1)2
, (25)

W11 = 2(d − 2)u2
∗(1 + u∗)[2x2(1 + 2u∗) + u2

∗ − 1], (26)

W12 = (2 + u∗)[2 + 5u∗ + u2
∗ − d (1 + 3u∗)]

× [1 + u2
∗ + 2u∗(2x2 − 1)], (27)

W13 = 2(d − 2)(1 − u∗)(1 + u∗)2

× [1 + u2
∗ + u∗(4x2 − 1)], (28)

W14 = 4(d − 2)u2
∗(1 + u∗)x, (29)

W21 = 2u2
∗(1 − u∗ − x2), (30)

W22 = 1 + u2
∗ + 2u∗(2x2 − 1), (31)

W23 = (u2
∗ − 1)[1 + u2

∗ + u∗(4x2 − 1)], (32)

W24 = −2u2
∗x, (33)

W31 = u∗[−7 − 2u∗ + d (4 + u∗) − 4x2], (34)

W32 = 5 + 4u∗ − d (3 + 2u∗) + 4x2, (35)

W33 = u2
∗(9 − 5d + 4x2), (36)

and

Y1 =
arctan

(
2−x√

2+2u∗−x2

) − arctan
(

2+x√
2+2u∗−x2

)
√

2 + 2u∗ − x2
, (37)

Y2 =
arctan

( 1+u∗−x√
2+2u∗−x2

) − arctan
( 1+u∗+x√

2+2u∗−x2

)
√

2 + 2u∗ − x2
, (38)

Y2 =
arctan

( 1+u∗−x√
(1+u∗ )2−x2

) − arctan
( 1+u∗+x√

(1+u∗ )2−x2

)
√

(1 + u∗)2 − x2
, (39)

Y4 =
arctan

(
1−x√
1−x2

) − arctan
(

1+x√
1−x2

)
√

1 − x2
, (40)

Y5 = ln 2 − ln(1 + u∗), (41)

Y6 =
arctan

(
2−x√
4−x2

) − arctan
(

2+x√
4−x2

)
√

4 − x2
. (42)

As follows from Eqs. (15)–(42), in the anisotropic case, for
a given value of N , there are several anomalous dimensions
γN,p for all possible values of p that can contribute to the final
scaling expression for the magnetic field correlation functions.
Of course, the leading one is that with the minimal fixed-point
value. The analysis shows [48] that, at least up to the two-loop
approximation, the following important hierarchy relations
are valid among anomalous dimensions γ ∗

N,p:

γ ∗
N,p < γ ∗

N,p′ , p < p′, (43)

γ ∗
N,0 < γ ∗

N ′,0 , N > N ′, (44)

γ ∗
N,1 < γ ∗

N ′,1 , N > N ′, (45)

where relation (44) holds for even values of N and N ′ and
relation (45) is valid for odd values of N and N ′, respectively.
This means that the scaling behavior of various statistical
quantities deep inside the inertial interval must be driven by
the anomalous dimensions γ ∗

N,0 for even values of N and γ ∗
N,1

for odd values of N , respectively. Note that this nontrivial fact
is in accordance with Kolmogorov’s local isotropy restoration
hypothesis.

Note also that, as follows from Eq. (16), the scaling prop-
erties of the model do not depend at all on the presence of
finite-time velocity correlations in the model in the one-loop
approximation since the functions γ

∗(1)
N,p are independent of the

parameter u∗. Thus, it is clear from this fact that it is necessary
to investigate the model at least in the two-loop approximation
to be able to study the influence of the finite-time velocity
correlations on the scaling behavior of the model deep inside
the inertial interval. We investigate this influence in detail in
the next two sections.

III. INFLUENCE OF FINITE-TIME VELOCITY FIELD
CORRELATIONS ON THE ANOMALOUS SCALING OF
THE MAGNETIC FIELD CORRELATION FUNCTIONS

The existence of strict anisotropy hierarchy relations, (43)–
(45), which are valid in the one-loop as well as in the two-loop
approximation, leads to the definite prediction for the asymp-
totic inertial-range behavior of the correlation functions, (9),
in the presence of large-scale uniaxial anisotropy. Its form
depends on the values of N and m [13,17,19], namely,

BN−m,m(r) ∼ rγ ∗
N,0−γ ∗

N−m,0−γ ∗
m,0 (46)

for even values of N and m,

BN−m,m(r) ∼ rγ ∗
N,0−γ ∗

N−m,1−γ ∗
m,1 (47)

for an even value of N and an odd value of m, and

BN−m,m(r) ∼ rγ ∗
N,1−γ ∗

N−m,0−γ ∗
m,1 (48)

for odd values of N and m. The fourth possibility, with an odd
value of N and an even value of m, is in fact contained in the
last case.

Now, using the explicit expressions, (15)–(42), for the
anomalous dimensions taken at the fixed point of the model,
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the final scaling asymptotic behavior of the correlation func-
tions BN−m,m(r) in the two-loop approximation can be written
in the general form

BN−m,m(r) ∼ rζN,m = rζ
(1)
N,mε+ζ

(2)
N,mε2

, (49)

where the well-known one-loop result ζ
(1)
N,m has the form

[13,19]

ζ
(1)
N,m = −m(N − m)

d + 2
(50)

when N and m are simultaneously even or odd and

ζ
(1)
N,m = −m(N − m) + d + 1

d + 2
(51)

for even values of N and odd values of m. On the other
hand, the two-loop corrections ζ

(2)
N,m to the exponents ζN,m in

Eq. (49) explicitly depend on the parameter u∗, which control
the presence of finite-time velocity correlations and are given
as

ζ
(2)
N,m = − (d + u∗)D1

2(1 + u∗)3(d − 1)(d + 2)2 2F1

(
1, 1; 2 + d

2
;

1

(1 + u∗)2

)
− 2du2

∗
(d + 2)(d − 1)2

�
(

d
2

)
√

π�
(

d−1
2

)

×
∫ 1

0
dx(1 − x2)

d−1
2 x

{
D1X1 + D2(x2 − 1)X2 + 3

d + 4
[D3X3 + D4(x2 − 1)X4]

}
, (52)

where functions Xi, i = 1, . . . , 4, are defined in Eqs. (22)–(25)
and

D1 = 2m(N − m), (53)

D2 = 4m(N − m), (54)

D3 = 3m(N − m)(3N + 2d − 4), (55)

D4 = 6m(N − m)(N − 4) (56)

for even values of N and m,

D1 = 2m(N − m), (57)

D2 = 4m(N − m), (58)

D3 = 3(N − m)[m(3N + 2d − 4) − d − 1], (59)

D4 = 6(N − m)[m(N − 4) + 1] (60)

for odd values of N and m, and

D1 = 2[m(N − m) + d + 1], (61)

D2 = 4[m(N − m) − 1], (62)

D3 = 3[m(N − m)(3N + 2d − 4) + (N − 4)(d + 1)], (63)

D4 = 6(N − 4)[m(N − m) − 1] (64)

for even N and odd m.
Thus, as follows from the explicit two-loop expressions for

the exponents ζN,m, the presence of the two-loop corrections
leads to their dependence on the finite-time correlations of the
velocity field (the dependence on the parameter u∗ appears at
the two-loop level of approximation) and, moreover, the form
of the corresponding expressions for ζN,m for simultaneous
even and odd values of N and m, which are the same in
the one-loop approximation [see Eq. (50)], become different
when two-loop corrections are taken into account [compare
expressions (55) and (56) to the corresponding expressions
(59) and (60)].

The explicit dependence of all scaling exponents ζN,m for
N = 2, 3, 4, and 7 on the spatial dimension d and on the
parameter u∗ for the physically most important value ε =
4/3 in the two-loop approximation is shown in Figs. 1–7.
As follows from all these figures, the amount of finite-time
correlations of the turbulent velocity field significantly influ-
ences the scaling properties of the magnetic field correlation
functions, i.e., significantly changes the corresponding scaling
exponents, especially for spatial dimensions in the vicinity of
the physically most relevant dimension d = 3. On the other
hand, the role of the finite-time correlations rapidly decreases
when d increases. It is important to stress once more here
that all these scaling exponents are completely independent
of the parameter u∗ at the one-loop level of approximation.
Therefore, at least two-loop calculations are required to be
able to discuss this nontrivial question.

FIG. 1. Dependence of the scaling exponent ζ2,1 on the spatial
dimension d as well as on the parameter u∗ (the lower surface)
and w∗ = 1/u∗ (the upper surface) for ε = 4/3 in the two-loop
approximation.
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FIG. 2. Dependence of the scaling exponent ζ3,1 on the spatial
dimension d as well as on the parameter u∗ (the lower surface)
and w∗ = 1/u∗ (the upper surface) for ε = 4/3 in the two-loop
approximation.

Moreover, looking at Figs. 1–7, the following general
conclusions about the inertial-range scaling behavior of the
single-time two-point correlation functions of the magnetic
field, (9), can be drawn: (i) All scaling exponents ζN,m exhibit
qualitatively very similar behavior as the functions of the
spatial dimension d as well as the functions of the parameter
u∗; (ii) in general, the scaling exponent values increase with
increasing parameter u∗ for all spatial dimensions d � 3, i.e.,
the most anomalous behavior of the magnetic field correlation
functions is pronounced in the frozen limit of the model with

FIG. 3. Dependence of the scaling exponent ζ4,1 on the spatial
dimension d as well as on the parameter u∗ (the lower surface)
and w∗ = 1/u∗ (the upper surface) for ε = 4/3 in the two-loop
approximation.

FIG. 4. Dependence of the scaling exponent ζ4,2 on the spatial
dimension d as well as on the parameter u∗ (the lower surface)
and w∗ = 1/u∗ (the upper surface) for ε = 4/3 in the two-loop
approximation.

u∗ → 0; (iii) the opposite behavior, in the framework of which
the more anomalous behavior is observed in the rapid-change
limit (u∗ → ∞ or w∗ → 0) than in the frozen limit of the
model with u∗ → 0, can be observed only for some scaling
exponents and only in the vicinity of the two-dimensional case
(see Figs. 3, 6, and 7); and (iv) the scaling exponents ζN,m

decrease as the functions of the spatial dimension d in the
close vicinity of d = 2 but are increasing functions of d for

FIG. 5. Dependence of the scaling exponent ζ7,1 on the spatial
dimension d as well as on the parameter u∗ (the lower surface)
and w∗ = 1/u∗ (the upper surface) for ε = 4/3 in the two-loop
approximation.
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FIG. 6. Dependence of the scaling exponent ζ7,3 on the spatial
dimension d as well as on the parameter u∗ (the lower surface)
and w∗ = 1/u∗ (the upper surface) for ε = 4/3 in the two-loop
approximation.

d > 3. The only exception to this rule can be observed for the
exponent ζ2,1 in the vicinity of the rapid-change model limit
(see Fig. 1).

FIG. 7. Dependence of the scaling exponent ζ7,5 on the spatial
dimension d as well as on the parameter u∗ (the lower surface)
and w∗ = 1/u∗ (the upper surface) for ε = 4/3 in the two-loop
approximation.

IV. INFLUENCE OF FINITE-TIME VELOCITY
CORRELATIONS ON THE PERSISTENCE OF

ANISOTROPY IN TURBULENT MHD SYSTEMS

As mentioned in Sec. I, the main aim of the present study
is to investigate in detail the role of finite-time correlations of
the turbulent velocity field for the persistence of large-scale
anisotropy in the behavior of the magnetic field correlation
functions deep inside the inertial interval. For this purpose,
it is suitable to analyze the scaling behavior of dimension-
less ratios of the single-time two-point correlation functions
BN−m,m(r) studied in the previous section defined as follows:

RN ≡ BN−1,1

BN/2
1,1

=
〈
bN−1

r (t, x)br (t, x′)
〉

〈br (t, x)br (t, x′)〉N/2
. (65)

Then, using the asymptotic expressions for the corresponding
correlation functions, (10), generalized to the anisotropic case
together with the OPE representation of the scaling functions,
(11), as well as using the anisotropy hierarchy relations, (43)–
(45), for the fixed-point values of the anomalous dimensions
of the leading composite operators of the model, the quantities
RN can be written as the explicit functions of the ratios r/l
and r/L in the form [13,19]

R2n ∝
( r

l

)−γ ∗
2n−1,1

( r

L

)γ ∗
2n,0−nγ ∗

2,0
(66)

for even values of N = 2n and

R2n+1 ∝
( r

l

)−γ ∗
2n,0

( r

L

)γ ∗
2n+1,1−(n+1/2)γ ∗

2,0
(67)

for odd values of N = 2n + 1, where various γ ∗
x,y are the fixed-

point anomalous dimensions of the composite operators, (14),
two-loop expressions of which are given in Eqs. (15)–(42).

A convenient method for quantitative estimation of the
persistence of anisotropy deep inside the inertial interval is
to investigate the dependence of functions (66) and (67) on
the Pécklet number Pe ≡ (L/l )ε obtained in the limit r → l .
In this case, one can write

RN ∝ PeξN , (68)

where

ξ2n = [nγ ∗
2,0 − γ ∗

2n,0]/ε, (69)

ξ2n+1 = [(n + 1/2)γ ∗
2,0 − γ ∗

2n+1,1]/ε (70)

for even and odd values of N , respectively. Finally, in the two-
loop approximation, the exponents ξN can be written as

ξN = ξ
(1)
N + ξ

(2)
N ε + O(ε2), (71)
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where the one-loop expressions are [13]

ξ
(1)
2n = 2n(n − 1)

d + 2
, (72)

ξ
(1)
2n+1 = 4n2 − d − 2

2(d + 2)
, (73)

and the two-loop corrections are given as

ξ
(2)
N = (d + u∗)E1

2(1 + u∗)3(d − 1)(d + 2)2 2F1

(
1, 1; 2 + d

2
;

1

(1 + u∗)2

)
+ 2du2

∗
(d + 2)(d − 1)2

�
(

d
2

)
√

π�
(

d−1
2

)

×
∫ 1

0
dx(1 − x2)

d−1
2 x

{
E1X1 + E2(x2 − 1)X2 + 3

d + 4

[
E3X3 + E4(x2 − 1)X4

]}
, (74)

where the functions Xi, i = 1, . . . , 4, are again defined in
Eqs. (22)–(25) and

E1 = 4n(n − 1), (75)

E2 = 8n(n − 1), (76)

E3 = 12n(n − 1)(2n + d ), (77)

E4 = 16n(n − 1)(n − 2) (78)

for even values of N = 2n and

E1 = 4n2 − d − 2, (79)

E2 = 8n2, (80)

E3 = 6n(2n − 1)(2n + d + 2), (81)

E4 = 8n(2n − 1)(n − 1) (82)

for odd values of N = 2n + 1.
The explicit behavior of the two-loop exponents ξN up to

N = 8 as functions of the spatial dimension d and the param-
eters u∗ and w∗ is shown in Figs. 8–13 for ε = 4/3. First, it is

FIG. 8. Dependence of the total two-loop exponent ξ3 on the
spatial dimension d as well as on the parameter u∗ (the upper surface)
and w∗ = 1/u∗ (the lower surface) for ε = 4/3.

necessary to stress that these exponents do not depend at all on
the parameter u∗ (w∗) at the one-loop level of approximation
[see Eqs. (72) and (73)], i.e., regardless of the value of u∗ (w∗)
these exponents are the same as in the Kazantsev-Kraichnan
rapid-change model (the curves for w∗ = 0 in Figs. 8–13).
This is a nontrivial fact that directly requires the two-loop
analysis to be performed in order to be able to estimate, at
least qualitatively, the influence of finite-time correlations of
turbulent velocity fields on the studied statistical properties
of correlation functions of the magnetic field deep inside the
inertial interval.

As follows from all these figures, the presence of finite-
time correlations of the velocity field almost always increases
the value of the exponent ξN [the exception is the behavior
of these exponents in the vicinity of two spatial dimensions,
but only for large enough values of N (see Fig. 13)]. At the
same time, the most pronounced enhancement of the values
of the exponents ξN , i.e., the most pronounced enhancement
of the anisotropy persistence in the inertial range, can be
seen in the vicinity of the physically most interesting three-
dimensional case. The only exception is observed for the
smallest value of N = 3, where the most pronounced persis-
tence of the anisotropy in the inertial range is demonstrated in
the two-dimensional case (see Fig. 8). The explicit behavior of

FIG. 9. Dependence of the total two-loop exponent ξ4 on the
spatial dimension d as well as on the parameter u∗ (the upper surface)
and w∗ = 1/u∗ (the lower surface) for ε = 4/3.

015101-9
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FIG. 10. Dependence of the total two-loop exponent ξ5 on the
spatial dimension d as well as on the parameter u∗ (the upper surface)
and w∗ = 1/u∗ (the lower surface) for ε = 4/3.

the two-loop exponents ξN for N = 3, . . . , 8 directly for three
spatial dimensions is shown in Figs. 14–16, where they are
also compared to the corresponding one-loop results that do
not depend on the parameter u∗ (w∗). Here, it is also necessary
to note that, from the persistence of the anisotropy point of
view, the most important is the behavior of the exponents
ξN for odd values of N since, as follows from symmetry
considerations, they must be identically equal to 0 in the fully
isotropic case (see Figs. 8, 10, and 12).

As already mentioned, with the exception of the case
N = 3, the enhancement of the anisotropy persistence in the
inertial interval caused by the presence of the finite-time cor-
relations of the turbulent velocity field is most pronounced
in the vicinity of d = 3. On the other hand, the influence of
the finite-time correlations rapidly decreases with increasing
value of the spatial dimension (see Figs. 8–13). At the same
time, the dependence of the exponents ξN on the parameter
u∗ (w∗) disappears completely in the limit d → ∞. Similarly,
a significant suppression of the role of finite-time velocity

FIG. 11. Dependence of the total two-loop exponent ξ6 on the
spatial dimension d as well as on the parameter u∗ (the upper surface)
and w∗ = 1/u∗ (the lower surface) for ε = 4/3.

FIG. 12. Dependence of the total two-loop exponent ξ7 on the
spatial dimension d as well as on the parameter u∗ (the upper surface)
and w∗ = 1/u∗ (the lower surface) for ε = 4/3.

correlations for the persistence of anisotropy deep inside the
inertial interval can also be seen near two spatial dimensions
for all N � 4. Moreover, it seems that for large enough values
of N (see Fig. 13) the presence of finite-time correlations can
even lead to less pronounced anisotropy persistence than in
the case of the rapid-change model. Here, the behavior of
the exponent ξ3 is completely unique since, only in this case,
the two-dimensional system demonstrates the most significant
dependence on the parameter u∗ (w∗) (see Fig. 8), i.e., the
presence of finite-time correlations significantly increases the
anisotropy persistence observed in the behavior of the func-
tion R3.

V. CONCLUSION

In this paper, using the field-theoretic RG analysis of the
generalized Kazantsev-Kraichnan model in the second-order
(two-loop) perturbative approximation, we have performed
a detailed analysis of the influence of the finite-time

FIG. 13. Dependence of the total two-loop exponent ξ8 on the
spatial dimension d as well as on the parameter u∗ (the upper surface)
and w∗ = 1/u∗ (the lower surface) for ε = 4/3.
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FIG. 14. Dependence of the total two-loop exponents ξ3 and ξ4

on the parameter u∗ and w∗ = 1/u∗ for ε = 4/3 and for the spatial
dimension d = 3. The one-loop results are represented by the corre-
sponding dashed lines.

correlations of the turbulent velocity field on the asymptotic
scaling inertial-range behavior of the single-time two-point
correlation functions BN,N−m(r) of the weak magnetic field
defined in Eq. (9) as well as on the corresponding behavior
of the dimensionless ratios of these correlation functions RN

defined in Eq. (65). It is shown for the first time that the

FIG. 15. Dependence of the total two-loop exponents ξ5 and ξ6

on the parameter u∗ and w∗ = 1/u∗ for ε = 4/3 and for the spatial
dimension d = 3. The one-loop results are represented by the corre-
sponding dashed lines.

FIG. 16. Dependence of the total two-loop exponents ξ7 and ξ8

on the parameters u∗ and w∗ = 1/u∗ for ε = 4/3 and for the spatial
dimension d = 3. The one-loop results are represented by the corre-
sponding dashed lines.

finite-time correlations of the turbulent velocity fields can
have a nontrivial and, at the same time, significant impact
on the anomalous scaling of the magnetic field correlation
functions as well as on the anisotropy persistence deep inside
in the inertial range of developed turbulent environments. The
two-loop explicit form of the corresponding critical exponents
is found and it is demonstrated that the critical exponents of
the magnetic field correlation functions become more negative
when finite-time velocity correlations are present, i.e., the
anomalous scaling becomes much more pronounced in the
general case with finite-time velocity correlations than in the
rapid-change limit of the studied model. On the other hand,
it is also shown that the exponents, which characterize the
behavior of the ratios RN of the magnetic field correlation
functions as functions of the Pécklet number, are increasing
functions of the free parameter w∗ = 1/u∗ of the model.
This means that the persistence of the anisotropy is more
pronounced in systems with finite-time correlations of the
velocity field than in the rapid-change limit of the model with
w∗ = 0.

From the phenomenological point of view, the fact that
the anomalous scaling of the magnetic field is more pro-
nounced in the model with finite-time velocity correlations
also means that the intermittency must be more visible in the
formed geometric structures in this case than in the case of
the rapid-change model. A similar conclusion must also be
valid as for the anisotropy persistence in the inertial interval,
namely, since the anisotropy persistence in the inertial range is
enhanced by finite-time correlations, one can expect that the
formed geometric structures will be more anisotropic in the
statistical sense under the influence of finite-time correlations.

Let us emphasize that all studied effects of the presence
of finite-time correlations of the velocity field in the model
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become visible starting from the performed two-loop analysis
only since all studied quantities are independent of the
parameter u∗, which directly describes the presence of
finite-time velocity field correlations, at the one-loop level of
approximation.

In conclusion, we suppose that a similar influence of the
presence of finite-time correlations of the velocity field on the
scaling properties of the magnetic field correlation functions
must also be observed in more realistic but also more complex
non-Gaussian models, e.g., in the framework of genuine kine-

matic MHD turbulence with the velocity field driven by the
stochastic Navier-Stokes equation.
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