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Unified view of avalanche criticality in sheared glasses
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Plastic events in sheared glasses are considered an example of so-called avalanches, whose sizes obey a power-
law probability distribution with the avalanche critical exponent τ . Although the so-called mean-field depinning
(MFD) theory predicts a universal value of this exponent, τMFD = 1.5, such a simplification is now known to
connote qualitative disagreement with realistic systems. Numerically and experimentally, different values of
τ have been reported depending on the literature. Moreover, in the elastic regime, it has been noted that the
critical exponent can be different from that in the steady state, and even criticality itself is a matter of debate.
Because these confusingly varying results have been reported under different setups, our knowledge of avalanche
criticality in sheared glasses is greatly limited. To gain a unified understanding, in this work, we conduct a
comprehensive numerical investigation of avalanches in Lennard-Jones glasses under athermal quasistatic shear.
In particular, by excluding the ambiguity and arbitrariness that has crept into the conventional measurement
schemes, we achieve high-precision measurement and demonstrate that the exponent τ in the steady state follows
the prediction of MFD theory, τMFD = 1.5. Our results also suggest that there are two qualitatively different
avalanche events. This binariness leads to the nonuniversal behavior of the avalanche size distribution and is
likely to be the cause of the varying values of τ reported thus far. To investigate the dependence of criticality and
universality on applied shear, we further study the statistics of avalanches in the elastic regime and the ensemble
of the first avalanche event in different samples, which provide information about the unperturbed system. We
show that while the unperturbed system is indeed off-critical, criticality gradually develops as shear is applied.
The degree of criticality is encoded in the fractal dimension of the avalanches, which starts from zero in the
off-critical unperturbed state and saturates in the steady state. Moreover, the critical exponent τ is consistent
with the prediction of the MFD τMFD universally, regardless of the amount of applied shear, once the system
becomes critical.

DOI: 10.1103/PhysRevE.104.015002

I. INTRODUCTION

It has been empirically accepted that various nonequilib-
rium systems exhibit intermittent fluctuations whose sizes
obey a power-law distribution, P(S) ∼ S−τ , where S is an
appropriately defined size of intermittent events and τ > 0 is
the critical exponent. Such intermittent and scale-free fluctu-
ations are called avalanches, and the nature of the criticality
of these fluctuations is expected to form (sub-)classes of
nonequilibrium universality [1]. Possible candidates for mem-
bers of these classes cover a very wide range, including snow
avalanches [2] (as the name suggests), Barkhausen noise [3,4],
the depinning transition of elastic bodies moving in random
media [5,6], charge excitations in electron glasses [7], micro-
crystal collapse under external forces [8], earthquakes [9,10],
the flickering of faraway stars [11], the extinction of biolog-
ical species [12], the firings of neuronal networks [13,14],
and decision-making processes [15]. Note that the theories of
some of these examples provide the same value of the critical
exponent τ = 1.5, at least at the mean-field level [3,6,8,10]
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Glasses under external fields such as shearing deforma-
tion or compression, the target system of this article, have
also been found to exhibit intermittent noise [16–25]. In the
case of sheared amorphous solids, the intermittency comes
from plastic events. The elementary process of plastic events
is believed to be so-called local shear transformation zones
(STZs), which are triggered when the lowest eigenvalue of the
dynamical matrix becomes zero [16,26]. STZs interact with
each other via an elastic field, so the energy released from an
excited STZ can trigger further excitation of others [27]. Such
a chain of STZs leads to scale-free avalanches. The theoretical
treatment of avalanches in sheared amorphous solids has been
achieved in mean-field depinning (MFD) theory [28,29], and
it has been shown that the critical exponent coincides with
the universal value τMFD = 1.5 reported for other systems,
such as Barkhausen noise [3], the depinning transition of
elastic bodies moving in random media [6], plastic events
in deformed crystals [8], and earthquakes [10]. However, we
note that it has recently been shown that the simplification em-
ployed in this MFD approach [8] connotes several qualitative
disagreements with realistic systems. Specifically, although
the elastic interaction kernels between STZs are assumed to
be monotonic [6] in the MFD model [8], they are known

2470-0045/2021/104(1)/015002(17) 015002-1 ©2021 American Physical Society

https://orcid.org/0000-0002-2866-7400
https://orcid.org/0000-0003-3107-374X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.104.015002&domain=pdf&date_stamp=2021-07-12
https://doi.org/10.1103/PhysRevE.104.015002


OYAMA, MIZUNO, AND IKEDA PHYSICAL REVIEW E 104, 015002 (2021)

to be nonmonotonic (quadrupolar shapes) [30] in sheared
glasses. This qualitative difference results in a failure of a
correct prediction for an important scaling behavior: while
the average value of the strain interval between avalanches
〈δγ 〉 is known to scale with the system size N as 〈δγ 〉 ∼ N−χ

with 0 < χ < 1 [31–34], the monotonic kernel employed in
Ref. [8] leads to trivially 〈δγ 〉 ∼ 1/N [33]. Notice that several
recent mean-field treatments succeeded in reproducing this
subextensive nature [35–37] (see Appendix F for the summary
of values of exponents that have been reported in recent pre-
vious works).

Many experimental and numerical studies have also been
carried out. Experimentally, although there are still variations
in the precise value of τ depending on the literature [38,39], it
has recently been reported that the values of τ in various sys-
tems are universally close to the MFD prediction τMFD = 1.5
[40–44]. In particular, since the precise value of τ is sensitive
to the temporal resolution of the measurement [45] and a
study using a high resolution [40] has reported a value of τ

consistent with τMFD, a consensus is being established—that
the critical exponent in real systems universally follows the
prediction of the MFD model [8]. We stress again that this
result is surprising, considering the qualitative disagreement
with the real systems that MFD theory involves.

For many situations, numerical simulations can serve as
powerful tools that allow us to perform precisely controlled
idealized numerical experiments. In particular, simulations
under an idealized condition have been performed to study
avalanches in sheared amorphous solids: in most numerical
works, the limit of zero temperature and zero strain rate,
so-called athermal quasistatic (AQS) shear, is employed [46].
Many studies have reported measurement results of τ under
AQS shear with various setups that have included different
frameworks—namely, atomistic simulations [39,47–52] and
elastoplastic models [34,53–57]. Some of these works further
conducted finite-size scaling to validate the obtained value
of τ . However, the value of τ varies greatly from study to
study in the range of 1.0 to 1.36 [34,39,47–58]1 (if we restrict
the targets to only recent atomistic simulations, the range
becomes τ ∈ [1.0, 1.3] [47–49,52]).2 Note that such variation
is found even within the same numerical framework. In other
words, even with the aid of idealized numerical experiments,
thus far, we have obtained only system-dependent values of
critical exponents, and no clues of consistency with τMFD =
1.5 have been found. This situation is at odds with that of
experimental studies where multiple works have reported τ ≈
τMFD.

Furthermore, theoretically and numerically, a new view
has been proposed recently, making the situation even more
confusing. The new view states that avalanches in the elastic
regime exhibit very different statistics than those in a steady
state: a mean-field replica theory specific to the elastic regime
[60] predicts that the critical exponent in this regime should

1The maximum value becomes 1.5 if we also include systems under
oscillatory shear [29,59].

2Here only works with finite-size scalings are considered. Before
these works, much smaller values were reported, such as in Ref. [16].
Additionally, Refs. [39] and [51] reported larger values.

be τR = 1.0 (if the system is above jamming), and a recent
numerical work [52] has reported consistent results in a binary
Lennard-Jones (LJ) glass system. The value of τR = 1.0 is
markedly smaller than the values reported in the steady state,
τ ∈ [1.15, 1.3] [47–49], so the possibility of a change in the
universality class after the yielding transition takes place has
been suggested [52]. However, even if we look at similar
strain regimes, different values (τ = 1.1, 1.2) that are consis-
tent with the results in the steady state have been reported in
other numerical works under AQS shear [50,61]. Additionally,
we highlight that experiments with high temporal resolution
[40] reporting τ ≈ τMFD = 1.5 were conducted in the elastic
regime. Therefore, the value of the critical exponent in the
elastic regime is still under debate as well. Moreover, Ref. [32]
reported that, in the first place, the systems do not exhibit
criticality in the limit of γ → 0, where γ is the accumulated
applied shear strain. Since all these seemingly conflicting
results have been reported under various numerical setups, we
still lack a firm understanding with a unified perspective.

In this work, to resolve this puzzling situation concern-
ing avalanche criticality and universality presented above and
to provide a unified view, we investigate the statistics of
avalanches in sheared glasses comprehensively by means of
atomistic simulations of binary LJ glasses under AQS simple
shear. First, by excluding the ambiguity and arbitrariness that
unexpectedly crept into the measurement of avalanche statis-
tics in previous works, we show that the critical exponent τ

in the steady state coincides with the universal value obtained
by MFD theory in Ref. [8], τMFD = 1.5. We stress that we
obtain this value using scaling relations, not by direct fitting
of the data, which would require choosing the fitting range,
thereby introducing unintentional arbitrariness. Our results
also suggest that the scaling function of the avalanche size
distribution has a peculiar bump and thus is different from
standard cases, such as exponential cutoffs. We find that there
are two qualitatively different avalanche events, which we
call precursors and mainshocks. Precursors and mainshocks
follow different probability distribution functions (PDFs), and
the peculiar bump of the scaling function is found to be
due only to the contributions from mainshocks; these include
system-spanning events and suffer from the finite-size effect.
Importantly, we also demonstrate that this bumpiness in the
scaling function explains the nonuniversal values of τ re-
ported in previous studies.

We then perform the same high-precision measurement
in the elastic regime to investigate whether we indeed ob-
serve shear-dependent changes in criticality and universality.
In particular, we separately measure the statistics of both the
ensembles of only the initial avalanche events of different
samples, which reflect the property of the unperturbed system
(γ → 0), and the avalanches collected in the elastic regime
0 � γ � 0.02 [52]. The former case does not exhibit any
system size dependence, in accordance with Ref. [32]. Mean-
while, the latter case does show system size dependence, or
criticality, in agreement with Refs. [52,62]. This criticality in
the elastic regime is clearly different from that in the steady
state and is characterized by a much smaller fractal dimension.
Nevertheless, consistent with the experimental results [40,42],
the value of τ ≈ 1.505 estimated by the scaling relation is
very close to the steady-state value and τMFD. All these results
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provide a unified view of avalanche criticality in sheared LJ
glasses: criticality develops as shear is exerted, and the critical
exponent τ remains the same universally once the system
becomes critical. The development of criticality is reflected
by the increasing value of the fractal dimension, from zero in
the off-critical unperturbed system to a saturated value in the
steady state.

This article is organized as follows: In Sec. II the numerical
methods are summarized. In particular, we introduce a new
measurement scheme and important scaling relations, includ-
ing recapitulating those proposed in Ref. [34]. The results
for the steady state are presented in Sec. III. In Sec. IV the
results of the elastic regime are presented, and the unified
view of avalanche criticality and universality throughout the
whole strain regime is provided. Finally, concluding remarks
are presented in Sec. V.

II. METHODS

In this work, we conduct simulations of two-dimensional
(d = 2) sheared binary LJ glasses and investigate the
avalanche statistics in detail. Specifically, we aim to exclude
ambiguities from the definition and measurement of avalanche
sizes. In this section, we first explain the numerical setup of
our binary LJ glass system under AQS shear in Sec. II A. In
Sec. II B we propose a brand-new measurement scheme for
avalanches. In the subsequent section, Sec. II C, we discuss
the importance of system size-dependent tuning of the numer-
ical strain interval �γ , which has not been taken seriously
thus far. Finally, the scaling relations proposed in Ref. [34]
are summarized in Sec. II D in a way that is compatible with
our setup.

A. Target system

For the interparticle potential, we employ the smoothed LJ
potential [48], defined as

φL(ri j ) = 4εi j

[(
di j

ri j

)12

−
(

di j

ri j

)6
]

+ εC (ri j < Ii j ), (1)

φR(ri j ) = C3

3

(
ri j − rC

i j

)3 + C4

4

(
ri j − rC

i j

)4 (
Ii j � ri j < rC

i j

)
,

(2)

where ri j is the interparticle distance between particles i and
j, di j determines the interaction range, and εC is the potential
offset, which guarantees that φL and φR (and their first and
second derivatives) match at the inner cutoff Ii j ≡ 1.2di j . The
coefficients C3 and C4 are chosen so that φR and its first and
second derivatives continuously go to zero at the outer cutoff
rC

i j ≡ 1.3di j . To avoid crystallization, the system is composed
of two different sizes of particles, species S and L, at a ratio
of 50:50. The potential is totally additive, and the interaction
ranges are dSS = 5/6, dSL = 1.0 and dLL = 7/6, respectively.
The energy unit εi j = ε = 1.0 is constant for all combinations
of particle species. Below, all physical variables are nondi-
mensionalized by the length unit dSL and the energy unit ε.
The number density of the system is fixed at ρ = N/L2 ≈
1.09. All samples are generated by minimizing the potential
energy of a completely random initial configuration, which
corresponds to an infinite temperature.

The system is driven out of equilibrium by external simple
shear. The simple shear is imposed on the whole system in
a quasistatic way without any thermal noise. This protocol is
called AQS shear and is achieved by the repetition of very
tiny affine shearing deformations of the strain increment �γ ,
followed by energy minimization under the Lees-Edwards
boundary condition [63]. The energy is considered to be min-
imized when the maximum magnitude of the forces applied to
the particles fmax meets the condition fmax < 10−9. We use the
FIRE (Fast Inertial Relaxation Engine) algorithm for energy
minimization [64]. The distinguishing feature of this FIRE
algorithm from other major energy minimization protocols,
e.g., the conjugate gradient (CG) method, is the presence of
the inertia in the dynamics during the energy minimization.
It is widely accepted that such an inclusion of the inertia
improves the speed of the convergence of the energy min-
imization compared to the CG method in many problems.
Although several works have reported that the introduction of
inertia during energy minimization can affect the avalanche
statistics, such an effect seems to be absent from our results
(see Appendix C). Even under these conditions, we still have
one free parameter—namely, the strain resolution per numer-
ical step �γ . In this work, we tune this parameter depending
on the system size N , and this tuning plays a fundamental role
in measuring the avalanche exponent τ . The determination of
�γ will be discussed in Sec. II C.

B. Rewinding method and the definition of avalanches

To evaluate the sizes of avalanches that are purely due to
plastic events, stress drops (or potential energy drops) should
be measured under the same boundary conditions. For this
reason, in previous studies [19,49,50,52], the size of the ith
avalanche Si is defined as the sum of the stress drop and linear
correction, as

Si ≡ Ld (�σi + G�γ ), (3)

where �σi ≡ σ (γCi) − σ (γCi + �γ ) is the stress drop during
the ith avalanche, γCi is the critical strain at which the ith
avalanche takes place, and G is the shear modulus (Fig. 1).
However, as discussed in Ref. [16], the value of the shear mod-
ulus G fluctuates strongly when an external shear is applied.
In particular, G becomes infinite in the negative direction at
the onset of an avalanche, where the lowest eigenvalue of
the dynamical matrix becomes zero. It is even possible that a
single stress drop event can take several numerical strain steps
when the strain resolution �γ is very fine [16]. Therefore, it
is quite nontrivial to determine which kind of definition of the
modulus should be used for the linear correction in Eq. (3) and
how different definitions affect the results.

To rule out such an ambiguity in the definition of avalanche
sizes, we developed a new measurement scheme: when a
stress drop event is detected, we reverse the direction of shear
and rewind the strain by one strain step �γ (see Fig. 1). We
call this scheme the rewinding method. From the perspective
of the potential energy landscape picture, a plastic event can
be viewed as a transition from one metabasin to another: states
A (original) and B (new). The rewinding method enables us
to directly compare the variables of these two states A and
B at exactly the same boundary condition γ = γCi. Thus, we
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FIG. 1. Schematic of the rewinding method. The black lines and
points represent the results of a normal AQS simulation. The gray
lines and points depict the conventional definition of the avalanche
size with a linear correction. The red lines and points represent our
definition of the avalanche size using the rewinding method.

can define the ith avalanche size Si simply by the difference
between the stresses of the two states without any ambiguity,
as

Si = Ld�σABi, (4)

where �σABi ≡ σA(γCi) − σB(γCi) and σs(γ ) denotes the
stress of state s ∈ A, B at strain γ . Hereafter, all our analyses
are based on this definition, Eq. (4) (see Appendix G for
comparison with the conventional linear correction method).
We emphasize that we do not introduce any lower cutoff size
for avalanche detection [50,52], and we utilize all stress drop
events in this work.

C. Strain resolution

Since the average of the strain intervals between
avalanches, δγi ≡ γCi+1 − γCi, is known to decrease with
increasing system size N as 〈δγ 〉 ∼ N−χ with a positive
exponent 0 < χ < 1 [31,32,34], larger systems require finer
strain resolutions to detect small avalanches properly. In other
words, if we do not care about the strain resolution �γ ,
the statistics of small avalanches in large systems can be
obscured. However, thus far, in most cases, �γ has been more
or less fixed to a single value regardless of the system size. Al-
ternatively, a smallest size cutoff for avalanche detection has
sometimes been introduced [50,52]. Such treatments would be
justified if the scale-free power-law behavior appeared in the
large-size regime of the PDF of avalanche sizes close to the
cutoff size Sc. As discussed later, however, our results show
that this is not the case and indicate the importance of tuning
the strain resolution �γ depending on the system size. The
precise values of the strain resolution �γ (N ) that we used
for the different system sizes are summarized in Table I. See
Appendix D for how we determined these values and how the
results are affected if we do not tune �γ properly.

TABLE I. Values of strain resolution.

N 512 2048 8192 32 768 131 072a

�γ 5×10−6 5×10−6 5×10−6 1×10−6 5×10−7

aFor only the first events and the elastic regime.

D. Scaling laws

In this section, we summarize the scaling relation, which
reduces the number of independent critical exponents through
physical constraints. In particular, by following the original
discussion in Ref. [34], we show that these relations are
closed by only two exponents. We list all six related critical
exponents in Table II, and to ensure that the article is self-
contained, we recapitulate the derivations of all the relations.

We introduce two different PDFs of avalanche sizes. The
first, P(S), is the standard normalized PDF per unit avalanche
size and is simply given as∫

P(S) dS = 1. (5)

The other, R(S), is the PDF per unit avalanche size and unit
strain. If we define the average number of avalanche events
per unit strain M(L) as

M(L) =
∫ ∞

0
R(S, L) dS, (6)

then these three functions can be related to each other as

P(S, L) = R(S, L)/M(L), (7)

where L is the linear dimension of the system. We now explic-
itly write the system size dependence of the PDFs. In the field
of avalanches in sheared glasses [47–49,52], the PDF per unit
strain R(S) is usually preferred to the standard PDF P(S).

We now assume the criticality of avalanches and that the
distribution has a system size-dependent cutoff size Sc ∼ Ld f ,
where d f is the fractal dimension. Then, by introducing a
scaling function f (S/Sc) as P(S) = S−τ f (S/Sc), we obtain a
scaling relation for P(S):

P(S) ∼ L−d f τ (S/Ld f )−τ f (S/Ld f ), (8)

∼ L−d f τ g(S/Ld f ), (9)

where we introduce another function, g(S/Sc) ≡
(S/Sc)τ f (S/Sc). If we substitute M(L) ∼ 1/〈δγ (L)〉 ∼ Nχ

and Eq. (9) into Eq. (7), we obtain

R(S) ∼ Ldχ−d f τ g(S/Ld f ). (10)

Thus, comparing Eq. (10) with the definition of the exponent
β shown in Table II, we obtain the following relation:

β = dχ − d f τ. (11)

Another relation among τ , χ and d f can be derived from
the stationary condition of stress in the steady state. For 1 <

τ < 2 (which is the case for avalanches in sheared glasses),
the average avalanche size can be derived from P(S) ∼ S−τ

as

〈S〉 ∼ S2−τ
c ∼ Ld f (2−τ ). (12)
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TABLE II. List of the critical exponents.

Exponent Definition Estimation in this work Steady-state value

χ 〈δγ 〉 ∼ N−χ Direct fitting 0.738
df Sc ∼ Ld f Direct fitting 1.034
τ P(S) ∼ S−τ τ = 2 − (1 − χ )d/df 1.493
α 〈S〉 ∼ Nα α = (2 − τ )df /d = 1 − χ 0.262
β R(X, L) = Lβg(X/Ld f ) β = dχ − df τ = d − 2df −0.068

In the steady state, this value of 〈S〉 ≡ Ld〈�σ 〉 must be
consistent with the average increase in the stress between
avalanches. Assuming that the average shear modulus Ḡ does
not depend on the system size statistically, this condition leads
to

〈S〉 = Ld Ḡ〈δγ 〉 ∼ Ld (1−χ ). (13)

From Eqs. (12) and (13), we obtain the relation

τ = 2 − (1 − χ )
d

d f
, (14)

which plays a central role.
Equations (11) and (14) allow us to write β in a simpler

way:

β = d − 2d f . (15)

Comparing Eq. (12) and the definition of the exponent α

shown in Table II, and substituting Eq. (14), we can express α

as

α = (2 − τ )d f /d = 1 − χ. (16)

All these scaling relations ultimately reduce the number
of independent exponents to two. Therefore, we must select
two independent exponents and describe others using them.
We employ d f and χ in this work. We stress that while we
must choose the fitting range to obtain τ by direct fitting to the
avalanche size distribution, the relations Sc ∼ Ld f and 〈δγ 〉 ∼
N−χ are valid for the whole data range, and d f and χ can be
measured without any arbitrariness in the choice of the fitting
range.

III. STATISTICS OF AVALANCHES IN THE STEADY STATE

In this section, we present the avalanche statistics in the
steady state (γ > 0.25). For all system sizes, we collected
more than 5000 events and calculated the statistical informa-
tion from them.

A. Independent exponents

We start with the measurement of two independent expo-
nents d f and χ , which determine all other exponents through
the scaling relations introduced in Sec. II D. By definition,
these two exponents can be measured from the system size
dependence of the average strain interval between avalanches
〈δγ 〉 and the cutoff avalanche size Sc ≡ 〈S2〉/〈S〉 [52]. As
shown in Fig. 2, both 〈δγ 〉 and Sc are power-law functions
of the system size N , as expected. We note that, as discussed
in Appendix D, if we do not tune �γ carefully, 〈δγ 〉 will
not be a power-law function. The obtained exponents and the

estimation of the other exponents are summarized in Table II.
In Fig. 2(b) we also show the results for 〈S〉, which yields
the exponent α. We note that the direct measurement result
α = 0.269 shows very close agreement with the estimation
by Eq. (16), α ≈ 0.262. This supports the accuracy of the
calculations and the scaling relation. It is also important to
mention that the value of χ = 0.738 obtained here is markedly
larger than the values in theoretical [32] and other existing
numerical works [20,31,32,34,37,47,48,56,57]. See the dis-
cussion in Appendix E for detailed comparison with those
previous works.

From Eq. (14) and the values of d f and χ , the avalanche
exponent is estimated as τ ≈ 1.493 ± 0.041. We would like
to emphasize that this value is very close to a universal value
of τMFD = 1.5. We also note that this result is surprising
because, as presented in the introduction, the applicability of
the approximation in the MFD model [8] is recently under
discussion [33,57]. To strictly confirm that our result for τ

is the intrinsic critical exponent of the system, we conduct
further validation in the next two sections.

FIG. 2. The system size dependence of (a) the average strain
interval between successive avalanches 〈δγ 〉 and (b) the mean and
cutoff avalanche sizes, 〈S〉 and Sc, in the steady state. The markers
represent the numerical results, and the dashed lines are power-law
fittings. The values of the exponents estimated from the fittings are
also shown (with error).
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FIG. 3. Unit strain probability distribution of avalanche sizes
R(S) in the steady state (a) without scaling; (b) with finite-size
scaling. The scaling exponents df and β are drawn from Table II. For
both panels, different symbols are used for different system sizes,
as shown in the legend in (b). The dashed line in (b) shows the
power-law behavior predicted by the scaling law, Eq. (14), not a
direct fitting result.

B. Avalanche size distribution

We now turn our attention to the avalanche size distri-
bution. Figure 3(a) shows the results of the PDFs of the
avalanche size per unit strain R(S) for different system sizes.
In Fig. 3(b) the same data are shown with a finite-size scaling
with the exponents d f and β. Here we demonstrate that the
exponent β that is estimated solely from χ and d f without
any further fitting leads to a collapse of the results of different
system sizes. This success of the collapse again supports the
validity of our numerical calculation and the scaling laws.

We intuitively expect that the power-law behavior should
appear in the large-size regime near the cutoff size Sc, and
in fact, previous works have estimated the value of τ by a
direct fitting of the data in that regime [47–50,52]. However,
in Fig. 3(b) we see the power-law regime, S−τ with τ ≈ 1.493,
which the scaling relations suggest is located instead in the
small-size regime. We would like to stress that this regime ac-
tually grows broader as the system size increases. This result
suggests that the PDFs have peculiar bumps in the large-size
regime; we now will reveal the origin of these bumps.

Before proceeding to the next section, we highlight that our
value of τ ≈ 1.493 is much larger than the values reported
in previous works with atomistic simulations [47–49]. In
Appendix A 1, we show that if we estimate the value of τ in
the same way as in previous works—namely, by a direct fitting
of our data in the bumpy regime—we obtain τ ∼ 1.19. This
value lies in the middle of those reported for the steady state
in previous works, τ ∈ [1.15, 1.3]. Based on this consistency,
we believe that the values of τ in previous works varied widely
only because the nonuniversal crossover regime was analyzed.

FIG. 4. Schematic of the definition of precursors and main-
shocks. They are defined based on the relation between the stress
just before the event of interest and the next one. The black lines
depict the schematic stress-strain curve. The dotted lines compare
the stresses immediately before successive events. The blue lines do
not cross the stress-strain curve or mean downhill mainshocks, while
the red lines cross them and indicate uphill precursors.

C. Origin of the bump in the large-size regime

The bumpy nature of the PDF suggests that the scaling
function has a salient bumpy shape, and the distribution is pos-
sibly composed of two qualitatively different contributions:
scale-free power-law events and system size-dependent per-
colated events. We discovered qualitatively different groups
of avalanche events that prove this hypothesis. As sketched
in Fig. 4, the evolution of the macroscopic stress under the
AQS shear exhibits qualitatively different stress drop events—
namely, uphill events and downhill events. Whether an event
of interest is uphill or downhill is judged according to the
relation between the stress immediately before the event and
that of the next one, σ (γCi) and σ (γCi+1). If σ (γCi) is smaller
(larger) than σ (γCi+1), the event of interest is considered to
be an uphill (downhill) event. We call uphill events precursors
and downhill events mainshocks hereafter. Note that we define
precursors and mainshocks without introducing any parame-
ters. In Fig. 5 we show that the PDF of the avalanche sizes
can be decomposed into contributions from only precursors
and mainshocks.3 The results show that the bump is purely
composed of mainshocks and that the PDF of precursors
obeys a standard power-law behavior with a specific cutoff
size. This suggests that the PDF of mainshocks includes an
excess of large system-spanning events due to the finite-size
effects in addition to unbounded scale-free events that obey
the same power-law PDF as the precursors: events that are ex-
pected to become gigantic if the system size is extremely large
(e.g., in the thermodynamic limit) stop their growth at around
S ≈ Sc when the system size is not large enough. This effect
results in a greater frequency of finding events with S ≈ Sc

compared to the original power-law distribution and, thus, a

3The same precursor-mainshock decomposition works for other
system sizes, and the results are qualitatively the same. See
Appendix B 1.

015002-6



UNIFIED VIEW OF AVALANCHE CRITICALITY IN … PHYSICAL REVIEW E 104, 015002 (2021)

FIG. 5. Decomposition of the PDF of the avalanche sizes in
the steady state into contributions from precursors and mainshocks.
The PDFs of only precursors or mainshocks are normalized to the
total number of events. The results for the system with N = 32 768
are shown. The squares represent precursors, the triangles represent
mainshocks, and the circles are the results of the total distribution, as
shown in the legend. The dashed line is a power-law relation with the
exponent shown in Fig. 3.

bump around S ≈ Sc. Moreover, importantly, the ratio of the
number of mainshocks to the total number of all avalanche
events pmain decreases in a power-law manner as the system
size increases (Fig. 6). Therefore, the statistics of avalanches
in large systems are dominated by precursors (there is only a
vanishing fraction of mainshocks that cannot contribute to the
global shape of the PDF in the thermodynamic limit). This is
additional supporting evidence that precursors are responsible
for the intrinsic power-law behavior. We stress that, as is
obvious from Fig. 5, mainshocks do not always possess large
sizes (see also Appendix B 2 for more discussion on this
issue). Also, we would like to emphasize again that to evaluate
the critical exponents, we did not discard mainshocks. The
dashed line shown in Fig. 5 represents the estimated results
using Eq. (14) and χ and d f that are determined by utiliz-
ing all events (including both precursors and mainshocks).
Here, we provided an interpretation for the obtained value
of τ . We stress that qualitatively similar bumpy PDFs have
been reported in previous works [34,38,47–49,55,65,66], as
discussed in detail below.

FIG. 6. The system size dependence of the fraction of main-
shocks among events pmain. The markers represent the numerical
results, and the dashed line is a power-law fitting.

The direct visualization of the displacement field during
a precursor and a mainshock provide more insight into the
difference between the two event types (see Fig. 7). In par-
ticular, the events with the largest avalanche sizes for the
same event types are shown. Here we highlight only mobile
particles that are defined according to the participation ratio
e ≡ (

∑
i d2

i )2/(N
∑

i d4
i ), where di = |d i| is the magnitude of

the displacement vector of particle i. The participation ratio
e provides the fraction of particles that are mobile: if all
displacement vectors have the same magnitude, e = 1 holds,
and if only one vector has a nonzero value, e = 1/N holds.
We define particles that have the e largest magnitudes of
displacement vectors as mobile particles. As shown in Fig. 7,
even in the largest event, the mobile particles of a precursor
exhibit a localized structure, while the mainshock counterpart
is system-spanning and is affected by the finite size of the
system. Therefore, it is reasonable that precursors are mainly
responsible for the intrinsic scale-free power-law regime. We
stress that the event in Fig. 7(a) is a chain of multiple STZs.

The qualitative features of mainshocks that have been pre-
sented so far are reminiscent of the so-called runaway events
observed in the MFD model [8,10]. In this model, such run-
away events are expected only when the weakening parameter
is positive—in other words, when the system shows brittle
responses to an external shear, like metallic glasses. This may
seem reasonable, since LJ glasses are sometimes used as a
model system of metallic glasses [67]. However, our main-
shocks exhibit qualitatively different scaling behavior from
runaway events. In Ref. [68] it was reported that runaway
events cannot be collapsed by the same scaling exponents
as those for the power-law regime. In our case, on the other
hand, entire PDFs can be collapsed by a single combination
of scaling exponents, as presented in Fig. 3. In this sense, our
mainshocks are qualitatively different from runaway events. It
is also important to mention that several studies have reported
that similar bumps in the PDFs of avalanche sizes can be
induced by the inertial effect [47,48,65]. We emphasize that
they seem to be different in nature from our mainshocks. This
issue is discussed in detail in Appendix C. We would like
to note that we are aware of qualitatively similar bumps in
PDFs shown in previous works—in both experimental [38]
and numerical works [34,49,55,66]. We emphasize that some
of them are measured in completely inertialess conditions.

IV. EVOLUTION OF CRITICALITY
IN THE ELASTIC REGIME

In this section the results in the elastic regime are pre-
sented. Specifically, to discuss the issues of criticality and
universality independently, we separately present the results
of the ensembles of only the initial avalanche events of dif-
ferent samples and of the avalanches collected over the entire
elastic regime γ ∈ [0, 0.02] [52].

A. Results for unperturbed systems

First, we present the results of the ensembles of only ini-
tial avalanche events, which should most strongly reflect the
features of unperturbed systems. For each system size, we
prepared 4000 independent samples and applied simple shear

015002-7



OYAMA, MIZUNO, AND IKEDA PHYSICAL REVIEW E 104, 015002 (2021)

FIG. 7. Visualization of the displacement field during an avalanche event in a system with N = 8192: (a) precursor; (b) mainshock. Events
with the largest avalanche sizes for the same event types are shown. The arrows represent the displacement vectors of particles and have been
normalized properly for ease of viewing. The colored particles (shaded ones in gray scale) are mobile particles (see the main text for the
definition). The copied cells due to the periodic boundary conditions are shown around the original cell with slightly lighter colors. White
boxes represent the locations of the original cells.

in an AQS manner until we encountered avalanches. To judge
whether the first obtained avalanche event was a precursor or
a mainshock, we detected the first two events. The important
statistical information is summarized in Fig. 8.

FIG. 8. Statistics of the first event ensemble. System size de-
pendence of (a) 〈δγ 〉, (b) 〈S〉 and Sc. The markers indicate the
numerical results, and the lines are a power-law fitting. (c) PDFs
of the avalanche sizes S. Different symbols are used for different
system sizes, as shown in the legend. The dashed line depicts the
results of power-law behavior with the exponent in the steady state,
τ ≈ 1.493, and the dotted line denotes τ = 1.0. (d) Decomposition
of the PDF of the avalanche sizes of the first event ensemble into
the contributions from precursors and mainshocks. The results for
systems with N = 32 768 are shown. The meanings of the markers
are the same as in Fig. 5.

1. Independent exponents

The system size N dependence of 〈δγ 〉 and Sc, which yield
the independent exponents χ and d f , is shown in Figs. 8(a)
and 8(b). Although 〈δγ 〉 exhibits power-law system size de-
pendence, as in the steady state, Sc (and 〈S〉) appears rather
constant (as characterized by very small negative exponents
with large errors). This result is consistent with the findings
reported in Ref. [32] and means that criticality is absent in
unperturbed systems.

Note that Lin and coworkers have theoretically shown that
the pseudogap exponent of an unperturbed system should be
θ = 0.5 universally [35]. This means that χ should be 2/3,
and our numerical result χ = 0.689 is reasonably close to this
theoretical prediction.

2. Avalanche size distribution

Since the statistics are system size-independent, the PDFs
of the avalanche sizes of different system sizes are almost
identical without any scaling [see Fig. 8(c)]. Interestingly,
the PDFs still show broad power-law-like shapes. However,
because of the absence of criticality, we cannot draw any
absolute conclusion regarding whether they do indeed follow
a power law, although their apparent slopes seem consistent
with the value in the steady state, τ ≈ 1.493. Nevertheless,
we can safely conclude that their apparent slopes are much
larger than τ = 1.0, which is the prediction of the theory in
Ref. [60]. We also note that the PDFs do not exhibit bumps in
the large-size regime, unlike the steady-state results.

3. Decomposition of avalanche size distribution

In Fig. 8(d) we demonstrate that the PDF of the first event
ensemble can also be decomposed into contributions from
the precursors and mainshocks. In this case, the mainshocks
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FIG. 9. Statistics of avalanches in the elastic regime γ ∈
[0, 0.02]. System size dependence of (a) 〈δγ 〉, (b) 〈S〉 and Sc. The
markers represent the numerical results, and the lines are the power-
law fitting. (c) Scaled PDFs of the avalanche sizes S per unit strain.
Different symbols are used for different system sizes, as shown in
the legend. The dashed line indicates power-law behavior, with the
exponent estimated by Eq. (17), τ ≈ 1.505. (d) Decomposition of
the PDF of the avalanche sizes in the elastic regime into the con-
tributions from precursors and mainshocks. The results for systems
with N = 32 768 are shown. The meanings of the markers are the
same as in Fig. 5. The dashed line depicts the power-law behavior,
with the exponent shown in Fig. 3.

are not well developed and are completely obscured by the
precursors. This is why there are no bumps in the PDFs.

B. Results for weakly perturbed systems

We conduct the same analysis in the weakly perturbed
elastic regime, γ ∈ [0, 0.02] [52]. We performed simulations
of 600, 160, 50, and 20 samples for systems with N =
2048, 8192, 32 768, and 131 072, respectively. These sam-
ple numbers are chosen to guarantee more than 4000 events
for each system size. The important statistical information is
summarized in Fig. 9.

1. Independent exponents

In this case, all 〈δγ 〉, 〈S〉, and Sc show power-law de-
pendence on the system size N [see Figss. 9(a) and 9(b)].
The value of χ is larger than that in the steady state be-
cause of the well-known nonmonotonicity of the exponent
χ , which was first predicted theoretically [35] and then nu-
merically confirmed [50,52].4 Nonzero values of α and d f

indicate criticality in the elastic regime, in accordance with
Ref. [52]. However, the estimated values of χ and α do not
meet Eq. (16), α = 1 − χ , since the stationarity condition (13)
is trivially unsatisfied in this regime. We note that the same
degree of discrepancy between α and 1 − χ in the elastic

4In Refs. [35,50,52], the so-called pseudogap exponent θ ≡ (1 −
χ )/χ is investigated, instead of χ .

regime was reported in Ref. [52].5 We also mention that the
fractal dimension d f in the elastic regime is much less than
that in the steady state.

2. Avalanche size distribution

The failure of Eq. (13) means that Eq. (14) is not applicable
in this regime either.6 However, by comparing Eq. (12) and the
definition of the exponent α, we can derive another form of the
scaling relation:

τ = 2 − α
d

d f
. (17)

This relation is robustly usable in the elastic regime. The esti-
mation of τ with this new relation is τ ≈ 1.505, and it again
describes the small-size regime of the PDFs of the avalanche
sizes well [see Fig. 9(c)]. Moreover, we stress that this value
is very close to the value in the steady state; thus, τMFD = 1.5.
This result is in agreement with the experimental observations
[40,42].

3. Decomposition of avalanche size distribution

The decomposition of the PDF of the avalanche sizes into
the contribution from precursors and mainshocks again pro-
vides much information [Fig. 9(d)]. The PDF of the precursors
shows normal power-law behavior with a cutoff, as is the
case in the steady state, and moreover, the exponent seems
to remain the same. In the elastic regime, unlike the case of
the first event ensembles, the mainshocks form a small bump
in the large-size regime.

Note that, as presented in Appendix A 2, since mainshocks
come into play in this regime, we can fit the data in the
crossover regime (which is close to the bump) directly by
a power-law curve. The obtained value of the avalanche ex-
ponent τ ′ is quantitatively consistent with that in Ref. [52],
τ ′ ≈ 1.0, where τ ′ is the avalanche exponent estimated by
potential drops.

C. Unified view of avalanche criticality

All the results presented thus far provide a unified un-
derstanding of avalanche criticality and universality in the
sheared LJ glass system throughout the whole strain regime.
While the first event ensemble that represents the unperturbed
system is off-critical, criticality emerges in both the elastic
regime and the steady state. However, the fractal dimension of
the avalanches indicates the quantitative difference between
these two strain regimes. In particular, the elastic regime is
described by a smaller value of d f . In this sense, we con-
clude that criticality gradually grows as shear is applied and
becomes fully developed in the steady state, where the fractal

5This seems to have nothing to do with the fact that χ changes
abruptly and nonmonotonically in the vicinity of γ = 0 because,
even if we restrict ourselves to the strain range γ ∈ [0.005, 0.02] in
which χ temporarily becomes constant, as in Ref. [52], we observe
the same results semiquantitatively.

6Equation (14) is expected to be valid even in the elastic regime if
we conduct the measurement at a fixed stress level as in Ref. [62].
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dimension is saturated. These observations are all consistent
with previous works in the literature [31,52,62,69].

Once the system becomes critical, the avalanche critical
exponent τ remains constant regardless of the amount of
applied strain, and importantly, this value is consistent with
the prediction by the MFD model [8], τMFD = 1.5. The uni-
versality of the exponent τ in the elastic regime is then at
odds with the theoretical prediction made in Ref. [60]. This
might be partly because the unperturbed system in our study
is unlikely to be in the so-called Gardner phase [70–78],7

while the theory in Ref. [60] assumed the Gardner nature
of the unperturbed configurations. We repeatedly emphasize
that the universal values of τ in each regime in our work are
different from those in all previous numerical studies [47–52].
We consider that nonuniversal values in previous studies
might have been obtained because the crossover regime re-
sulting from the finite-size effects has been analyzed (see
Appendix A).

Finally, we again stress that although the value of the
critical exponent τ coincides with a famous mean-field value
τMFD = 1.5 predicted in Ref. [8], this does not mean that this
model succeeds in describing all features in sheared glasses.
For example, it clearly fails, even qualitatively, to describe
one aspect of the marginal stability of glasses, which is repre-
sented by the scaling relation 〈δγ 〉 ∼ N−χ with 0 < χ < 1.

V. CONCLUSION AND OVERVIEW

Here we conducted a thorough investigation of avalanche
criticality in a sheared binary LJ glass system by means of
atomistic simulations. In particular, by ruling out the ambi-
guity and arbitrariness that have slipped into measurements
in previous studies, we first showed that the critical avalanche
exponent τ in the steady state coincides with a mean-field pre-
diction [8]. Our results simultaneously suggest that the scaling
function of the avalanche size distribution has a nontrivial
bumpy shape. We noticed that there are two qualitatively
different avalanche events, and this binariness explains the
physical origin of the strange bump in the scaling function.
Furthermore, we demonstrated that this bump is likely to be
the cause of the nonuniversal results for the critical exponent
τ obtained in previous studies (Appendix A 1).

To investigate the change in criticality and universality due
to applied shear, we conducted the same high-precision mea-
surements of avalanche statistics of the first event ensemble,
which reflect the properties of the unperturbed system and
avalanches in the elastic regime. As a result, we confirmed
that the first event ensemble does not exhibit any system
size dependence and thus lacks criticality. This consequence
dovetails with the result in Ref. [32]. Avalanches in the elastic
regime, on the other hand, do display criticality, in accordance

7Although several works have confirmed that the Gardner phase
can be observed even in finite physical dimensions in hard sphere
systems [72,74], at least thus far no work has detected the Gardner
phase in a system with softer potentials, such as LJ or the inverse
power law, in physical dimensions [73,75,76]. Thus, the Gardner
nature in physical-dimensional glasses is currently a matter of very
active debate [77].

with Refs. [52,62], and again, the exponent of the power-law
part is very close to a famous mean-field value τMFD = 1.5
universally. The value of the critical exponent is in accor-
dance with recent experiments conducted in the elastic regime
[40,42]. The criticality in the elastic regime is different from
that in the steady state and is characterized by a much smaller
value of the fractal dimension d f . We believe that our results
provide a unified picture of avalanche criticality in deformed
glasses, for which confusing and seemingly conflicting results
have been reported thus far: criticality itself develops along
with applied strain, with the exponent of the power-law part
remaining constant. In particular, the change in criticality
is quantitatively encoded in the fractal dimension d f , which
takes the value of zero in the off-critical unperturbed state and
saturates in the steady state.

We employed configurations that are not expected to be
in the Gardner phase [73] as the initial state in this work,
and thus, the starting point itself differs from the theory in
Ref. [60], where a system in the Gardner phase is considered
the initial state. If we find the Gardner phase in physical-
dimensional amorphous solid systems with soft potentials, it
would be very important and meaningful to conduct the same
analyses using the configuration in the Gardner phase as the
initial state.

Since we applied shear in an AQS way, dynamical in-
formation could not be accessed. In the future, conducting
simulations with finite-rate shear and investigating dynamical
information such as the avalanche duration, avalanche shape
and power spectrum of the stress-drop rate time series would
also be valuable.
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APPENDIX A: COMPARISON WITH PREVIOUS WORKS

1. Avalanche exponent in the steady state

In this Appendix, we discuss the cause of the discrepancies
between our result for the avalanche exponent τ ≈ 1.493 in
the steady state and those in previous works with atomistic
simulations, 1.15 � τ � 1.3 [47–49]. To this end, we mea-
sured τ by the same method as in the previous works: a direct
fitting to the PDFs of avalanche sizes. In particular, we utilized
only the data in the large-size regime, where the cutoff size
Sc resides [the data points highlighted in gray in Fig. 10(a)].
As shown in Fig. 10(a), the resulting exponent τ = 1.19 is
located in the middle of the values reported in previous works.
Thus, we consider that the cause of the variation in the value of
τ might result from the fact that the nonuniversal part, which
can depend on the details of the systems, has been fitted.
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FIG. 10. (a) Scaled PDFs of the avalanche sizes defined based
on the stress drops S in the steady state. (b) Scaled PDFs of the
avalanche sizes defined based on the potential energy drops S′ in
the elastic regime. (c) Scaled PDFs of the avalanche sizes with
the exponent γ estimated by τ = 1.493, the value obtained in the
main text. (d) Scaled PDFs of the avalanche sizes with the exponent
γ estimated by τ = 1.19, the value obtained in (a). In all panels,
different symbols indicate different system sizes, as shown in the
legends in (a) and (b). The dashed lines in (a), (b), and (d) depict
the results of direct fitting by using the data points highlighted in
gray. The estimated values of the avalanche exponents τ and τ ′ are
also shown.

2. Avalanche exponent in the elastic regime

Although we used the stress drops for the definition of the
avalanche sizes in the main text, the avalanche sizes can also
be defined based on the potential energy drops, as follows:

S′
i ≡ �EABi ≡ EA(γCi) − EB(γCi), (A1)

where Es(γ ) is the potential energy of state s ∈ A, B at strain
γ . We use the prime symbol to express the variables of the
avalanches defined by Eq. (A1).

We also conducted the same direct fitting to the PDF of S′,
avalanche sizes defined based on the potential energy drops,
in the elastic regime. The fitting result is τ ′ = 1.052 and is
perfectly consistent with the result in Ref. [52], as shown in
Fig. 10(b).

3. Scaling collapse

We further demonstrate that the collapse of the data of
different sizes by a scaling law is too robust, and thus, unfor-
tunately, it is not reliable enough to guarantee the correctness
of the results. In Refs. [47–49], the estimated value of τ is
validated by the following scaling law:

γ = β + d f τ, (A2)

where another scaling exponent γ 8 is introduced: by scaling
by Lγ , the power-law parts of the PDFs of different system
sizes can be collapsed, as shown in Fig. 10(c). Here, we
estimated the value of γ by using only d f and χ , as γ =
β + d f τ = dχ , as is the case for the other exponents. Note
that the authors of Refs. [47–49] also confirmed that Eq. (11)
holds for the obtained exponents.

What if we try the same scaling collapse with τ = 1.19 that
we obtained by the direct fitting to the data in Fig. 10(a)? The
results are shown in Fig. 10(d) [in this case, we use Eq. (A2)
to obtain the exponent γ ]. As seen here, the power-law parts
of different system sizes are collapsed again, even with a
different value of τ . This means that Eq. (A2) can be satisfied,
unexpectedly, too robustly with multiple values of τ , and the
successful collapse by Eq. (A2) alone is not enough evidence
for the validity of the obtained value of τ .

APPENDIX B: MEANING OF MAINSHOCKS

1. Decomposition of the avalanche size distribution
in small systems

The decompositions of the PDF of avalanche sizes into
contributions from precursors and mainshocks are valid for
all system sizes. In Fig. 11 we show the results for systems
with all N = 512, 2048, 8192, and 32 768 in the steady state.
The qualitative results do not depend on the system size N :
for all N , the contribution from precursors obeys a power law
with the exponent obtained from the scaling law Eq. (14).
Moreover, the contribution from the mainshocks seep through
the small-size regime.

2. Mainshocks versus large events

In this section, we show that mainshocks are not merely
identical to large events. We first define the fraction of large
events by the following indicator p>Smin :

p>Smin ≡
∫ ∞

Smin

dSP(S), (B1)

where Smin is a lower-bound threshold. This indicator p>Smin

gives the fraction of events that are larger than Smin. In Fig. 12
we plot the results with several values of Smin as functions of
N . As can be seen in this figure, p>Smin is neither a power-law
nor decreasing function regardless of the value of Smin. This is
at odds with pmain, which is a decreasing power-law function.

On the other hand, the cutoff avalanche size Sc grows
with the system size N as Sc ∼ Nd f /d . Therefore, it may be
more appropriate to employ a system-size-dependent thresh-
old to ensure a fair comparison between mainshocks and
large events. Thus, to estimate the fraction of events with
S � Sc(N ), we also measure the following indicator:

pSc ≡
∫ ∞

aSc

dSP(S), (B2)

8Although we already used the letter γ to refer to the applied strain,
we name this exponent γ following the definition of the original
papers [47] to avoid any confusion.
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FIG. 11. Decomposition of the PDF of the avalanche sizes in the
steady state into contributions from precursors and mainshocks. The
PDFs of only precursors or mainshocks are normalized to the total
number of events. The results for the systems with (a) N = 512,
(b) N = 2048, (c) N = 8192, and (d) N = 32 768 are shown. The
squares represent precursors, the triangles represent mainshocks, and
the circles are the results of the total distribution, as shown in the
legend. The dashed line is a power-law relation with the exponent
shown in Fig. 3.

where we set a = 0.9 (we have confirmed that the results
hardly depend on the choice of the value of a if a � 0.9).
This indicator pSc provides an estimation of the fraction of the
population in the bumpy regime. We plot the results in Fig. 13
as a function of N . This indicator pSc decreases with increas-
ing N in a power-law manner and is qualitatively consistent
with pmain. However, the obtained value of the exponent here
is markedly larger than the one in Fig. 6, indicating that the
system size dependence of pmain and pSc are clearly different.
This difference comes from the fact that mainshocks include

FIG. 12. The system size dependence of the fraction of large
events that meet S > Smin to all events, p>Smin . Different symbols are
used to distinguish the results with different values of Smin as shown
in the legend.

small-size events. These results in Figs. 12 and 13 indicate
that we cannot simply regard mainshocks as large events.

APPENDIX C: ARE MAINSHOCKS INDUCED
BY THE INERTIAL EFFECT?

Several studies have reported that the introduction of in-
ertia can induce bumps in the PDFs of avalanche sizes
[47,48,65], which are similar to our mainshocks. We discuss
the differences among our bumps and those of other studies.

In Ref. [65], Karimi and coworkers investigated the effect
of inertia on the PDFs of avalanche sizes by numerical sim-
ulation of a finite-element-based elastoplastic model. They
reported that as the effect of inertia becomes stronger, the
PDF of the avalanche sizes begins to exhibit a characteristic
bump in the large-size regime. Since we employed the FIRE
algorithm in this work, which can introduce an inertial effect
during the energy minimization process, it is possible that our
mainshocks share the same origin as the bump reported in
Ref. [65].

According to Karimi et al., in the case of their elastoplastic
model, the PDF of the minimum of the local stability xmin

shows a bimodal nature when inertia takes effect, and the

FIG. 13. The system size dependence of the fraction of events
with S ≈ Sc to all events pSc in the steady state. For visualization,
p̃Sc ≡ 0.5pSc is shown. The markers represent the numerical results,
and the dashed line is a power-law fitting.
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FIG. 14. PDF of δγ , or the local stability xmin in our setup. The
steady-state result of a system with N = 32 768 is shown.

peak in the large value of xmin is responsible for the bump in
the PDF of the avalanche sizes. To check whether our bump
has the same physical origin, we also measured the PDF of
δγ , which represents the minimum of the local stability in
our setup, as discussed in Sec. II D. As shown in Fig. 14, in
our case, the PDF of δγ does not exhibit any salient peaks in
the large value regime. This means that the bump observed
in our work has a qualitatively different physical origin from
that in Ref. [65]. We note that the unimodal shape of P(δγ ) is
consistent with Refs. [32,49].

Similar inertial effects have also been found in the
atomistic simulations in Refs. [47,48]. Their results are quali-
tatively similar to those in our study (the bumps in their PDFs

FIG. 15. Statistics of avalanches in the steady state with a fixed
crude strain resolution of �γ = 1×10−5. System size dependence of
(a) 〈δγ 〉, (b) 〈S〉 and Sc. The markers represent the numerical results,
and the lines are the power-law fitting. (c) Unit strain PDFs of the
avalanche size S. (d) Scaled unit strain PDFs of the avalanche size S.
The dashed line in (d) depicts the power-law behavior predicted by
the scaling law Eq. (14) with values of χ and df shown in (a), (b),
τ ≈ 1.276. In both (c) and (d), different symbols indicate different
system sizes, as shown in the legend in (d).

FIG. 16. Comparison of the PDFs of the avalanche sizes S with
different strain resolutions �γ . The results in the steady state are
shown. (a) Results for N = 512 and (b) N = 2048. Different bright-
nesses represent different strain resolutions �γ , as shown in the
legend in (b).

exhibit the same scaling exponents as the ones for the power-
law regime). However, the avalanche exponents obtained in
the power-law regime are very different (τ = 1.0 and 1.25 in
their inertial cases). Therefore, we conclude that the bump in
our scaling function is different from those in Refs. [47,48],
and thus, our mainshocks are not due to the inertial effect pos-
sibly caused by the FIRE algorithm. Indeed, similar bumpy
shapes have also been observed in studies where inertialess
energy minimization protocols were employed [34,49,66].

APPENDIX D: VALIDATION OF STRAIN RESOLUTION

In this Appendix, we explain how the strain resolution �γ

was determined. First, to provide intuition into the importance
of the tuning of �γ , we show the results with a fixed crude
value of �γ = 1×10−5 in Fig. 15. Here the statistical infor-
mation in the steady state is shown. As shown in Figs. 15(a)
and 15(b), the N dependence of 〈γ 〉 and 〈S〉 obviously do
not exhibit power-law shapes anymore (the clear deviation of
the data of N = 32 768 can be recognized). If we turn our
attention to the PDF of the avalanche sizes [Fig. 15(c)], the
data of the largest system size, N = 32 768, do not reach the
peak in the small-size regime due to the lack of resolution.
If we still attempt to fit the N-dependence of 〈γ 〉 and SC to
power-law curves and estimate the exponents χ , d f and then
τ from these data, we obtain τ ≈ 1.267. Note that, as shown
in Fig. 15(d), this exponent does not seem to be inconsistent
with the entire curve, and it is very difficult to tell that the
result is incorrect if one looks only at the PDF of the avalanche
sizes and not at the N dependence of 〈δγ 〉. To summarize,
the lack of resolution can lead to the deviation of the N
dependence of 〈δγ 〉 and 〈S〉 (and presumably Sc as well) from
the expected power-law behavior. Moreover, the PDF of the
avalanche sizes is truncated from the small-size regime where

TABLE III. Values of the strain resolution for different sets.

N = 512 N = 2048 N = 8192 N = 32 768

Set 1 5×10−6 5×10−6 5×10−6 1×10−6

Set 2 1×10−5 1×10−5 5×10−6 1×10−6

Set 3 5×10−6 5×10−6 5×10−6 5×10−6

Set 4 1×10−5 1×10−5 1×10−5 1×10−5
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TABLE IV. Values of the critical exponents for different sets.

τ χ df α

Set 1 1.493 0.738 1.034 0.262
Set 2 1.493 0.743 1.013 0.259
Set 3 1.390 0.687 1.027 0.318
Set 4 1.267 0.624 1.026 0.378

the intrinsic power-law part resides. We carefully tuned the
strain resolution �γ so that none of these problems appear.

We further note that to tune the resolution according to
the procedure presented above, we need reliable data for
small systems as a reference. For this purpose, we conducted
simulations for small sizes, N = 512, 2048, with different
resolutions, �γ = 1×10−4, 1×10−5, 5×10−6 and confirmed
that the PDF converges for �γ � 1×10−5 (Fig. 16). This is
why we employed the value �γ = 5×10−6 for small systems.

The values of exponents obtained by different combina-
tions of �γ are summarized in Table IV (the precise values
of �γ for different values of N in different rows, which are
denoted as “Set no.,” are shown in Table III). From Table IV,
it is noticeable that the �γ dependence is ruled out in our pro-
tocol (we have employed Set 1: there is only negligibly little
difference between Sets 1 and 2). More precisely, in the case
of N = 2048, where the change in the dependence on �γ is
significant within the range of �γ that we investigated, chang-
ing the resolution from �γ = 10−4 to �γ = 10−5 changes
〈γ 〉 and 〈S〉 by more than 30%, while changing the resolution
from �γ = 10−5 to �γ = 5×10−6 changes them by less than
1% (see Table V).9

APPENDIX E: THE VALUE OF EXPONENT χ

The exponent χ , which is determined by the system size N
dependence of the average interval between avalanches 〈δγ 〉,
is one important factor to discuss the avalanche criticality.
There is a theoretical prediction for this exponent χ : Kar-
makar et al. [32] have theoretically shown that χ is expected
to be χ = 2/3 in the steady state, and the numerical results
obtained with their MD simulation [20,31,32] and by another
research group [47,48] [in these two articles, the authors did
not show the values of χ explicitly: we utilized Eq. (16)
to estimate χ ] are consistent with this prediction. Moreover,

9The value of Sc is basically determined by large-size events and
does not depend much on �γ (accordingly, the value of df remains
almost unchanged even when different values of �γ are employed:
see Tables V, III, and IV).

several recent works with elastoplastic models have also re-
ported consistent results [34,37,56,57]. On the other hand,
in an article [49] reporting a thorough MD investigation, the
values of χ are largely different from χ = 2/3 (in Ref. [49],
the authors considered two different potentials). If we estimate
χ in Ref. [49] by using Eq. (16), results for two potentials
are χ ≈ 0.53 and 0.49, respectively.10 Therefore, a perfect
consensus has not yet been formed regarding this exponent
χ .

As we repeatedly stressed throughout the present article,
however, we have found that, in MD simulations, the value of
χ is largely dependent on the value of the strain resolution
�γ .11 In such a situation, by definition, sufficiently small
values of �γ at which the dependence on �γ is no longer
present should be employed. We have used such values in this
study (see Fig. 16 and Tables III and IV). Therefore, we con-
sider that χ = 0.738 is a reliable value obtained by a thorough
numerical investigation. Note that to draw a conclusion for the
universality of the value of χ (and thus other exponents such
as τ ), we must conduct similar investigation for other systems.
We would like to leave this to future works.

APPENDIX F: COMPARISON OF VALUES OF CRITICAL
EXPONENTS WITH PREVIOUS WORKS

In this Appendix, we provide a brief summary of mea-
surement results of critical exponents of our own simulations
and those from recent previous works in Table VI. Table VI
contains results from all theoretical [8,32,35,56,60], numeri-
cal [34,48,49,52,56] and experimental [39,40,44] works. The
exponent χ is calculated from Eq. (14) with the values of τ

and d f , if it is not available in the references.

APPENDIX G: COMPARISON WITH THE LINEAR
CORRECTION METHOD

In the conventional linear correction method, the avalanche
size is defined by Eq. (3). This definition includes ambiguity
about the choice of the shear modulus G. We found that
the results with this conventional linear correction method
become quantitatively consistent with the rewinding method

10The authors of Ref. [49] introduced an exponent η whose defini-
tion is slightly different from that for χ and reported η = 0.37 and
0.49 for two potentials, respectively.

11We obtain a value of χ that is reasonably close to the theoret-
ical prediction [32] and values of other existing numerical works
[20,31,32,34,37,47,48,56,57], χ ≈ 2/3, if we employ Set 3: see
Table IV.

TABLE V. �γ dependence of avalanche statistics for the system with N = 2048.

�γ 1×10−4 1×10−5 5×10−6

〈δγ 〉 0.00265 (34.5%) 0.00197 0.00196 (−0.5%)
〈S〉 576 (36.2%) 423 420 (−0.7%)
Sc 1942 (2.0%) 1904 1846 (−3.0%)

Numbers in parentheses: the relative difference from the results with �γ = 1×10−5.
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TABLE VI. List of critical exponents obtained in previous works.

τ χ df

Theories

Ref. [8] (MFD) 1.5 1 —
Ref. [32] (Bifurcation theory) — 0.667 —
Ref. [35] (Mean-field theorya) — 0.667 —
Ref. [60] (Replica theorya,b) 1.0 — —
Ref. [56] (Mean-field theory) — 0.667 —

MD simulations

Ref. [48]c 1.3 0.685 0.9
Ref. [49]d 1.25 0.53 1.25
Ref. [52]e 1.0 0.667* 0.1–0.45
This work 1.493 0.738 1.034

EPM simulations

Ref. [34] 1.36 0.64 1.1
Ref. [56] 1.33 0.64 1.08

Experiments

Ref. [40]e 1.5 — —
Ref. [39]e 1.24 — —
Ref. [44] 1.3-1.7 — —

aThese results are for the first event ensemble.
bThe result for systems above the jamming point.
cOnly a part of the data from Ref. [48] is shown.
dOnly a part of the data from Ref. [49] is shown.
eThese results are for the elastic regime.

if we employ the following definition for the linear correction
term:

Gi�γ = [σ (γCi) − σ (γCi − �γ )], (G1)

where Gi is the shear modulus for the ith avalanche event
and γCi is the critical strain at which the ith avalanche event
occurs. This definition is equivalent to a simple extrapolation
of the last numerical step just before the event of interest is
initiated. The measurement results of the critical exponents
with linear correction with this definition are summarized in
Table VII. The results are almost identical to those for the

rewinding method (precursor or mainshock decomposition is
also valid). To obtain the results in Table VII, we employed
Set 1 as the strain resolution �γ (Table III).

TABLE VII. Values of the critical exponents obtained by the
linear correction method.

τ χ df α

1.486 0.739 1.015 0.254
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