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Wound opening in a thin incompressible viscoelastic tissue
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We develop a model to investigate analytically and numerically the mechanics of wound opening made in a
viscoelastic, isotropic, homogeneous, and incompressive thin tissue. This process occurs just immediately after
the wound infliction. Before any active biological action has taken place, the tissue relaxes, and the wound opens
mostly due to the initial homeostatic tension of the tissue, its elastic and viscous properties, and the existing
friction between the tissue and its substrate. We find that for a circular wound the regimes of deformation
are defined by a single adimensional parameter λ, which characterizes the relative importance of viscosity
over friction.
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I. INTRODUCTION

Cell and subcellular dynamics, in vivo and in vitro, in
response to external stimuli or during the embryonic develop-
ment of plants and animals, have been the subject of intense
research activity during the last decades [1,2]. Among the
most popular topics is wound healing, which is a process of
tissue regeneration for wound closure. This implies collective
cellular migration and formation of a contractile cable that
connects the cells along the wound edge [3–5]. Modeling the
biophysical mechanisms associated with wound healing is a
nontrivial challenge [6–9].

Recent advances on experimental techniques allow to ac-
cess the mechanical properties of the tissues and follow their
dynamics in real time. These have opened the possibility of
studying the process of wound infliction and healing in a
systematic and quantitative way [10–14].

Along with the development of experimental techniques,
there is a need to develop theoretical and numerical models
to shed light on the biochemical and biophysical processes in-
volved in tissue regeneration. There are several ways to model
the movement of cells in a tissue [15–20]. The existing models
are classified as continuous, particle-based, or hybrid models.
Continuous models are usually considered to access large
length- and time-scales. Particle-based models are appropriate
when some level of detail of the particle-particle interaction
is of relevance [20,21]. Hybrid models combine properties
of both types [22]. Usually the wound healing models are
macroscopic and continuous, being used to investigate the
global behavior of cells in the tissue [23–25].
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Inspired by recent experimental results [26], we propose a
theoretical model to investigate analytically and numerically
the deformation of epithelial tissues of Drosophila larvae after
wound infliction. We focus our study in the first moments of
the deformation, the first tens of seconds, before any active
biological process comes into play. At this stage, the wound
opens under the influence of the initial homeostatic tension
of the tissue, its elastic and viscous properties, and the fric-
tion between the epithelial tissue and its surroundings. We
use a three-dimensional (3D) Kelvin-Voigt continuous model,
which combines both the elastic and viscous properties of the
tissue, and allows the tissue to be initially stretched, resisting
to an existing homeostatic tension. No cell rearrangements or
other Maxwell type of relaxations are considered in these ini-
tial moments of the deformation, although these are expected
to become relevant for longer timescales. The tissue dynamics
is given by Newton’s laws in the overdamped regime. By
choosing appropriate length and time scales, we find different
deformation regimes, which depend on a unique adimensional
parameter λ, that characterizes the relative importance of the
viscosity over friction.

To our knowledge, this adimensional parameter was first
introduced in the context of cell mechanics in Ref. [27]. In
this work, the authors severed in vivo the adherens junctions
around a disk-shaped domain of Drosophila pupa dorsal tho-
rax epithelium, comprising typically a hundred cells. They
compared the observed deformation of the disk, as it shrunk
and relaxed, with the results obtained using a one-dimensional
(1D) Kelvin-Voigt model to find that the relative importance
of viscosity over friction increased with pupa’s age (see Fig. 5
of Ref. [27]).

This parameter appears also in Ref. [28]. In this work, the
authors proposed a continuum model to study the epithelial
closure dynamics for different cell tissues (with MDCK and
HEK cells), occurring in a time scale of several hours. For
timescales of this order, different active forces are formed at
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the wound boundaries. We may also have protrusive forces
created by the cell’s lamellipodia, which are formed at the
exterior part of the cells and try to occupy the wound gap,
and forces generated by the actomyosin cable that is formed
at the edge of the wound border, which are proportional to the
local curvature of the cable. For these cells and time scales, the
authors found that the closure dynamics depends mainly on
the protrusive stress applied by the presence of active lamel-
lipodia at the wound border, and on the friction between the
tissue and the substrate, while the effect of viscosity seemed
to be negligible. In the context of a Kelvin-Voigt model, this
adimensional parameter appears briefly in Ref. [29], where
different rheological models are reviewed.

Reference [30] introduces a continuum model that is
closely related to the one presented in our work. A Kelvin-
Voigt model is applied to a 3D thin incompressible tissue (the
transition from three dimensions to two dimensions presents
however a very subtle difference). In this work, the au-
thors study the epithelial closure over nonadherent substrates,
which take again much longer times and include active forces
at the wound border. Also, they use a more sophisticated
model for the friction force, which exists in the regions ini-
tially occupied by the cell’s tissue. In this case, the protrusive
forces are negligible, because the cells of the tissue will try to
occupy a nonadherent gap. In their experiments, the authors
found that wound closure depended mainly on the actomyosin
cable. Also, they used HaCaT cells instead of MDCK cells. It
seems that the effect of the actomyosin cable and its purse-
string closure mechanism is only effective for tissues with a
strong intercellular adhesion, and that MDCK tissues allow
easier cell-cell rearrangements (compared with HaCaT).

Our article is organized as follows. In Sec. II, we give the
mathematical details of our continuum Kelvin-Voigt model.
In the limit of an incompressible thin tissue, we obtain a 2D
general equation of motion [Eq. (10)]. In Sec. III, we solve
this equation to obtain the dynamics of the tissue after the
infliction of a circular wound. We draw some conclusions in
the last section.

II. MODEL

We model the tissue as an isotropic and homogeneous
material, whose mechanical deformation follows the 3D
Kelvin-Voigt model. The total stress tensor may be written
as [31]

σ = 2Gε + λeTr(ε)I + 2ηγ + λvTr(γ )I, (1)

where ε is the strain tensor, γ is the strain-rate tensor, I is the
identity tensor, G and λe are the Lamé elastic constants, and
η and λv are the dynamic and bulk viscosity coefficients. The
first and second (third and fourth) terms of Eq. (1) correspond
to the elastic (viscous) part of the stress tensor, and describe
the elastic (viscous) response of each volume element to
forces applied tangential and normal to the different surfaces
of the element, respectively. In the Kelvin-Voigt model, elastic
and viscous stress terms add up.

We use the equilibrium position of the material as the
vector coordinate reference X . Its deformed position x(X , t )
defines the displacement vector u(X , t ) = x(X , t ) − X . For
small displacements, the strain tensor and the rate of strain

tensor retain only the linear terms in u:

ε = 1
2 (∇u + (∇u)T), γ = 1

2 (∇v + (∇v)T), (2)

where the differential operator ∇ is defined with respect to the
coordinate reference X , and v = ∂u/∂t = u̇.

The dynamics of the tissue is described by Newton’s law
of motion:

ρ
Dv

Dt
= ∇ · σ + f , (3)

where ρ is the tissue density and f is an external body force.
The weight per unit volume is written f = ρg, where g is the
acceleration of gravity. The total time derivative of the veloc-
ity is defined as Dv/Dt = ∂v/∂t + v · ∇v. If the deformation
of the tissue is of the order of the size of individual cells, we
may neglect the inertial terms and the weight per unit volume,
and the equation of motion becomes

∇ · σ = 0. (4)

Let us suppose now that the tissue is also incompressible.
In this case, we have

Tr(ε) = Tr(γ ) = 0. (5)

By introducing the pressure field p, a Lagrange multiplier
which ensures this condition, the stress tensor may be written
in a simplified form

σ = 2Gε + 2ηγ − pI. (6)

A thin cellular tissue may be represented as a 2D surface
in the plane x − y. In this limit, we assume that the normal
forces applied to the lower and upper sides of the tissue are
much smaller than the longitudinal forces in the bulk. Since
the tissue is thin, the normal forces inside the tissue are also
negligible and so σxz = σyz = 0, and

σzz = 0 ⇔ p = 2Gεzz + 2ηγzz, (7)

everywhere inside the tissue [32]. Taking into account the
incompressibility condition, we obtain

p = −2GTr(ε‖) − 2ηTr(γ‖), (8)

where ε‖ and γ‖ correspond to the 2D strain and strain-rate
tensors, defined in the plane x − y of the tissue.

Therefore, in the 2D approximation of an incompressible
isotropic Kelvin-Voigt tissue, the in-plane 2D stress tensor is
given by

σ‖ = 2G(ε‖ + Tr(ε‖)I‖) + 2η(γ‖ + Tr(γ‖)I‖), (9)

where I‖ is the identity tensor in two dimensions.
The friction between the tissue and the substrate is a

tangential contact force, exerted on the bottom. Here, we
assume that this friction force is proportional and acting in
the opposite direction to the local velocity of the tissue. In
a small element of volume, with thickness h and tangential
area dA, this force may be written dF = −bvdA, where b
is a constant. If we neglect inertial terms, this force must be
balanced by the contact lateral forces exerted by the surround-
ing tissue. For a thin tissue, the stress tensor is approximately
constant throughout the thickness, and these forces are given
by (∇‖ · σ‖)hdA, where ∇‖ is defined with respect to the 2D
in-plane coordinate reference X ‖.
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FIG. 1. (a) A thin circular tissue of radius R∞ at rest. (b) Tissue
under a uniform radial distribution of forces, where σ is the force
per unit area, applied at the lateral border of the tissue, leaving
it stretched. (c) The tissue under tension, just immediately after a
circular wound, of radius R1, has been inflicted. There are no forces
applied to the internal lateral border of the tissue. (d) Final deforma-
tion of the tissue, after relaxation. The hole increases to reach a new
larger radius R2. The gradation of colors reflects the intensity of the
radial tension of the tissue.

Alternatively, we express the friction contribution as an
in-plane force per unit volume f ‖ = −ζv‖, where ζ = b/h.
Thus, the 2D equation of motion becomes

∇‖ · σ‖ + f ‖ = 0. (10)

III. RESULTS

A. Tissue under a uniform stress

We consider first a circular tissue, with an initial
homeotropic tension. At rest, in the absence of any tension, the
radius of the circular tissue is R∞ (see Fig. 1(a)). In cylindrical
coordinates, the coordinate reference is X ‖ = (r, θ ), 0 � r �
R∞, and 0 � θ < 2π . The initial homeotropic tension of the
tissue imposes a stress at its boundaries. Equivalently, we
will represent this homeotropic tension by an external stress,
applied by the boundaries to the tissue (see Fig. 1(b)). The
boundary condition at the periphery of the tissue is

σrr (r = R∞, θ, t ) = σ. (11)

The radial symmetry of the tissue and applied forces sug-
gests a deformation in the form

u‖(r, θ, t ) = u(r, t )er . (12)

The in-plane strain tensor becomes

εrr = ∂u

∂r
, εθθ = u

r
, εrθ = 0. (13)

The in-plane components of the stress tensor are

σrr = 2G

(
2
∂u

∂r
+ u

r

)
+ 2η

(
2
∂ u̇

∂r
+ u̇

r

)
, (14)

σθθ = 2G

(
∂u

∂r
+ 2

u

r

)
+ 2η

(
∂ u̇

∂r
+ 2

u̇

r

)
, (15)

σrθ = 0. (16)

By symmetry, the polar component of the equation of mo-
tion is immediately satisfied. On the other hand, the radial
component of the equation of motion (10) is

∂σrr

∂r
+ 1

r
(σrr − σθθ ) − ζ u̇ = 0, (17)

which, after some algebra, becomes simply

4(GD2u + ηD2u̇) − ζ u̇ = 0, (18)

where

D2u = ∂

∂r

(
1

r

∂

∂r
(ru)

)
. (19)

At equilibrium, the deformation of the tissue must obey the
equation D2u = 0, which has the general solution

u(r) = ar + b

r
, (20)

and the coefficients a and b may be calculated from the bound-
ary conditions. Since u(r = 0) = 0 at the center of the tissue,
we have b = 0. The stress is in this case constant at every point
of the tissue σrr = σθθ = 6Ga = σ . Thus, we obtain

u(r) = σ r

6G
. (21)

B. Circular wound

We now consider that a circular wound, of radius R1, is
made at the center of the tissue under tension (see Fig. 1(c)).
Some of the tension is released, and the hole increases to reach
a larger radius R2 (see Fig. 1(d)). The deformation maintains
its radial symmetry and the equation of motion is the same
[Eq. (18)].

This equation has analytical solutions as discussed in
Appendix A. However, application of the different boundary
conditions to the general solutions are cumbersome, and of
small practical relevance, except in a few exceptions. In the
general case, this equation is solved numerically.

One simple case is obtained in the limit of no friction,
where the equation of motion becomes

(GD2u + ηD2u̇) = 0. (22)

In this limit, we have D2u = Ae−t/τ , where τ = η/G is a
relaxation time and A an integration constant. A = 0, since
initially, just immediately after the wound, we have D2u = 0.
So, we have the general solution

u(r, t ) = a(t )r + b(t )

r
. (23)

The coordinate reference of the wound radius r = R0 is
given by

R1 = R0 + u(R0, t = 0) = R0

(
1 + σ

6G

)
. (24)
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We consider that no forces are applied to the tissue at the
wound border, so σrr (r = R0, t ) = 0, or

2G

(
3a(t ) − b(t )

R2
0

)
+ 2η

(
3ȧ(t ) − ḃ(t )

R2
0

)
= 0. (25)

At the periphery of the tissue, σrr (r = R∞, t ) = σ ,

2G

(
3a(t ) − b(t )

R2∞

)
+ 2η

(
3ȧ(t ) − ḃ(t )

R2∞

)
= σ. (26)

If R0 � R∞, the final set of equations for a and b may then be
written in the form

a + τ ȧ = σ

6G

(
R2

∞
R2∞ − R2

0

)
≈ σ

6G
, (27)

b + τ ḃ = σR2
0

2G

(
R2

∞
R2∞ − R2

0

)
≈ σR2

0

2G
. (28)

Using the initial conditions,

a(t = 0) = σ

6G
, b(t = 0) = 0, (29)

we obtain

a(t ) ≈ σ

6G
, (30)

b(t ) ≈ σR2
0

2G
(1 − e−t/τ ). (31)

In particular, we may now determine the time evolution of
the wound opening, R(t ) = R0 + u(R0, t ). In the limit of small
displacements, to linear order in σ/G, we have

R(t ) ≈ R1

[
1 + σ

2G
(1 − e−t/τ )

]
. (32)

In the presence of friction, the deformation of the tissue
under tension is different. Nevertheless, their equilibrium final
state is the same, as the velocity of this configuration is zero.
If we choose L = R0 and T = τ as unit length and time scales,
the adimensional equation of motion is then

D2u + D2u̇ − u̇

λ2
= 0, (33)

where λ = Lη/R0, and Lη = 2
√

η/ζ is the viscous length. The
parameter λ sets the possible regimes of deformation. When
λ → ∞, we recover the limit where friction is negligible,
discussed above.

Numerically, it is convenient to use T = τ/λ2 as the time
unit. This choice yields the following equation of motion:

D2u + λ2D2u̇ − u̇ = 0. (34)

If λ → 0, we may use an explicit method to integrate this
equation. It will be stable if we choose a sufficiently small
time step. However, as λ increases, the method rapidly gets
unstable. To solve this equation for every choice of λ, we use
the implicit method described in Appendix B, with second
order precision in space and time. The boundary conditions
are expressed through the stress tensor. The stress tensor is
adimensionalized by dividing it by the elastic modulus G.
Using this latter choice for unit space and time scales, we have

σrr = Du + λ2Du̇, (35)

(a) (b)

(c) (d)

FIG. 2. Tissue deformation after wound infliction, for λ = 0.1,
R∞ = 10 and σ = 0.1 (friction regime). (a) Displacement u(r, t ) vs
radius r, for different instants t of the deformation. The dashed gray
(bottom) and black (top) lines represent, respectively, the displace-
ment before wound infliction (t = 0), and at the final relaxed opened
state of the wound (t = ∞). (b) Velocity v(r, t ) = u̇(r, t ) vs radius r,
for different instants t of the deformation. (c) Normalized displace-
ment [(u − ui )/(uf − ui ), with ui the initial displacement and uf the
final displacement] vs time, in different positions r of the tissue.
(d) Normalized velocity (v/vmax with vmax the maximum velocity
attained at a particular position) vs time, in different positions r of
the tissue.

where

D = 2

(
2

∂

∂r
+ 1

r

)
. (36)

So, the explicit adimensionalized boundary conditions are
σrr (r = 1) = 0 and σrr (r = R∞/R0) = σ .

Figures 2–4 show the results for the displacement u(r, t )
and the velocity v(r, t ) = u̇(r, t ), for three different values
of λ = 0.1, 1, 10 (corresponding, respectively, to the friction,
intermediate and viscous regimes), R∞ = 10 and σ = 0.1.

The panel (a) of each figure shows the displacement as
a function of the radius, for different instants t . The dashed
gray (bottom) and black (top) lines represent, respectively, the

(a) (b)

(c) (d)

FIG. 3. The same as in Fig. 2, but for λ = 1 (intermediate regime).
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(a) (b)

(c) (d)

FIG. 4. The same as in Fig. 2, but with λ = 10 (viscous regime).

displacement before wound infliction (t = 0), and at the final
relaxed opened state of the wound (t = ∞). These representa-
tions show already the differences between the three different
deformation regimes. However these differences stand out in
the other plots, as we discuss in what follows.

The panels (b) show the velocity as a function of the radius,
also for different instants t it is clear that the velocity is
initially (at t = 0) higher closer the wound. The velocity de-
creases rapidly as we move away from the wound. In fact, the
characteristic length of this decay is of the order of the viscous
length Lη = 2

√
η/ζ = λR0. In the friction regime (Fig. 2(b)),

the decay length is very small (Lη = 0.1), and the initial
velocity is peaked at the border of the wound. In the viscous
regime (Fig. 4(b)), the decay length is large (Lη = 10), of the
same size as the tissue itself. The initial velocity decay length
is then a signature of the regime, and may be of experimental
interest to access the relative importance of the viscosity over
friction.

Panels (c) show the time dependence of the normalized
displacement (u − ui )/(u f − ui ), with ui the initial displace-
ment and u f the final displacement, for different positions r.
With these figures, it is possible to understand that in friction
regimes (small λ), the wound opening occurs faster near the
wound (r = 1), whereas away from the wound (r > 7.5), the
tissue stays almost immobile for the initial times, before re-
laxing to its final state, with a slight different relaxation time.
In viscous regimes (large λ), the tissue globally relaxes with a
characteristic time which depends solely on the ratio between
its viscous and elastic properties.

Panels (d) show, for different positions r, the time de-
pendence of the normalized velocity v/vmax, with vmax the
maximum velocity attained at a particular position. From
these figures, it is clear that in friction regimes, the positions
away from the wound do not move immediately. Instead, their
speeds increase up to a certain value, and only afterwards
start to decrease until they achieve their relaxed states. The
results suggest that there is a propagation wave affecting the
maximum normalized velocity for each position. This effect
is however hardly noticed, because the velocities far from the
wound are already very small. In the viscous regimes, the
velocity profile is almost the same at each point of the tissue:

the tissue feels almost instantaneously the wound infliction
everywhere.

IV. FINAL REMARKS

We developed a theoretical model to investigate analyt-
ically and numerically the mechanical deformation of an
epithelial tissue after a circular wound has been inflicted. The
tissue was described as a continuous isotropic, homogeneous
and incompressible thin material, obeying the 3D Kelvin-
Voigt model. This model takes into account the elastic and
viscous properties of the tissue, and allows the tissue to be
stretched at equilibrium, under the effect of a homeostatic
pressure. Friction between the tissue and its surroundings
was also considered. We determined the passive mechanical
response of the tissue, after wound infliction, without consid-
ering any active biological effects which will try to close the
wound, and heal the tissue. This behavior is consistent with
the passive physical behavior observed for the first tens of
seconds for the Drosophila larvae studied in Ref. [26].

By choosing appropriate length and time scales, we found
different deformation regimes, depending on a unique adi-
mensional parameter λ, which characterizes the relative
importance of the viscosity η over friction ζ . Although the
final relaxed state is the same, for all values of the viscosity
or friction, the dynamics of the deformation presents distinct
features. In friction regimes, for small λ, the deformation is
initially concentrated at the border of the wound, whereas in
viscous regimes, for large λ, the deformation evolves globally.
In fact, if friction is negligible, the normalized displacement
time evolution is exactly the same, everywhere, and only de-
pends on a relaxation time simply defined by the ratio between
the viscous and elastic properties of the tissue.

The experimental characterization of these different
regimes may be accessed through the initial velocity space
profile, v(r, t = 0). The initial velocity field typically decays
from the wound boundary in a typical length given by Lη =
λR0 = 2

√
η/ζ , which relates viscosity and friction.
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APPENDIX A: ANALYTICAL SOLUTIONS

Using the time Fourier transform

U (r,w) = F{u(r, t )} =
∫ +∞

−∞
u(r, t )eiwt dt, (A1)

the general equation of motion (18) becomes

4(G + iwη)D2U = iwζU . (A2)

After some algebra, we may write

r2 ∂2U

∂r2
+ r

∂U

∂r
+ (a2 − 1)U = 0, (A3)
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where a2 = −iwζ/4(G + iwη). The general solution of this
partial differential equation is

U (r,w) = C1J1(ar) + C2Y1(ar), (A4)

where J1 and Y1 are the Bessel functions of first and second
kind, respectively.

The analytical solution for the initial velocity profile of the
wound opening may be of particular interest, as it may help
to characterize different phenotypes, for different deformation
regimes. At t = 0, we have D2u = 0. The initial velocity
profile of the tissue may be then calculated from

4ηD2u̇ = ζ u̇, (A5)

whose solution is

u̇(r, t = 0) = c1J1(−ir/Lη ) + c2Y1(−ir/Lη )

= c1I1(r/Lη ) + c2K1(r/Lη ), (A6)

where Lη = 2
√

η/ζ , I1 and K1 are the modified Bessel func-
tions of first and second kind, respectively. Applying this
solution to the boundary conditions σrr (r = R0) = 0 and
σrr (r = R∞) = σ , gives the following result:

u̇(r) = Lησ

4η

K1(r/Lη )

K0(R0/Lη ) + (Lη/R0)K1(R0/Lη )
(A7)

for R∞ 	 R0. In the same limit, and if there is no friction, this
initial velocity profile is given by

u̇(r) = R0σ

2η

R0

r
. (A8)

APPENDIX B: NUMERICAL INTEGRATION

To integrate the equations numerically, we discretize space
and time:

ri = 1 + (i − 1)
r, (i = 1, . . . , N ), (B1)

tn = n
t, (n = 0, 1, . . .) (B2)

with 
r = (R∞ − 1)/(N − 1). We write u(ri, tn) = un
i , for

simplicity. The discretized adimensional equation of motion
[Eq. (34)] is approximated by

D2un+1
i + λ2 D2un+1

i − D2un−1
i

2
t
− un+1

i − un−1
i

2
t
= 0 (B3)

with

D2ui = ui+1 − 2ui + ui−1


r2
+ 1

ri

ui+1 − ui−1

2
r
− 1

r2
i

ui. (B4)

If we use matrix notation, we may write the N − 2 equations,
with i = 2, . . . , N − 1,(−δi j + (λ2 + 2
t )D2

i j

)
un+1

j = (−δi j + λ2D2
i j

)
un−1

j , (B5)

where we used Einstein’s convention for the sum of repeated
indexes, and

D2
i,i−1 = 1


r2
− 1

2ri
r
, (B6)

D2
i,i = − 2


r2
− 1

r2
i

, (B7)

D2
i,i+1 = 1


r2
+ 1

2ri
r
, (B8)

and D2
i j = 0 otherwise.

The other two equations are given from the boundary
conditions. For r1 = 1, we have σrr = 0. The discretized adi-
mensional boundary condition becomes

Dun+1
i + λ2 Dun+1

i − Dun−1
i

2
t
= 0 (B9)

or in matrix notation

(λ2 + 2
t )D1 ju
n+1
j = λ2D1 ju

n−1
j (B10)

with

D11 = − 4


r
+ 2

r1
, (B11)

D12 = 4


r
, (B12)

and D1 j = 0 for all other values of j. For rN = R∞, σrr = σ .
The discretized adimensional boundary condition becomes

(λ2 + 2
t )DN ju
n+1
j = λ2DN ju

n−1
j + 2
tσ (B13)

with

DN,N−1 = − 4


r
, (B14)

DN,N = 4


r
+ 2

rN
, (B15)

and DN j = 0 for all other values of j.
In sum, we have a matrix equation of the kind

Ai ju
n+1
j = Bi ju

n−1
j + Ci, (B16)

where the matrix Ai j is

A1 j = (λ2 + 2
t )D1 j, (B17)

Ai j = −δi j + (λ2 + 2
t )D2
i j, (i = 2, . . . , N − 1),

(B18)

AN j = (λ2 + 2
t )DN j, (B19)

the matrix Bi j is

B1 j = λ2D1 j, (B20)

Bi j = −δi j + λ2D2
i j, (i = 2, . . . , N − 1), (B21)

BN j = λ2DN j, (B22)

and the vector Ci is given by CN = 2
tσ and Ci = 0
otherwise.

015001-6



WOUND OPENING IN A THIN INCOMPRESSIBLE … PHYSICAL REVIEW E 104, 015001 (2021)

[1] D. Weihs, A. Gefen, and F. J. Vermolen, Interface Focus 6,
20160038 (2016).

[2] S. N. Jorgensen and J. R. Sanders, Med. Biol. Eng. Comput. 54,
1297 (2016).

[3] V. Ajeti, A. P. Tabatabai, A. J. Fleszar, M. F. Staddon, D. S.
Seara, C. Suarez, M. S. Yousafzai, D. Bi, D. R. Kovar, S.
Banerjee et al., Nat. Phys. 15, 696 (2019).

[4] A. Jacinto, A. Martinez-Arias, and P. Martin, Nat. Cell Biol. 3,
E117 (2001).

[5] P. Martin and J. Lewis, Nature (London) 360, 179 (1992).
[6] R. J. Tetley, M. F. Staddon, D. Heller, A. Hoppe, S. Banerjee,

and Y. Mao, Nat. Phys. 15, 1195 (2019).
[7] A. Brugués, E. Anon, V. Conte, J. H. Veldhuis, M. Gupta, J.

Colombelli, J. J. Muñoz, G. W. Brodland, B. Ladoux, and X.
Trepat, Nat. Phys. 10, 683 (2014).

[8] E. Javierre, F. Vermolen, C. Vuik, and S. Van der Zwaag,
J. Math. Biol. 59, 605 (2009).

[9] R. T. Tranquillo and J. Murray, J. Surg. Res. 55, 233 (1993).
[10] D. G. Sami, H. H. Heiba, and A. Abdellatif, Wound Med. 24, 8

(2019).
[11] S. A. Eming, T. A. Wynn, and P. Martin, Science 356, 1026

(2017).
[12] B. A. Purnell and P. J. Hines, Science 356, 1020 (2017).
[13] J. Reinke and H. Sorg, Eur. Surg. Res. 49, 35 (2012).
[14] F. Huber, J. Schnauß, S. Rönicke, P. Rauch, K. Müller, C.

Fütterer, and J. Käs, Adv. Phys. 62, 1 (2013).
[15] J. J. Lee, L. Talman, S. M. Peirce, and J. W. Holmes, Biomech.

Model. Mechanobiol. 18, 1297 (2019).
[16] L. Roldán, J. J. Muñoz, and P. Sáez, Comput. Methods Appl.

Mech. Eng. 350, 28 (2019).
[17] A. Guerra, J. Belinha, and R. N. Jorge, J. Theor. Biol. 459, 1

(2018).

[18] B. A. Camley and W.-J. Rappel, J. Phys. D: Appl. Phys. 50,
113002 (2017).

[19] F. J. Vermolen, Encyclopedia of Cell Biology (Academic Press,
New York, 2016), Vol. 4, p. 117.

[20] D. Tartarini and E. Mele, Front. Bioeng. Biotechnol. 3, 206
(2016).

[21] R. O’Dea, H. Byrne, and S. Waters, Computational Modeling in
Tissue Engineering (Springer, Berlin, 2012), Vol. 10, p. 229.

[22] B. D. Cumming, D. McElwain, and Z. Upton, J. R. Soc.
Interface 7, 19 (2010).

[23] J. C. Arciero, Q. Mi, M. F. Branca, D. J. Hackam, and D.
Swigon, Biophys. J. 100, 535 (2011).

[24] J. C. Arciero, Q. Mi, M. Branca, D. Hackam, and D. Swigon,
Wound Repair Regen 21, 256 (2013).

[25] L. Geris et al., Computational Modeling in Tissue Engineering
(Springer, Berlin, 2013).

[26] L. Carvalho, P. Patricio, S. Ponte, C. P. Heisenberg, L. Almeida,
A. S. Nunes, N. A. M. Araújo, and A. Jacinto, J. Cell Biol. 217,
4267 (2018).

[27] I. Bonnet, P. Marcq, F. Bosveld, L. Fetler, Y. Bellaïche, and F.
Graner, J. R. Soc. Interface 9, 2614 (2012).

[28] O. Cochet-Escartin, J. Ranft, P. Silberzan, and P. Marcq,
Biophys. J. 106, 65 (2014).

[29] S. Tlili, C. Gay, F. Graner, P. Marcq, F. Molino, and P. Saramito,
Eur. Phys. J. E 38, 1 (2015).

[30] S. R. K. Vedula, G. Peyret, I. Cheddadi, T. Chen, A. Brugués,
H. Hirata, H. Lopez-Menendez, Y. Toyama, L. N. De Almeida,
X. Trepat et al., Nat. Commun. 6, 6111 (2015).

[31] E. H. Dill, Continuum Mechanics: Elasticity, Plasticity, Vis-
coelasticity (CRC Press, Boca Raton, FL, 2007).

[32] L. Landau and E. Lifchitz, Physique Théorique 7: Théorie de
l’élasticité (Editions MIR, Moscou, 1990).

015001-7

https://doi.org/10.1098/rsfs.2016.0038
https://doi.org/10.1007/s11517-015-1435-z
https://doi.org/10.1038/s41567-019-0485-9
https://doi.org/10.1038/35074643
https://doi.org/10.1038/360179a0
https://doi.org/10.1038/s41567-019-0618-1
https://doi.org/10.1038/nphys3040
https://doi.org/10.1007/s00285-008-0242-7
https://doi.org/10.1006/jsre.1993.1135
https://doi.org/10.1016/j.wndm.2018.12.001
https://doi.org/10.1126/science.aam7928
https://doi.org/10.1126/science.356.6342.1020
https://doi.org/10.1159/000339613
https://doi.org/10.1080/00018732.2013.771509
https://doi.org/10.1007/s10237-019-01145-1
https://doi.org/10.1016/j.cma.2019.02.018
https://doi.org/10.1016/j.jtbi.2018.09.020
https://doi.org/10.1088/1361-6463/aa56fe
https://doi.org/10.3389/fbioe.2015.00206
https://doi.org/10.1098/rsif.2008.0536
https://doi.org/10.1016/j.bpj.2010.11.083
https://doi.org/10.1111/j.1524-475X.2012.00865.x
https://doi.org/10.1083/jcb.201804048
https://doi.org/10.1098/rsif.2012.0263
https://doi.org/10.1016/j.bpj.2013.11.015
https://doi.org/10.1140/epje/i2015-15001-0
https://doi.org/10.1038/ncomms7111

