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Friction on incommensurate substrates: Role of anharmonicity and defects
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We present molecular dynamics simulations of one- and two-dimensional bead-spring models sliding on
incommensurate substrates after an initial kick, in the case where the coupling to the underlying substrate is
weak, i.e., energy can dissipate only into the internal degrees of freedom of the sliding object, but not into the
substrate below. We investigate how sliding friction is affected by structural defects and interaction anharmonic-
ity. In their absence, we confirm earlier findings, namely, that at special resonance sliding velocities, friction is
maximal. When sliding off-resonance, partially thermalized states are possible, whereby only a small number of
vibrational modes becomes excited, but whose kinetic energies are already Maxwell-Boltzmann distributed.
Anharmonicity and defects typically destroy partial thermalization and instead lead to full thermalization,
implying much higher friction. For sliders with periodic boundaries, thermalization begins with vibrational
modes whose spatial modulation is compatible with the incommensurate lattice. For a disk-shaped slider, modes
corresponding to modulations compatible with the slider radius are initially the most dominant. By tuning the
mechanical properties of the slider’s edge, this effect can be controlled, resulting in significant changes in the
sliding distance covered.
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I. INTRODUCTION

A sliding object generally loses its kinetic energy of for-
ward motion and slows down due to friction. Understanding
friction is still elusive in the majority of applications, for, if
friction were understood, we would likely not be spending
20% of our energy consumption at trying to overcome it [1].
The loss of energy due to friction, by which is meant the
conversion of useful energy (e.g., forward kinetic motion) into
less useful forms (e.g., heat), can occur via many channels
(phononic, electronic, magnetic, electrochemical, to name but
a few [2–7]).

Here we focus on the phononic channel, using molecular
dynamics (MD) simulations. More precisely, we consider an
object initially at rest on a (stiff) substrate. The object is then
“kicked,” so that it begins to slide. Since the substrate in this
study is assumed to be stiff, the kinetic energy of the kick
can “dissipate” only into the internal vibrational degrees of
the sliding object itself, but not into the substrate below. The
accepted view is that the object eventually thermalizes, i.e.,
the initial kinetic energy of forward motion gets converted en-
tirely into heat [8–11]. However, depending on the conditions,
thermalization can be very slow. The aim of this study is to
identify material properties of the sliding object that may be
used to control thermalization, and thereby the rate at which
the center of mass forward motion is lost after an initial kick.

The practical motivation of this study is provided by exper-
imental systems where the coupling between the sliding object
and the substrate is weak. In this case, energy dissipation from
the sliding object into the underlying substrate is negligible,
and the substrate may be regarded to provide a static periodic
potential [12]. Possible candidate systems are ions [13,14] or

colloids [15] trapped in (incommensurate) optical lattices. The
conditions assumed in our study resemble the latter experi-
mental systems in their unpinned state, i.e., below the Aubry
transition [14,16,17]. Further experimental realizations could
be small crystalline clusters (graphene flakes) on incommen-
surate crystalline surfaces [18,19], or clusters of Xe atoms
sliding on Ag(111) substrates [8,20], as long as the coupling
to the underlying substrate remains weak.

From a theoretical viewpoint, these systems resemble the
Frenkel-Kontorova (FK) model [21], which is one of the
“standard models” in nanotribology [9–11], and describes a
chain or cluster of bonded particles subject to a static periodic
substrate potential. The MD model used by us, which in turn
resembles that of others [11,22], may be regarded a two-
dimensional (2D) variant of the FK model. As stated above,
we will vary a number of properties of the sliding object,
and investigate how these affect the rate of thermalization
after an initial kick, which in turn determines how far the
object will slide. As object properties we consider (1) the
influence of structural defects, (2) the stiffness of the edge,
and (3) the nature of the particle interaction in the sliding
object. Regarding static friction, edge properties were recently
shown to be very important [23]; the present study extends by
considering dynamics. Regarding interactions, the importance
of anharmonicity in the sliding object was demonstrated in
Refs. [12,24], where the sliding object was an adsorbed layer
of noble gas atoms dragged at constant velocity. The present
study extends by considering a slider that is kicked, as opposed
to dragged.

We emphasize again that our results refer solely to weak
coupling between the sliding object and the underlying sub-
strate. Dissipation into the substrate [3,25] is not considered
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in this work, and the substrate will always be treated as a static
periodic potential.

II. MODEL AND METHODS

We first describe our simulation models, which are essen-
tially FK models. Our main body of results refers to two
dimensions, but we consider the 1D case also. In both cases,
our primary excitation is to kick the object, similar to Ref.
[11], then monitor how the object slows down and thermal-
izes inside the static periodic substrate potential. Again, we
emphasize the difference with some of the other works, such
as Refs. [12,24], where the object is dragged with constant
velocity. A technical advantage of the kick excitation is that no
thermostat is needed to maintain stability, thereby circumvent-
ing subtle artifacts that a thermostat might induce [26–28].

A. 1D FK model

The 1D model considers a chain of i = 1, . . . , N atoms,
confined to move along a line, where periodic boundary condi-
tions are applied. Each atom (uniform single atom mass m) in
the chain is connected by springs to its two nearest neighbors.
The energy of a single spring is given by

uspr (r) =
4∑

n=2

εαn(r/a − 1)n, (1)

where r denotes the distance between the two atoms partici-
pating in the bond, a the equilibrium bond length, and where
ε sets the energy scale. We will, in what follows, speak of har-
monic and anharmonic systems. For the harmonic system, we
use α2 = 36, α3 = α4 = 0; for the anharmonic system α2 =
36, α3 = −252, α4 = 1113. These parameters stem from a
Taylor expansion of a (12,6) Lenard-Jones potential around
its minimum, with the minimum located at r = a, and well
depth ε.

The total length of the system L = aN such that, in the
absence of any external fields, the chain ground-state energy
equals zero. In addition to the mobile chain, an array of
M = int(gN ) evenly spaced static particles is distributed along
the line, with g = (1 + √

5)/2 the golden ratio, and where
“int” means rounding down to the nearest integer. This choice
ensures maximum incommensurability between the mobile
chain and the static obstacles [11], while remaining compati-
ble with the periodic boundaries. The static obstacles interact
with the mobile chain atoms via a soft pair potential of the
form

usoft (r) =
{
αε

[
1 + cos

(
πr
rc

)]
r < rc

0 otherwise,
(2)

with α = 0.3 and rc = L/(2M ). For the 1D model, the Aubry
transition is known to occur at α� ≈ 0.14 α2/(πg2) ≈ 0.6
[9,11], which far exceeds the value used by us. Hence, we
can be sure our system is in the unpinned state.

The undeformed chain (i.e., with all the springs at their
equilibrium length a) is placed on the line containing the
obstacles (a random uniform displacement is applied to all
chain atoms, in order to sample different initial starting po-
sitions). At time t = 0, the chain is “kicked” by assigning

FIG. 1. Schematics of the 2D FK model. Red circles represents
the mobile atoms, which form a hexagonal lattice, whereby each
atom is connected to its nearest neighbors by springs (dashed lines).
The blue circles (blurred) represent the static obstacles which gen-
erate the potential energy landscape through which the mobile layer
slides. The layer of mobile atoms is kicked with velocity vkick along
the x-axis, as indicated. We consider two geometries: (a) sliding layer
which is fully periodic in both dimensions and (b) a finite patch of
sliding atoms (flake), approximately disk shaped.

each chain atom the same velocity vkick along the chain di-
rection; the subsequent chain dynamics is then obtained by
time-integrating the equations of motion in the microcanon-
ical (NVE) ensemble. Directly after kicking, the velocity of
the chain center of mass equals vkick. However, due to the
generation of vibrations in the chain (caused by collisions with
the static obstacles, as well as, for the anharmonic chain, via
internal phonon scattering) the velocity of the chain center of
mass will typically decrease with time, i.e., there is friction.

B. 2D FK model

The 2D model uses hexagonal lattices for both the mobile
atoms and the static obstacles, with periodic boundaries ap-
plied in both directions. We consider two geometries, namely
a fully periodic slider, and a finite patch (flake) of sliding
atoms (Fig. 1). For the fully periodic system, the mobile lattice
contains i = 1, . . . , N atoms, single atom mass m, each atom
connected to its six nearest neighbors by springs. The aspect
ratio of the lattice Ly/Lx = √

3/2, with Li the length of the
system in the direction i ∈ x, y. The single spring energy is
given by Eq. (1), the spring rest length equals the lattice
constant a. The same definitions of harmonic and anharmonic
bonds as used for the 1D chain are applied here as well. For
the static incommensurate potential energy landscape, M =
int(g2N ) static particles are arranged on a second hexagonal
lattice, using the same aspect ratio Ly/Lx as the mobile lattice,
where g is the golden ratio. In this way, the ratio of lattice
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constants a/ac is as close as possible to g, where ac is the
lattice constant of the static layer, ensuring maximum incom-
mensurability. The interaction between the static obstacles
and the mobile atoms is again of the form of Eq. (2), with
α = 0.3 and rc = ac/2. We verified that for these parameters
the system is below the Aubry transition, i.e., in the unpinned
state (Appendix A).

The 2D hexagonal layer of mobile atoms is placed inside
the static potential energy landscape generated by the obsta-
cles, oriented as shown in Fig. 1(a). At time t = 0, all the
atoms in the mobile layer are “kicked,” by assigning them the
velocity vkick in the x̂ direction (prior to kicking, the mobile
lattice is given a random uniform 2D displacement, in order
to sample different starting positions). We emphasize that the
model is purely 2D, i.e., the mobile atoms can move in the x̂
and ŷ directions only. Immediately after kicking, the motion
is entirely in the x̂ direction, but soon thereafter, due to colli-
sions with the static obstacles, also motion in the ŷ direction
develops. For the flake, a finite portion of the hexagonal lattice
is retained, keeping only those atoms inside a specified radius
of some central reference atom [Fig. 1(b)]. Most of the flake
atoms will be sixfold coordinated, except for those on the
edge, which have missing bonds. The flake is oriented with
respect to the static lattice in the same way as the fully peri-
odic slider. The static lattice is chosen large enough to fully
encompass the flake, such that periodic boundary conditions
may safely be applied.

C. Units

For both the 1D and 2D model, length is expressed in
units of the equilibrium lattice constant a, energy in units
of ε, particle mass in units of some reference mass m�, and
temperature in units of ε/kB, with kB the Boltzmann constant.
This implies time unit [t] =

√
m�a2/ε ∼ 2.6 ps assuming a

sliding layer consisting of C atoms (a ≈ 3.8 Å, m� ≈ 12 u,
ε ≈ 2.76 meV/atom [29]).

D. Eigenmodes

To analyze the vibrational excitations in the mobile lattice
induced during sliding, we use the language of eigenmodes,
which has proven to be useful in other studies also [30]. For
a system of i = 1, . . . , N particles, there are k = 1, . . . , dN
eigenmodes, with d = 1, 2 the spatial dimension. The eigen-
modes follow from the (mass-weighted) hessian, Hμν =

1√
mμmν

∂2E
∂μ∂ν

, with E the total spring energy of the system given

by Eq. (1), and with the derivatives evaluated with the sliding
atoms in their perfect equilibrium lattice positions (of course,
when computing the hessian, the interaction with the static
particles is excluded). The labels μ, ν refer to the set of all
Cartesian coordinates of the particles, mμ,ν being the asso-
ciated particle mass. The hessian is a dN × dN matrix, but
most elements are zero, since the particles interact only with
nearest neighbors. Upon diagonalizaton of the hessian, a set of
eigenvectors �ξk is obtained, each with an associated eigenfre-
quency ω2

k . For the 1D chain, there is exactly one mode with
zero eigenfrequency, corresponding to a global translation of
the chain along the x-axis. For the 2D sliding layer, there will
always be at least two zero frequency modes, corresponding

to global translations in the two lateral directions. In addition,
for the flake, there will also be a third zero frequency mode,
corresponding to a global rotation. For lattices with perfect
translational symmetry (i.e., fully periodic, defect-free crys-
tals), one can assign a wave vector to each eigenmode, then
corresponding to a true phonon.

During the sliding simulations, we record, for each particle,
the displacement �ui(t ) from the initial (perfect lattice) posi-
tion, and velocity �vi(t ), both as functions of time t (for the
1D chain, these quantities are scalars; for the 2D sliding layer,
they are 2D vectors). From these, we define the kinetic energy
of the kth eigenmode as

Kk (t ) = 1

2

[
N∑

i=1

√
mi �vi(t ) · �ξk,i

]2

, (3)

with the sum over all particles, mi the mass of particle i, and
�ξk,i the subvector of the full eigenvector �ξk , containing only the
components of particle i. Defined in this way, one consistently
has

Ekin =
N∑

i=1

mi�v2
i

2
=

dN∑
k=1

Kk, (4)

which holds exactly (for both harmonic and anharmonic sys-
tems).

III. RESULTS

All our MD results were obtained with LAMMPS [31];
implementation details are provided in Appendix B.

A. 1D chain

We consider a chain with N = 100 particles, periodic
boundaries, and unit particle mass m = 1. Unless stated oth-
erwise, the bond interaction of Eq. (1) is harmonic. For these
parameters, the frictional behavior is well understood [9]. The
static obstacles induce a spatial modulation of wave number
k� = 2π/ac in the chain [32], with ac the lattice spacing of
the static obstacles. The chain center of mass motion thus
couples to the chain internal vibrations via the mode k�;
the associated vibrational frequency follows from the dis-
persion relation ω� = 2

√
2α2ε/m| sin(ak�/2)|. When kicked

with velocity vkick, chain atoms “hit” the obstacles with the
washboard frequency 
 = vkick/ac. Friction arises when a
resonance is created, 2π
 ∼ ω�. Via a cascade of couplings
between k� and the other vibrational modes in the chain,
the kinetic energy of the center of mass forward motion is
transferred, via k�, to the entire population of chain vibrational
modes, thereby converted into heat.

For our model parameters ω� ≈ 15.97, the correspond-
ing resonance kick velocity v�

kick ≈ 1.58. When the chain is
kicked with v�

kick, the chain center of mass velocity decays
rapidly with time, i.e., friction is high [Fig. 2(a)]. In contrast,
using vkick = 0.05, which is far below resonance, vCOM oscil-
lates between a low and high value, but there is no sign of
any decay, i.e., friction is low [Fig. 2(b)]. Also indicated in
Fig. 2 is the frequency of the kinetically most active mode as
a function of time, defined as the mode having the highest
value of Kk , as given by Eq. (3). In the low-friction state,
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FIG. 2. See Appendix C for a “heatmap” version of this figure.
1D sliding chain results, showing time evolution directly after kick-
ing with velocity vkick (results averaged over 20 trajectories, each
with different initial position of the slider). The dashed blue curves
show the lower and upper envelope of the chain center of mass veloc-
ity vCOM. The red dots indicate, for each time step, the frequency of
the kinetically most active mode. The symbol + on the vertical axes
indicates ω�; the maximum mode frequency ωmax ≈ 16.97. (a) Har-
monic chain kicked with the resonance velocity v�

kick. The decay
of vCOM sets in rapidly after kicking. (b) Harmonic chain kicked
with vkick = 0.05 � v�

kick. In this case, vCOM oscillates between a
low and high value, but there is no decay. Only a small subset
of available modes reveals noticeable activity. (c) Same as (b), but
using anharmonic interactions. The decay of vCOM, and subsequent
thermalization, commence rapidly after kicking.

Fig. 2(b), only a few modes are active. These are the modes
k�, as well as some of the higher harmonics, corresponding
to wave number nk�, with n a positive integer. In the high-
friction state, Fig. 2(a), at very early times, we also observe
that activity is concentrated around k�, but soon spreads to all
modes, reminiscent of a system in thermal equilibrium (the
signal Kk then essentially being a random variable).

The low-friction state of Fig. 2(b) can persist because,
being off-resonance, the coupling of k� to other vibrational
modes is weak, and because the chain interaction is har-
monic (i.e., no scattering between modes). In such a highly
decoupled system, the transfer of energy between modes is
severely hampered, meaning that thermalization (i.e., gener-
ation of heat) cannot occur, which explains why friction is
low. Indeed, by using anharmonic bonds, which enable mode
scattering thereby assisting thermalization, the second condi-

FIG. 3. 1D harmonic chain results, showing the logarithm of the
distribution of mode kinetic energies, obtained during sliding in the
low-friction state of Fig. 2(b). Results are shown for the four most
active modes, with frequencies ωk as indicated. The dashed lines
show fits to Eq. (5), which are two-parameter fits, one of them being
the mode temperature Tk .

tion no longer holds, and the low-friction state is no longer
observed [Fig. 2(c)].

Next, we address thermalization. The low-friction state of
Fig. 2(b) is not thermalized, since only a small subset of
modes is active. Nevertheless, precursors to thermalization
are already present. To see this, we consider the four most
active modes of Fig. 2(b), whose wave numbers are k = nk�,
with n = 1, 2, 3, 5 (i.e., the fundamental mode, and some of
the leading higher harmonics, excluding n = 4, which showed
very little activity). The respective vibrational frequencies are
ωk = 15.97; 10.82; 8.64; 2.65. For these modes, while sliding
in the low-friction state, the distribution (histogram) of ob-
served kinetic energy values Kk is recorded. In a perfectly
thermalized system, these values are Maxwell-Boltzmann dis-
tributed, Pth ∝ e−Kk/kBTk , with Tk the mode temperature, and
kB the Boltzmann constant. In a perfectly coherent state, Kk

as function of time is strictly harmonic, at twice the mode
frequency, in which case the distribution takes the form Pcoh ∝
K−1/2

k , valid in the limit of small Kk (see Appendix D). How-
ever, the low-friction state considered here is neither fully
thermalized nor coherent, and so we expect a hybrid form:

P(Kk ) = PthPcoh ∝ e−Kk/kBTk /
√

Kk . (5)

We test the validity of Eq. (5) in Fig. 3 for each of the four
most active modes. The dashed curves are fits using Eq. (5).
Overall, the fits capture the data well. In all cases, agreement
breaks down at large values of Kk , since, on the one hand,
Eq. (5) is a small Kk approximation, but, more importantly,
due to bad statistics (large values of Kk are exponentially
suppressed by the Maxwell-Boltzmann factor, so these values
do not appear very often in the simulation time series).

We repeat the analysis of Fig. 3 for all modes k in the
chain, to obtain the mode temperatures Tk . In the low-friction
state, there are just a few active modes with finite temperature,
inside a background of frozen modes [Fig. 4(a)]. The partial
thermalized character of the low-friction state is clearly visi-
ble: While individual modes already have energy distributions
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FIG. 4. 1D harmonic chain results, showing mode temperatures
Tk obtained by fitting to Eq. (5), as function of the mode frequency
ωk . (a) As obtained in the low-friction state of Fig. 2(b). Note that Tk

for the principal mode k� (dashed line) far exceeds the vertical range
of the graph. (b) As obtained in the long-time limit after kicking
with the resonance velocity v�

kick; dashed line marks the equipartition
temperature.

conforming to Maxwell-Boltzmann, the corresponding tem-
peratures between modes are very different. Figure 4(b) shows
the mode temperatures Tk obtained after kicking with the res-
onance velocity v�

kick, in the long-time limit where vCOM ∼ 0.
We now observe a much more homogeneous temperature dis-
tribution, all modes having essentially the same temperature,
showing that the chain has fully thermalized. For the har-
monic chain in thermal equilibrium, equipartition should hold,
i.e., the initial kinetic energy of the kick (Kin = mNv2

kick/2)
should be equally divided over all system degrees of freedom
(ndof = 2dN , with d = 1 the spatial dimension; factor two
counts position and momentum degrees of freedom). For the
harmonic chain in equilibrium, kBT/2 = Kin/ndof, implying
T ≈ 1.246 in our units, which Fig. 4(b) confirms.

B. 2D hexagonal layer

1. 2D fully periodic slider without defects

We first consider a 2D sliding layer with full periodic
boundary conditions, i.e., in the absence of any free edges or
other defects [Fig. 1(a)]. A layer of N = 196 mobile atoms,
unit particle mass m = 1, is “kicked” at time t = 0 with ve-
locity vkick in the x̂-direction. For this value of N , the lattice
constant of the static obstacles ac = 7a/11. In analogy with
the 1D chain, we assume that the static obstacles induce
a spatial modulation of wave vector magnitude k� = 2π/s,
with s = ac sin 60o the spacing between closed-packed rows
of obstacles [Fig. 1(a)]. As for the direction and polarization,
we assume that longitudinal modes propagating at ±30o rel-
ative to x̂ dominate. The corresponding vibrational frequency
ω� ≈ 20.26, which follows from the dispersion relation (see
Appendix E). For sliding in the x̂-direction, the washboard
frequency 
 = vkick/ac, implying resonance kick velocity
v�

kick ≈ 2.05.
For the slider with harmonic bonds, the decay of vCOM with

time at the resonance kick velocity v�
kick is shown in Fig. 5(a),

while Fig. 5(b) shows the result for vkick = 0.05, i.e., far below
resonance. In agreement with the 1D chain, the decay is most
rapid at resonance, i.e., friction is highest there. In addition,
strong initial activity of the mode k� is observed, confirming
the above assumption that longitudinal modes propagating at

FIG. 5. See Appendix C for a “heatmap” version of this figure.
Sliding behavior of the 2D fully periodic slider (results are averaged
over 20 different initial positions of the slider). The representation
of the data is the same as in Fig. 2. The symbol + indicates the
frequency ω� of the dominant mode k�, the maximum possible mode
frequency ωmax ≈ 20.78. Results are shown for (a) harmonic interac-
tions at the resonance kick velocity v�

kick, (b) harmonic interactions at
vkick = 0.05, and (c) anharmonic interactions at vkick = 0.05.

±30◦ couple most strongly to the center of mass motion (the
other plateaus visible in Fig. 5 correspond to higher harmonics
nk�). Regarding as to how the energy gets distributed over the
vibrational modes, there is an important qualitative difference
with the 1D chain. In two dimensions a state is observed
where vCOM ∼ 0, while the vibrational modes are still far from
being thermalized [Fig. 5(b)]. This state is analogous to the
low-friction state of Fig. 2(b), the crucial difference being
that, in 2D, vCOM ∼ 0, i.e., the system is no longer sliding.
Repeating the simulation using vkick = 0.05 and anharmonic
bonds, Fig. 5(c), we observe a slightly more rapid decay of
vCOM compared to the harmonic case at the same kick velocity,
but this time the system fully thermalizes, i.e., all modes
become active.

For the harmonic sliders, we still verify the degree of ther-
malization. For the slider in the partially thermalized state,
Fig. 5(b), mode activity is mainly restricted to k� and the
higher harmonics. As in the 1D case, the kinetic energy distri-
butions of these modes already appear thermalized, i.e., well
described by Eq. (5). In Fig. 6(a) we plot the corresponding
mode temperatures, which reveals many frozen modes (Tk ∼
0), and a number of active modes (TK > 0), confirming that
the state is indeed partially thermalized (for a fully thermal-
ized state, Tk should be the same for all modes). Compared to
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FIG. 6. The analog of Fig. 4, but for the 2D periodic slider with
harmonic bonds. (a) As obtained in the partially thermalized state of
Fig. 5(b), where the slider was kicked with an off-resonance velocity
vkick = 0.05. (b) As obtained in the long-time limit of Fig. 5(a),
where the slider was kicked with the resonance velocity v�

kick. In this
case, there is full thermalization.

the analogous 1D case, Fig. 4(a), we find that in 2D the mode
temperature is more homogeneous (with the exception of ω�,
the active modes have similar temperatures). In Fig. 6(b) we
show the mode temperatures for the slider kicked with the
resonance velocity v�

kick, i.e., corresponding to Fig. 5(a), in the
long-time limit. In this case, the system fully thermalizes, all
mode temperatures being the same. Note that equipartition is
obeyed quite well, kBTeq = m(v�

kick )2/4 ≈ 1.05, as indicated
by the dashed horizontal line. For the anharmonic slider,
Fig. 5(c), the system also fully thermalizes, but this comes
as no surprise, due to the enhanced phonon scattering induced
by anharmonicity (result therefore not shown).

2. 2D slider with defects

We now investigate the role of defects on the sliding be-
havior, considering bond and edge defects. To study the role of
bond defects, we use the fully periodic slider (same number of
particles N = 196; unit particle mass m = 1) but we remove a
fraction 2% of randomly selected bonds (for this low fraction,
the slider remains a single connected entity, i.e., there are no
isolated atoms without any bonds). The substrate potential
remains the same, i.e., perfectly crystalline. Figure 7(a) shows
the corresponding sliding behavior, using harmonic interac-
tions and kick velocity vkick = 0.05, to be compared to the
corresponding defect-free case of Fig. 5(b). The difference is
striking: Whereas the defect-free slider did not thermalize, the
presence of just a small number of defects strongly promotes
thermalization, implying a much higher friction. Mode activ-
ity at short times is still concentrated around the dominant
mode k�, but enhanced activity of the higher harmonics is
no longer observed. Apparently, the presence of just a small
number of defects is sufficient to destroy the coupling between
k� and its higher harmonics.

To study the influence of edge defects, we consider a
disk-shaped slider (flake), see Fig. 1(b). The flake contains
N = 199 particles, i.e., comparable to the fully periodic sys-
tem; unit particle mass m = 1. The edge of the slider provides
an additional source of phonon scattering, which dramatically
reduces sliding. In fact, at low kick velocity, vkick = 0.05, the
flake refuses to slide at all, merely a damped rocking motion
of the center of mass is observed, irrespective of whether

FIG. 7. 2D harmonic sliders containing defects (results are
averaged over 20 different initial positions of the slider). The repre-
sentation of the data is the same as in Fig. 2. The symbol + indicates
ω� of the modulation k� induced by the static obstacles; the symbol
� indicates ωR induced by the slider radius. (a) Fully periodic slider
with a fraction 2% of randomly selected missing bonds, at kick
velocity vkick = 0.05. (b) Sliding patch (flake) kicked with velocity
vkick = 1. (c) Same as (b), but for a slider with rigid edge.

harmonic or anharmonic bonds are used. The damping is
very strong, and the system thermalizes rapidly (results not
shown). To observe any sliding at all, higher kick veloci-
ties are required. In Fig. 7(b) we show results for vkick = 1,
using harmonic interactions. We find that the system ther-
malizes extremely rapidly, even faster than the fully periodic
slider at the resonance velocity v�

kick [cf. Fig. 5(a)]. Note
also that initial mode activity is no longer concentrated at
ω� ≈ 20.26 induced by the static obstacles, but instead at a
much lower frequency. For the flake, the dominant spatial
modulation is set by the flake radius, kR ∼ 2π/R, where R ∼
6.9a presently. From the dispersion relation, and assuming
longitudinal modes at ±30o still dominate, this leads to a
vibrational frequency ωR ∼ 8, which is indeed rather close
to the frequency where initially much activity is observed;
see Fig. 7(b). By making the edge of the slider infinitely stiff
(i.e., treat the edge as a rigid object, while time integrating the
internal particles as before, some of which with bonds to the,
now rigid, edge) one can reduce the spatial modulation kR. In
this case, still kicking with velocity vkick = 1, the decay of
vCOM can be postponed; see Fig. 7(c). Note that, by reducing
the modulation kR, the modulation k� becomes visible again,
leading to initial mode activity at both frequencies, ωR and ω�,
simultaneously.
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FIG. 8. Total sliding distance versus time, as expressed via the
mean-squared-displacement, for the flake with free and rigid edge.
All interactions are harmonic, the kick velocity vkick = 1.

As possible control tactic to reduce friction, the results of
the sliding flake suggest optimizing the mechanical properties
of the slider, in order to reduce the spatial modulation kR

induced by the finite system size. As shown above, one way
this may be achieved is to make the edge of the slider as stiff
as possible (rigid). This results in a significant increase of
the covered sliding distance, s = √

MSD, where MSD is the
mean-squared displacement of the slider atoms, as measured
from the time of the kick (Fig. 8). As the figure shows, the
slider with the rigid edge slides roughly five times further.

IV. CONCLUSIONS

We have investigated the sliding behavior of 1D and 2D
bead-spring models on incommensurate substrates, in the “un-
pinned” state, i.e., below the Aubry transition. For the 1D
system, our results are fully consistent with the theoretical
predictions of Ref. [9]. For harmonic chain interactions, fric-
tion is highest when the washboard frequency corresponding
to the kick velocity vkick resonates with the dominant vibra-
tional mode induced by the incommensurate substrate. For
vkick chosen off-resonance, a low-friction state is possible,
where the system slides seemingly indefinitely, with only a
small subset of the system vibrational modes showing any
activity. As was already known [9], the low-friction state can
survive only in sufficiently small systems, such that the vi-
brational spectrum remains discrete. One insight of this work
is that, in addition, the interactions must be sufficiently har-
monic, since anharmonicity will also destroy the low-friction
state (this finding appears consistent with Refs. [12,24] of
the dragged system, which also emphasizes the importance
of anharmonicity). A further insight is that the low-friction
state is already partially thermalized, the kinetic energies of
the active vibrational modes being well described by a mod-
ified Maxwell-Boltzmann factor. Thermal fluctuations (i.e.,
randomness) are thus already present, which could imply that
the low-friction state unavoidably has a finite lifetime.

In two dimensions, for the system size considered here,
a low-friction state where the system slides indefinitely, was
not observed. This is consistent with Ref. [11], where it was
also found that true 2D models typically equilibrate, rather
than slide, even when the system size is small. Instead, we
find that partially thermalized states are possible, with only a
few active vibrational modes, but where the center of mass
velocity has already decayed to zero. These partially ther-
malized states can occur when the system is kicked with an

off-resonance velocity, and for harmonic interactions. In line
with the 1D system, the kinetic energies of the active modes
are Maxwell-Boltzmann distributed, so thermal fluctuations
already manifest themselves. For anharmonic interactions, the
partially thermalized state is also observed, but here its dura-
tion is very brief, full thermalization setting in quickly.

For both the 1D and 2D periodic sliders, but without
defects, the vibrational modes that initially get excited corre-
spond to the dominant spatial modulation k� induced by the
incommensurate substrate and its higher harmonics. In the
presence of point defects, but still with periodic boundaries,
only the dominant spatial modulation gets excited, the cou-
pling to higher harmonics then appears lost. An even more
striking effect is observed for sliders with edges: In this case,
initial mode activity may instead commence at spatial modu-
lations corresponding to the radius of the slider, the degree of
which is controlled by the edge stiffness.

Regarding applications, for which a true low-friction state
with indefinite sliding is likely of most interest, the sobering
news is that the system parameters must be very carefully
chosen: highly harmonic interactions, small systems, defect-
free. However, even if these conditions cannot be perfectly
met, there is still the option to reduce friction, for example by
tuning the mechanical properties of the slider edge. Interest-
ingly, a recent publication [23] also identifies the importance
of edges concerning static friction, so their relevance seems
to extend beyond the purely dynamic scenarios considered
here.
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APPENDIX A: 2D AUBRY TRANSITION

To verify that the 2D system is unpinned, we consider
the hull function [16]. In two dimensions the hull function
depends on two coordinates, but we follow here the simplified
approach of Ref. [11], and consider only the projection g(x),
meaning the hull is computed for a single horizontal row of
atoms, using only the x-coordinates. In the unpinned state,
g(x) is continuous; in the pinned state, i.e., above the Aubry
transition, g(x) has jumps [16]. In Fig. 9, left column, we
show g(x) for α = 0.3. As the system size increases (here
indicated by the number of atoms Nx in the row), g(x) becomes
markedly smoother, meaning the system is unpinned. Using
the larger value α = 3 (right column), no such convergence
is observed, the data remain scattered, meaning this state is
pinned.

APPENDIX B: MD IMPLEMENTATION DETAILS

Both the 1D and 2D models were implemented in
LAMMPS [31]. All data were obtained in the microcanoni-
cal ensemble (fix nve, timestep 0.001). For the rigid flake,
fix rigid/nve was used to implement the rigid edge. The
essential simulation output is the trajectory, i.e., particle po-
sitions and velocities as a function of time, from which all

014802-7



S. AMIRI, C. A. VOLKERT, AND R. L. C. VINK PHYSICAL REVIEW E 104, 014802 (2021)

FIG. 9. Projected hull function g(x) of the 2D system.

quantities of interest can be computed. For the computation
of the hessian and eigenmodes, a dedicated C-code was used,
based on LAPACK. This code was also used to analyze the
MD trajectory, in order to obtain the mode kinetic energy and
amplitude.

FIG. 10. Heatmap version of Fig. 2 for the 1D chain. The color
coding indicates the mode activity, with normalization as described
in Appendix C.

FIG. 11. Heatmap version of Fig. 5 for the 2D defect-free slider.
The color coding indicates the mode activity, with normalization as
described in Appendix C.

APPENDIX C: HEATMAPS

For completeness, we still present the time evolution of
the mode activity color-coded as a heatmap. Figure 10 is
the corresponding representation of Fig. 2 for the 1D chain.
The color coding is normalized and thus dimensionless: At
each time step, the mean mode activity is subtracted, then
we divide by the standard deviation. Fig. 10(b) confirms that
only a few modes are active. For Figs. 10(a) and 10(c) at late
times, one observes a value fluctuating around zero, implying
a thermalized system, were each mode on average has the
same energy. For the 2D system, we present one heatmap plot
in Fig. 11.

APPENDIX D: COHERENT DISTRIBUTION

In the strict absence of phonon scattering, the quan-
tity �vi(t ) · �ξk,i in Eq. (3) is a periodic function at the
eigenfrequency ωk , implying for the kinetic energy Kk (t ) =
K0,k cos2(ωkt + φk ), with amplitude K0,k , and phase φk . Con-
verting the time series signal Kk (t ) into a histogram, the
inverse height of the bin corresponding to the energy value
Kk will be given by

1

H (Kk )
∝

∣∣∣∣dKk

dt

∣∣∣∣ ∝ √
Kk (K0,k − Kk ) ≈ c

√
Kk, (D1)

with c a constant, and where the approximation refers to the
limit of small Kk , which Eq. (5) uses. If one does not make this
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FIG. 12. (a) FBZ of the hexagonal lattice. (b) Longitudinal dis-
persion along the line �M.

approximation, then the histogram H (Kk ) will actually reveal
two peaks, at Kk = 0, K0,k . For the 1D chain without the exter-
nal field, which then is a true harmonic system where phonon
scattering is strictly absent, this is indeed what one observes.

However, in the presence of the external field (induced by the
static obstacles), we never observed the second high-energy
peak, since this peak is then exponentially suppressed by the
Maxwell-Boltzmann factor.

APPENDIX E: DISPERSION RELATION HEXAGONAL
LATTICE

With the hexagonal sliding lattice oriented in the (xy)-
coordinate system as shown in Fig. 1(a), the first Brillouin
zone (FBZ) is a hexagon oriented as shown in Fig. 12(a),
where �M = 2π/(

√
3 a) indicates the +30o propagation di-

rection. Figure 12(b) shows the longitudinal dispersion along
�M, with ω expressed in the units of our model. The dis-
persion relation was computed numerically using equations
provided in Ref. [33]. For values of k outside the interval �M,
one uses the periodic even extension of the dispersion relation
to obtain the frequency.
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