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Reduced dynamics of a one-dimensional Janus particle
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A Janus particle diffusing on a line is considered. Aside from its own driving force f acting forward or
backward according to its stochastic orientation, it moves in a position-dependent potential U (x). We propose
here the mapping scheme generating the effective generalized Fick-Jacobs equation, describing motion of the
particle in the spatial coordinate x only; the orientation is understood as the transverse coordinate. The self-
propulsion, driving the system out of equilibrium, is reflected as an additional effective potential −γ (x) in
the reduced picture. It enables us to understand peculiarities of this system in a handy way. The additionally
corrected potential redistributes the confined particles in quasiequilibrium causing their piling at the walls. In
periodic asymmetric channels, it acquires a growing contribution, responsible for driving the ratchet effect.
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I. INTRODUCTION

Active particles moving in confined geometries have at-
tracted the attention of many researchers during the last
decade. They can represent living cells, e.g., bacteria mov-
ing by their own propulsion [1–4], or artificially prepared
Janus particles [5–9], coated partially by an active layer re-
acting with surrounding solvent, pushing the particle forward.
Finally, their behavior is also determined by the confining
boundaries.

Aside from the important practical use in technologies, the
models of Janus particles represent a challenge for the theory
of nonequilibrium thermodynamics. The self-propulsion of
the particles works as a kind of perturbation, driving the sys-
tem out of the equilibrium. Together with specific properties
of the confinement, it can give rise to interesting states of
the matter [9–11], self-organization, or rectification of the
stochastic motion of the particles, the ratchet effect [12–17].

One of the simplest models of Janus particles is depicted
in Fig. 1(a). The disk of diameter a coated partially by
an active (red) layer can represent Ozin’s nanoparticles [8]
with platinum droplets, immersed in the solution of hydro-
gen peroxide. The platinum catalyzes the chemical reaction
2H2O2 → 2H2O + O2 on the droplet surface, which moves
the particle in the opposite direction by the force f , which is
considered here constant in magnitude. However, its direction
depends on the particle’s orientation, the angle φ in Fig. 1(a),
which changes randomly with the rotational diffusion constant
Dr . Aside from the rotation and self-propulsion, the particle
diffuses inside a confined region [it is here a two-dimensional
(2D) channel bounded by the reflecting boundaries at y = h(x)
and 0] with the intrinsic translation diffusion constant D0. We
also neglect the diameter a of the disk in our considerations,
supposing that it is much smaller than the typical length of the
channel, say, the width h(x).

The question is analysis of the dynamics of such a system,
explaining the observed effects like piling the particles at

the boundaries, or rectification of their motion. For passive
particles diffusing in quasi-one-dimensional (1D) nonhomo-
geneous channels, the techniques of dimensional reduction
appeared useful [18–27]. The 2D or three-dimensional (3D)
diffusion equation was integrated over the cross section
and the resulting 1D equation described the dynamics only
in the longitudinal direction. Reflecting also nonhomogeneity
in the transverse directions, it enabled us to analyze the corre-
sponding effects, like dependence of the effective diffusivity
or mobility on the varying profile.

In this paper, we propose to perform a similar mapping on
the system of Janus particles. Instead of the spatial transverse
coordinates, we integrate here the corresponding equations
over the orientation of the particle (and the force f ). The
final reduced equation will describe the motion of the particles
solely in the spatial coordinates, but including the effects of
their randomly oriented self-propelling force. We expect that
the form of the reduced equation will point to the specific
behavior of the Janus particles in an easier way.

To explain the dimensional reduction, which is our main
aim, we consider here only a simpler 1D version of this
model, described in Fig. 1(b). Our particle diffuses along the
x axis, but in a potential U (x). Only two possible orientations
remain, pushing the disk forward (+) or backward (−); they
are flipping randomly with a rate constant α, which is an
analog to the rotational diffusion constant Dr . The probability
densities p±(x, t ) of the particles facing to the right and left
satisfy the Smoluchowski equations with the corresponding
potentials U (x) ∓ f x coupled by the flipping term ∼α,

∂t p±(x, t ) = D0∂xe−β[U (x)∓ f x]∂xeβ[U (x)∓ f x] p±(x, t )

∓α[p+(x, t ) − p−(x, t )]. (1.1)

The inverse temperature β = 1/kBT will be set to 1. The
same equations also describe behavior of a passive particle
driven by the random force of a constant magnitude f , i.e.,
the fluctuating force ratchet [28].
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(a)

(b)

FIG. 1. (a) Scheme of a Janus disk diffusing in a 2D channel.
The self-propelled force f drives the disk in an arbitrary direction
depending on its stochastic rotation in angle φ. (b) The simplified
1D version of this model in the potential U (x).

Our aim is to find the mapped equation for the density of
particles p(x, t ) of both orientations. This is a task very similar
to the mapping of 2D diffusion [19–24] onto the longitudinal
coordinate, where the role of the transverse coordinate is
played now by orientation of the disks. Fast flipping (α → ∞)
corresponds to a large transverse diffusion constant, provid-
ing almost immediate transverse equilibration, generating the
Fick-Jacobs (FJ) equation [18]. Then the small parameter
here is τ ∼ D0/α; it can control a similar procedure as that
formulated for the mapping of the 2D diffusion [21–23]. It
generates a series of corrections to the mapped equation ex-
panded in τ , expressing the influence of a nontrivial U (x) onto
the dynamics of the flipping self-propelled particle.

We show that the result of the mapping has again the form
of the generalized FJ equation,

∂t p(x, t ) = D0∂xA(x)[1 − Ẑ (x, ∂x )]∂x
p(x, t )

A(x)
, (1.2)

with an operator Ẑ involving the corrections to the FJ equation
expanded in τ . It can be simplified to

∂t p(x, t ) = ∂xA(x)D(x)∂x
p(x, t )

A(x)
, (1.3)

valid in the limit of the stationary solutions [23]; D(x) denotes
the spatially dependent effective diffusion coefficient D(x),
and the function A(x) is the local Boltzmann factor of the
effective potential. Unlike the mapped equations for passive
particles diffusing in conservative fields [25–27], also A(x)
has to be corrected within the recurrence mapping technique
[29]. Finally, it contains a part of the effective potential, which
can break the symmetry (periodicity) of a periodic channel
and cause (or visualize) the ratchet effect [30].

The mapping presented here deals with a 1D model, where
U (x) represents the real potential. Nevertheless, one can also
interpret U (x) = − ln[h(x)] as the entropic potential in a 2D
channel of varying width h(x) [Fig. 1(a)]. Then Eq. (1.1)
becomes a pair of FJ equations coupled by flipping between
(+) and (−) orientations. Of course, such description of the
2D models is only the zero-order approximation of the map-
ping over the transverse coordinate y. The higher corrections
of the FJ equations for the separate orientations could be
derived by the procedure formulated, e.g., in Ref. [25], but
it does not include the flipping terms, which also influence
the mapping. Having no scheme yet generating consistently
the higher-order corrections, the FJ approximation is often
used for the basic description of the 2D models [13,31–34],
too. The purpose of this paper is to focus our attention on the
mapping over the orientation first, which could also help us to
go beyond the FJ description in more complex models.

For the 1D model analyzed here, the mapping over orienta-
tion is very simple and convenient to demonstrate the method.
In Sec. II, we describe the mapping procedure for the general
analytic function U (x). The alternative method, generating
directly the functions A(x) and D(x) of the generalized FJ
equation (1.3) in the stationary limit, is added in the Appendix.
The results for some trial potentials are presented in Sec. III.
We exploit the proposed methods to study piling of the Janus
particles at the walls and also the ratchet effect in periodic
but asymmetric channels. The leading term of the rectified
current ∼1/α3 can be even determined analytically for certain
potentials by the first method. On the other hand, the equations
obtained in the stationary limit enable us to find the effective
diffusion coefficient and the effective force driving the ratchet
effect expanded in f 2 in the full range of the flipping rates.

II. MAPPING PROCEDURE

We present here the mapping procedure for the 1D system
defined above, following the same steps as applied in the
dimensional reduction of diffusion in a 2D channel [21]. Our
transverse coordinate now is orientation of the particle, so the
first step, integration over the transverse coordinate, is simply
summation of Eq. (1.1) over two states (+) and (−),

∂t p(x, t ) = D0∂xe−U (x)[e f x∂xe− f x+U (x) p+(x, t )

+ e− f x∂xe f x+U (x) p−(x, t )]; (2.1)

p(x, t ) = p+(x, t ) + p−(x, t ) (2.2)

is the marginal density. The energy and time are measured in
units such that the temperature kBT = 1 and also D0 = 1 in
our next calculations.

Reducing the orientation, the FJ approximation corre-
sponds to the infinitely fast flipping between both orienta-
tions, α → ∞, hence they are equally probable, p±(x, t ) =
p(x, t )/2. Indeed, substituting it in Eq. (2.1), we find the
Smoluchowski equation,

∂t p(x, t ) = ∂xe−U (x)∂xeU (x) p(x, t ). (2.3)

[We can also understand it as the FJ equation, where e−U (x) =
h(x) means the Boltzmann weight of the potential U (x), either
real or entropic.]
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If the flipping is slower (α is finite), the particle has time
to move before the next flip. Its shift depends on whether it is
self-propelled uphill or downhill on the landscape U (x). The
probability densities p+(x, t ) and p−(x, t ) are enriched differ-
ently by the particles coming from the neighboring positions,
so they start to differ from one another. Similar to reducing the
transverse spatial coordinates [21,22,25], the deviations of p±
from p/2 can be formally expressed using the marginal prob-
ability density p(x, t ). Applying the homogenization method
starting with the zero-order solution p± = p/2, they have the
form of some spatial operators ω±(x, ∂x ) acting on p(x, t ) in
general. Without loss of generality, we can write the relation
of the backward mapping as

p±(x, t ) = e−U (x)+γ (x)

[
1

2
+ ω̂±(x, ∂x )

]
p(x, t )

A(x)
, (2.4)

where A(x) is the Boltzmann weight of an effective potential,
as introduced in the FJ equation. Inspired by the mapping of
diffusion driven by the vortex forces [29], we inserted here
the gauge function γ (x), which enables us later to bring the
mapped equation to the form (1.2). The functions A(x) and
γ (x), as well as the operator ω̂, are unfixed yet; their deriva-
tion is the core of the mapping procedure. Consistency with
Eq. (2.2) for any solution p(x, t ) (normalization condition)
requires us to put ω̂+(x, ∂x ) = −ω̂−(x, ∂x ) = ω̂(x, ∂x ) and

A(x) = e−U (x)+γ (x). (2.5)

Applying relations (2.4) and (2.5) in Eq. (2.1), we arrive at
the mapped equation

∂t p(x, t ) = ∂xA(x)[∂x + γ ′(x) − 2 f ω̂(x, ∂x )]
p(x, t )

A(x)
(2.6)

after some algebra. As it will be seen later, a part of the
operator ω̂ is just a function, not containing ∂x. To convert
Eq. (2.6) to the form (1.2), we need to eliminate it by a proper
choice of the gauge function γ (x). Comparing the right-hand
sides of both mentioned equations, we obtain

γ ′(x) + Ẑ (x, ∂x )∂x = 2 f ω̂(x, ∂x ) = 2 f [ω(x) + ω̃(x, ∂x )∂x];
(2.7)

i.e., having ω̂ split into the parts containing and not containing
∂x, its purely functional part ω(x) fixes the gauge function
γ (x) and the rest operator ω̃ determines the corrections Ẑ to
the FJ equation (2.3).

The deviations of p± from p/2 are controlled by the flip-
ping rate α. As analyzed before, the ratio τ = D0/2α = 1/2α

plays here the same role as the small parameter ε, scaling the
transverse diffusion constant with respect to D0, in reducing
the spatial coordinate y in 2D channels [21–23,25,29]. So to
apply the homogenization, we can do the same step, to expand
the operators ω̂, Ẑ , as well as the function γ (x) in τ ,

ω̂(x, ∂x ) =
∞∑

n=1

τ nω̂n(x, ∂x )

=
∞∑

n=1

τ n[ωn(x) + ω̃n(x, ∂x )∂x],

Ẑ (x, ∂x ) =
∞∑

n=1

τ nẐn(x, ∂x ) = 2 f
∞∑

n=1

τ nω̃n(x, ∂x ),

γ ′(x) =
∞∑

n=1

τ nγ ′
n(x) = 2 f

∞∑
n=1

τ nωn(x). (2.8)

The procedure fixing recursively the coefficients ω̂n, Ẑn, and
γ ′

n is obtained after substituting the backward mapping rela-
tion (2.4) with (2.8) in Eq. (1.1) [say, for the (+) orientation],

2αeγ ω̂
p

A
= [eU ∂xe−U (∂x − f ) − ∂t ]e

γ
(1

2
+ ω̂

) p

A
, (2.9)

omitting writing the obvious arguments. It has to be satis-
fied for any solution of the reduced problem p(x, t ), so it
is an operator equation determining ω̂. The time derivative
∂t commutes here with all spatial operators and acts only
on p(x, t ), where we apply the mapped equation (1.2). (Any
operator automatically acts on anything to the right without
explicit writing of brackets in our notation.) We use now the
expansions (2.8) and collect the terms of the same order in τ

on both sides. Then having expressed ω̂n, the coefficients Ẑn

and γ ′
n are calculated according to Eq. (2.7).

The leading correction is given by the terms ∼τ 0. In the
zeroth order, ω̂, Ẑ , and γ on the right-hand side do not
contribute and A(x) enters here only as e−U (x), so

ω̂1 = eU ∂xe−U (∂x − f )
1

2
− 1

2
eU ∂xe−U ∂x

= − f

2
∂x + f

2
U ′. (2.10)

The functional and the operator parts of the result can be easily
identified; hence, applying Eq. (2.7), we have

γ ′
1 = f 2U ′, Ẑ1 = − f 2. (2.11)

In the higher orders, the complexity grows quickly especially
because of the presence of eγ , also contained in A(x). The
explicit integration of γ ′(x) within the recurrence procedure is
not necessary. After completing commutations of eγ (x), only
the derivatives of γ (x) remain in the recurrence formulas in
any order. As an example, we also state here the equation ∼τ 1,

ω̂2 = eU ∂xe−U (∂x − f )ω̂1 + eU ∂xe−U γ ′
1

2
+ γ ′

1(∂x − f )
1

2

+ 1

2
eU ∂xe−U Ẑ1∂x − γ ′

1

2
∂x − ω̂1eU ∂xe−U ∂x

= 1

2
(− f 3U ′ + f eU ∂xe−UU ′′), (2.12)

giving

γ ′
2 = − f 4U ′ + f 2

(
U (3) − U ′U ′′),

Ẑ2 = f 2U ′′. (2.13)

Finally, the result in τ 2 is more complicated,

γ ′
3 = f 6U ′ − f 4

(
2U (3) − 5U ′U ′′ + U ′3) + f 2(U (5)

− 2U ′U (4) − 3U ′′U (3) + U ′2U (3) + U ′U ′′2),

Ẑ3 = f 4∂2
x + (2 f 2U (3) − 3 f 4U ′)∂x + 3 f 4(U ′2 − U ′′)

+ f 2(3U (4) − 3U ′U (3) − U ′′2), (2.14)

but necessary for our next considerations.
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First, notice that Ẑ3 is not just a function, but it also con-
tains the derivatives ∂x, ∂2

x . To avoid problems with solving
the higher-order differential equations, we replace Eq. (1.2)
by Eq. (1.3), valid in the limit of stationary flow, when the
time changes of p(x, t ) (and all related quantities) are small
[23]. Both equations represent the 1D mass conservation, so
both right-hand sides express the derivative of the net flux,
−∂xJ (x, t ). For p(x, t ) independent of time, J is constant.
Comparing the stationary ∂x(p/A) expressed from

J = −A[1 − Ẑ]∂x(p/A), J = −AD∂x(p/A), (2.15)

we find the relation
1

D(x)
= A(x)[1 − Ẑ (x, ∂x )]−1 1

A(x)
, (2.16)

enabling us to calculate the effective diffusion coefficient
D(x), which is just a function, from Ẑ . Applying our formulas
for the first three coefficients Ẑn, we obtain the expansion
correct up to third order,

1

D(x)
= 1 − τ f 2 + τ 2 f 4 − τ 3 f 6 + · · · + τ 2 f 2U ′′

+ τ 3 f 2[ f 2(U ′2 − 4U ′′) + 3U (4) − U ′U (3)

− U ′′2] + · · · . (2.17)

Next, the function −γ (x) can be interpreted as an extra
effective potential, which is added to the real potential U (x),
due to random self-propulsion of the particles in a nontrivial
confinement; then γ ′(x) is the additional local effective force.
It is worth now to integrate γn from Eqs. (2.11), (2.13), and
(2.14) and to express the new potential, U (x) corrected by the
effective contributions from the self-propelling force,

U (x) − γ (x) = (1 − τ f 2 + τ 2 f 4 − τ 3 f 6 + · · · )U (x)

− τ 2 f 2(U ′′−U ′2/2)+τ 3

[
f 4

(
2U ′′−5U ′2/2

+
∫

U ′3dx

)
− f 2

(
U (4)−2U ′U (3)−U ′′2/2

+ U ′2U ′′−
∫

U ′U ′′2dx

)]
+ · · · . (2.18)

Formula (2.17) shows that the effective diffusion co-
efficient increases due to random self-propulsion of the
particles, as expected; the terms independent of the poten-
tial give D(x) = (1 − τ f 2 + τ 2 f 4 − · · · )−1 = 1 + f 2/(2α).
Here f 2/(2α) could be interpreted as the generalized Taylor
dispersion [35], being quadratic in the self-propelling force
and proportional to variance of the time spent in each orien-
tation [36]. Similar terms in Eq. (2.18) effectively decrease
the confining potential U (x) by the factor 1/[1 + f 2/(2α)]. It
enables the particles to access the positions closer to the (soft)
walls, what indicates their piling there.

It is difficult to give a simple interpretation of the other
terms in 1/D(x), or γ (x); it is rather useful to study their
influence in specific potentials for more details. The most
interesting terms in Eq. (2.18) are those unintegrable explicitly
for the general U (x), appearing in the order ∼τ 3. In periodic
but asymmetric potentials, they can give a nonzero increment

γ = γ (L) − γ (0) over one period L, i.e., an effective mean

force 
γ/L driving the particle along the channel and thus
visualizing the ratchet effect. We study these effects on trial
potentials in the next section.

III. RESULTS FOR TRIAL POTENTIALS

The mapping procedure presented in the previous section
proved that the reduced dynamics of the 1D Janus particles
diffusing in a potential U (x) is described by the generalized
FJ equation (1.3) with the spatially dependent diffusion coef-
ficient D(x), Eq. (2.17), and A(x) given by Eq. (2.5) with U (x)
corrected by the new effective contribution −γ (x), Eq. (2.18).
Both effective functions are calculated within the recurrence
scheme controlled by the small parameter τ = 1/2α; i.e., they
are expected to work mainly in the limit of high flipping rates
α. For smaller α, the results are problematic especially if these
functions are expressed as truncated series.

However, as shown in the Appendix, knowing already the
structure of the dimensional reduction we can modify the
mapping technique in the limit of stationary flow to arrive di-
rectly at the couple of equations for γ (x) and D(x), Eqs. (A5)
and (A10), avoiding expansion in τ . Their solutions represent
summation of at least some group of the terms in Eqs. (2.18)
and (2.17) up to infinity, thus extending their validity also for
smaller α. For our purposes, we need here mainly Eq. (A5),
determining γ (x),

2α∂xeγ (x) = eU (x)∂xe−U (x)
(
∂2

x − f 2
)
eγ (x). (3.1)

Reducibility of the dynamics of any quasi-1D system onto
the generalized FJ equation (1.2) implies existence of two im-
portant time-independent states: (quasi)equilibrium, when the
density peq(x) ∼ A(x), and the stationary flow with constant
net flux J , Eq. (2.15). The equilibrium can describe piling of
the particles at the walls, and the stationary flow calculated in
a periodic but asymmetric potential U (x) uncovers the ratchet
effect.

We demonstrate the piling on the quadratic potential
U (x) = x2, which enables us to determine γ (x) analytically
up to an arbitrary order in f 2. The coefficients En(x2) of eγ

expanded in f 2 are polynomials of the nth order, which can
be fixed after substitution in Eq. (3.1). Then the system of
recurrence algebraic equations gives

eγ = 1 + f 2x2

2(α + 1)
+ f 4

8(α + 1)(α + 3)

(
x4 − 2αx2

α + 1

)

+ · · · , (3.2)

which is the exact result in any order of f 2.
The effective potential U (x) − γ (x), determining the equi-

librium peq ∼ e−U+γ , is depicted in Fig. 2. The function γ (x)
decreases the real potential U (x) for any parameters f and
α; i.e., it enables the particles to get further from the center,
uphill on the soft parabolic wall. For sufficiently strong forces
f and small α, the effective potential U − γ becomes a double
well; the particles are piled at the slope, pushed there by their
self-propulsion until their orientation is randomly changed.
Then they diffuse to the opposite side, piling at the symmetric
position x → −x. Of course, this process is effective espe-
cially for smaller α, when the probability of flipping of their
orientation during the way across the potential well is lower.
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FIG. 2. Effective potential U (x) − γ (x) for the quadratic well
U (x) = x2 (thick black line) according to Eq. (3.2) (derived up to
f 16 order). The solid and dashed lines represent α = 1 and α = 0.1,
respectively. The lines (downward) are calculated for f = 1 (blue), 2
(magenta), and 3 (red).

Our method also enables us to calculate the densities p±(x)
and fluxes j±(x) of the particles facing to the right and left.
Using the backward mapping (2.4), we have

p± = e−U+γ

(
1

2
± ω̂

)
peq

A
= e−U+γ

(
1

2
± ω(x)

)
peq

A

= e−U

[
eγ ± 1

f
(eγ )′

]
peq

2A
. (3.3)

The operator ω̂(x, ∂x ) acting on the constant peq/A leaves only
its functional part ω(x) nonzero and it is related to γ ′(x) =
2 f ω(x) according to Eq. (2.7). Now the corresponding fluxes
can be expressed, too:

j± = −e−U± f x∂xeU∓ f x p±

= −e−U (∂x ∓ f )
[
eγ ± (eγ )′

f

] peq

2A

= ±e−U

[
f eγ − 1

f
(eγ )′′

]
peq

2A
. (3.4)

The plots of p±(x) and j±(x) calculated for the equilibrium
peq = e−x2+γ (x) are shown in Fig. 3. The peaks, correspond-
ing to the right and left minima of the effective potential
U (x) − γ (x) in Fig. 2 are formed by the (+) and (−) particles
(blue and red solid lines), respectively. They persist there until
their flipping; the blue and red dashed lines depict the fluxes
of the flipped particles to the opposite potential minimum.
The net flux j+ + j− is zero and p± is time independent, so
the reduced dynamics records (quasi)equilibrium, but indeed,
the particles circulate across the potential well flipping and
moving there and back.

Similar circulating currents move the ratchet effect in
the periodic but asymmetric channels, e.g., in the Feynman-
Smoluchowski ratchet [30,37,38]. We also test the presence
of this effect in our studied system with the trial potential

U (x) = 2 − cos x + η sin 2x; (3.5)

the parameter η controls its asymmetry (see Fig. 4).

FIG. 3. Quasiequilibrium densities p±(x) (solid lines) and the
corresponding fluxes j±(x) (dashed lines) of (+) and (−) particles,
blue and red lines, respectively, for the potential U (x) = x2, α = 0.5,
and f = 3.

Having the formulas for γ (x) and 1/D(x), finding the
rectified current in a periodic channel is straightforward. The
generalized FJ equation (1.3), or its stationary version (2.15)
with γ (x) determined by our mapping, describes diffusion in
a washboard (periodic) potential with a tilt given by 
γ =
γ (L) − γ (0). So the Stratonovich formula [39,40] is applica-
ble:

J = (1 − e−
γ )∫ L
0 e−U (x)+γ (x)dx

∫ L+x
x [eU (x′ )−γ (x′ )/D(x′)]dx′ (3.6)

is the net flux of one particle per period L in our notation. If
eγ (x) = E (x) = 1 + f 2E1(x) + · · · , as well as 1/D(x) = 1 +
f 2χ1(x) + · · · are expanded in f 2, Eq. (A6), we obtain the
expansion of J in f 2. Its leading term simplifies to

J1 = f 2[E1(L) − E1(0)]

(∫ L

0
e−U (x)dx

∫ L

0
eU (x)dx

)−1

,

(3.7)
which is the effective force 
γ/L = f 2[E1(L) − E1(0)]/L up
to ∼ f 2, multiplied by the linear density 1/L and mobility
given by the Lifson-Jackson formula [41].

FIG. 4. Trial potential (3.5) for various parameters η = 0 (black),
0.1 (blue), 0.2 (magenta), and 0.3 (red).
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FIG. 5. Coefficients of γ (x) at τ 3 f 2 and τ 3 f 4, γ3,2(x) (solid line)
and γ3,4(x) (dashed line), respectively, in the potential (3.5) for η =
0.2.

Thus the key quantity determining the rectified current is
increment of the gauge function γ (x) per one period L. Its
nonzero value can only be generated by the integral terms
like those ∼ ∫

U ′3dx and
∫

U ′U ′′2dx appearing in the third
order of τ = 1/2α in the expansion of γ (x), Eq. (2.18). Let
us remark that if these terms are substituted in Eq. (3.7), we
recover the formula (5.18) in Ref. [28] for the ratchet driven
by the fast fluctuating two-state force. For our trial potential
(3.5), we get

−
∫

U ′U ′′2dx = 3ηx

2
+ cos3 x

3
− η(4 sin 2x + 5 sin 4x)

8

+ 8η2
[

cos x − cos 5x

5

]
− 16η3

3
sin3 2x,

−
∫

U ′3dx = 3ηx

2
+ periodic terms.

Plots of the coefficients of γ (x) standing at τ 3 f 2 and τ 3 f 4

depicted for η = 0.2 in Fig. 5 show the corresponding tilted
contributions to the effective potential U (x) − γ (x).

Then the increment per period L = 2π reads


γ = 3πη

8α3
( f 2 + f 4)−9πη f 2

8α4
+πη f 2

32α5
(71−195η2)+ · · · ,

(3.8)
also adding the terms of τ 4 f 2 and τ 5 f 2 orders given by
Eqs. (A9). The corresponding rectified fluxes J calculated
according to Eq. (3.7) (and divided by f 2 to emphasize the
leading terms) are described in Fig. 6 as dashed lines for
f = 0.1 (red) and f = 1 (blue). They are compared with
numerical stationary solutions of the full problem, Eq. (1.1),
green diamonds for f = 0.1 and blue disks for f = 1. Our
mapping found correctly the asymptotic behavior of J ∼ 1/α3

for large flipping rates. For small f (= 0.1), formula (3.8)
up to ∼τ 5 fits well the numerical results for higher α (>3).
The only included term ∼ f 4 shifts the (blue) line for f = 1
in the correct direction, but taking more higher-order terms
is necessary to achieve a better agreement with the numerical
data (blue dots).

Nevertheless, the truncated series cannot describe J cor-
rectly for smaller α. Then instead of using Eq. (3.8), one can

FIG. 6. Rectified current J divided by f 2 depending on the flip-
ping rate α for η = 0.2. The green diamonds and the blue dots
represent the numerical stationary solution of Eq. (1.1) for f =
0.1 and 1, respectively. The orange line with dots depicts the flux
J1, Eq. (3.7) with 
γ calculated from the numerical solution of
Eq. (A7). In all cases, the periodicity of p±(x), E ′

1(x), and their
derivatives was held. The dashed lines represent the current corre-
sponding to Eq. (3.8) for f = 0.1 (red) and f = 1 (blue line). The
inset compares 
γ obtained by the numerical solution of Eq. (A7)
(red dots) with the terms ∼ f 2 in Eq. (3.8) truncated at the third,
fourth, and fifth order in 1/α.

solve Eq. (3.1) for eγ (x) expanded in f 2, avoiding expansions
in 1/α. Its leading term E1(x) [see Eq. (A7) and its solution in
the Appendix] gives the current J fitting correctly the solution
of the full problem in the whole range of α for small f (orange
line and dots in Fig. 6). The inset of Fig. 6 documents conver-
gence of the expansion (3.8) truncated at the third, fourth, and
fifth order in 1/α (lines, keeping only the terms ∼ f 2); they are
compared with the numerical solution of Eq. (A7) (red dots).

The effective diffusion coefficient D(x) does not enter
the formula for the leading term of the rectified current J1,
Eq. (3.7). For completeness, we also show χ1(x) in Fig. 7,
the leading correction to 1/D(x) ∼ f 2, solving numerically
Eq. (A11). For larger α, it only slightly varies around the
leading value χ1 � −1/2α, which is the potential independent

FIG. 7. The leading correction χ1(x) in f 2 to the inverse effective
diffusion coefficient 1/D(x) for the channel defined by Eq. (3.5) with
η = 0.2 and various flipping rates α.
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term ∼τ 1 in Eq. (2.17). This result indicates dominance of
the Taylor-like dispersion [36] D(x) � 1 + f 2/2α over the
other terms depending on derivatives of the potential U (x).
Nevertheless, using it in calculation of the rectified current for
our parameters f and α has only a minimum impact on the
results (dashed lines) depicted in Fig. 6. The rectified current
J for small f is determined mainly by 
γ .

Our examples show that the reduced dynamics of 1D Janus
particles offers a practical description of the phenomena ex-
pected in such systems. Piling of particles at the walls is
reflected by lowering the real potential U (x) by the gauge
function γ (x); the ratchet in a periodic asymmetric channel
is effectively driven by the effective force 
γ/L given by
the increment of γ (x) over one period L. Of course, the key
is calculation of this function. The mapping formulated in
Sec. II results in a series expanded in 1/α, which gives the
correct asymptotic behavior of 
γ and, thus, the rectified
current J for the large flipping rates. For smaller α, one can use
Eq. (3.1), which can be solved by various methods, expanding
also in f 2, or α, to provide validity of the results in the desired
range of parameters.

IV. CONCLUSION

Our main aim was to demonstrate the dimensional reduc-
tion of the “internal” degrees of freedom on a very simple
model of 1D Janus particles driven by the self-propelling force
f on a line in the potential U (x). Here the orientation of the
particle plays the role of the transverse coordinate, which is
reduced. The natural small parameter is inverse of the flipping
rate α between two possible orientations. For infinite α, the
particles behave as passive, whose dynamics is governed by
the Smoluchowski equation in the potential U (x). The series
of corrections in 1/α, also depending on derivatives of U (x),
generates finally the generalized Fick-Jacobs equation (1.3),
representing the reduced dynamics.

The applied mapping technique is similar to the mapping
of a 2D (passive) particle diffusing in a nonhomogeneous
channel driven by the vortex force [29]. It is necessary to
insert here a new gauge function γ (x) in the operator of
backward mapping ω̂(x, ∂x ) and all related functions, to get
the mapped equation in the form of Eq. (1.2). Finally, this
function plays the role of an additional effective potential,
which is subtracted from the real potential U (x), and it is
responsible for the peculiar effects observed in these systems.

The first one is piling of the particles at the walls, which
is documented here on the example of a parabolic well. The
corresponding γ (x) decreases the real potential in a way
that their (quasi)equilibrium density is increased at the soft
walls. In the fine-grain picture, the new maxima of density
are formed by the particles pushed against the right and left
slope of the well by their self-propulsion until they randomly
flip their orientation. Thus the quasiequilibrium seen by the
reduced dynamics is formed by the circulating flows of the
flipping particles, diffusing there or back according to their
momentary orientation.

This situation resembles diffusion of particles driven by the
vortex force, where similar circulating currents generate the
ratchet effect in periodic asymmetric channels [30]. Indeed,
our formalism approves the appearance of the ratchet current

J ∼ 1/α3 for large α; there are integral terms in the effective
potential U (x) − γ (x), Eq. (2.18), breaking periodicity of the
periodic asymmetric potential and then the increment 
γ =
γ (L) − γ (0) over the period L represents the effective driving
force of the ratchet. Our asymptotic formula (3.8) for the trial
potential (3.1) works well for small f and large α if compared
with the numerical solution of the full problem, Eq. (1.1).

The general mapping method presented in Sec. II gives
γ (x) and the effective diffusion coefficient D(x) expanded
in 1/α, which restricts its use for only large flipping rates
α. However, the mapping algorithm can also be modified in
the limit of stationary flow (see the Appendix), leading to a
couple of equations for γ (x) and D(x). The solution represents
summation of the series in 1/α, extending their usability in
the full range of α. For a small self-propelling force f , one
only needs to calculate the leading term of γ in f 2, as the
leading term of the ratchet current is determined solely by the
increment 
γ ; D(x) influences only the higher orders of J in
f 2.

Of course, the 1D model of Janus particles is too simple
to describe satisfactorily the real systems of active particles;
we used it rather as a toy model for demonstration of the
mapping. Still, it can be understood as a simplified picture
of Ozin’s nanoparticles in a 2D channel of varying width h(x)
in the Fick-Jacobs approximation, after naive reduction of the
transverse coordinate, as well as the orientation of particles
onto two states: forward and backward. The width h(x) is then
considered as the Boltzmann weight of the entropic potential,
replacing the real potential U (x) in our Eq. (1.1). Another
interpretation is the 1D fluctuating force ratchet [28] with
passive particles driven randomly forward or backward by a
force of constant amplitude f . The real potential U (x) can
also represent the electric field. However, if the Janus particle
is a dipole [42], then the flipping term in Eq. (1.1) has to
be modified as one of the orientations is favored in nonzero
electric intensity, −U ′(x). We suppose that the formalism and
examples introduced here will be useful for solving more
complicated systems of active particles in 2D or 3D confine-
ment in the future.
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APPENDIX: STATIONARY MAPPING

We present here an alternative mapping procedure, deriv-
ing directly the functions D(x) and γ (x). It is based on the
scheme formulated in Sec. II, searching for the operator of
backward mapping ω̂(x, ∂x ). We found that it is composed of
two parts: the first one, ω̃(x, ∂x )∂x, containing the derivatives
∂x, and the second part, ω(x), which is just a function. They
determine the operator Ẑ (x, ∂x ) and the function γ (x), respec-
tively, according to Eq. (2.7). Acting on the stationary density
ps(x) enables us to identify the terms composing two separate
equations for D(x) and γ (x).

If p(x, t ) = ps(x) is stationary, then also p±(x, t ) calcu-
lated according to the backward mapping formula (2.4) are
independent of time, so if applied in Eq. (1.1), we get zero
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on the left-hand sides. Summation of the equations for both
orientations gives

0 = ∂x[h(x)∂xeγ (x) − 2 f h(x)eγ (x)ω̂(x, ∂x )]
ps(x)

A(x)
; (A1)

their subtraction results in

0 = (−4αheγ ω̂ + ∂x[2h∂xeγ ω̂ − f heγ ])
ps

A
, (A2)

omitting the obvious arguments and abbreviating h = h(x) =
e−U (x), the Boltzmann weight of the potential U (x). The first
equation is the stationary mass conservation, 0 = ∂xJ; the
second one generates 1/D(x) and γ ′(x) after applying some
tricks.

First we demonstrate the tricks on Eq. (A1), checking the
identity. We use Eq. (2.7) to replace 2 f heγ ω̂ in Eq. (A1) by
A(γ ′ + Ẑ∂x ), i.e.,

0 = ∂x[heγ (∂x + γ ′) − A(γ ′ + Ẑ∂x )]
ps

A

= ∂x[A(1 − Ẑ )]∂x
ps

A
= −∂xJ,

which is zero for the stationary ps.
In Eq. (A2), we also replace 2 f ω̂ by γ ′ + Ẑ∂x, and express

the term ∼α,

2α

f
heγ (γ ′ + Ẑ∂x )

ps

A
= ∂x

[
h

f
∂xeγ (γ ′ + Ẑ∂x ) − f heγ

]
ps

A
.

(A3)
The stationary ps can be formally expressed from Eq. (2.15),
ps/A = − ∫

J/(AD)dx. The net flux J is irrelevant; we set J =
−1. Then we obtain the relations

(1 − Ẑ )
1

AD
= 1

A
, Ẑ

1

AD
= Ẑ∂x

ps

A
= 1

A

(
1

D
− 1

)
,

from Eq. (2.7) and use them in the next adaption of Eq. (A1),

2α

[(
1

D
− 1

)
+ Aγ ′ ps

A

]

= ∂x

[
h∂xeγ

(
1

A

[ 1

D
− 1

]
+ γ ′ ps

A

)
− f 2A

( ps

A

)]

= ∂xh∂x
1

h

(
1

D
− 1

)
+ h(eγ )′′

1

AD
+ [h(eγ )′′]′

ps

A

+
(

γ ′

D

)′
− (

f 2A
)′ ps

A
− f 2A

1

AD
(A4)

after some algebra. The derivative of ps/A was everywhere
expressed by 1/AD. The terms where it remained untouched
correspond to the functional part ω(x) of the operator ω̂,
Eq. (2.7), not containing ∂x. They are eliminated by setting
the proper gauge γ ′(x), so these terms form the equation for
γ (x); the rest gives the equation fixing 1/D(x).

We begin with the equation for γ . Collecting the terms with
remaining ps/A, we get

2αγ ′ = eU−γ ∂xe−U
(
∂2

x − f 2
)
eγ . (A5)

On one hand, we can expand now γ (x) in the small parame-
ter τ = 1/2α, Eq. (2.8). The recurrence scheme obtained by
comparing the coefficients at the same powers of τ is direct
and so effective. Starting with the zeroth order, eγ → 1, we

recover immediately γ ′
1 = f 2U ′, Eq. (2.11). The next orders

require us to commute eγ forward to cancel e−γ , retaining the
lower-order coefficients of γ ′ and their derivatives, recovering
the results for γ ′

n, Eqs. (2.13), (2.14), etc.
The second possibility of how to solve Eq. (A5) is expan-

sion in the powers of f 2. Instead of γ , we rather expand

E (x) = eγ (x) = 1 +
∞∑
j=1

f 2 jE j (x), (A6)

for which Eq. (A5) is homogeneous. Comparing the coeffi-
cients at the same powers of f 2, we obtain a simple chain
generating the recursive equations for Ej . We focus here only
at the leading term E1(x), given by the terms ∼ f 2,

2αe−U (x)E ′
1(x) = ∂xe−U (x)[∂xE ′

1(x) − 1]. (A7)

The solution can be expressed as

E ′
1 = [2αe−U − ∂xe−U ∂x]−1(−e−U )′

=
∞∑

n=1

1

(2α)n
[eU ∂xe−U ∂x]n−1U ′. (A8)

One can easily compare the coefficients at 1/(2α)n with the
coefficients of γ ′

n ∼ f 2, Eqs. (2.11), (2.13), (2.15), etc., as
γ ′ = (ln E )′ = f 2E ′

1 + f 4(E ′
2 − E1E ′

1) + · · · . Also it is easier
to find the corresponding integral parts of γn from them,
Eq. (2.18), generating the effective force 
γ/L in asymmetric
periodic channels, driving the ratchet effect,

Ẽ1,3 = −
∫

U ′U ′′2dx,

Ẽ1,4 = 2
∫

U ′(U (3) )2dx,

Ẽ1,5 =
∫ [

U ′(U ′U ′′)′2 − 3U ′(U (4) )2 − 6U ′′U (3)U (4)
]
dx,

. . . . (A9)

Collecting the terms free of ps/A in Eq. (A4), we obtain the
equation for 1/D(x),

2α

(
1

D
− 1

)
= ∂xe−U ∂xeU

(
1

D
− 1

)
+ γ ′′ + γ ′2

D

+
(

γ ′

D

)′
− f 2

D
; (A10)

it requires to have γ ′(x) already calculated. If also 1/D is
expanded in τ = 1/2α, comparing the terms at the same pow-
ers of τ gives a recurrence scheme, which recovers the result
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(2.17). Again, one can expand 1/D(x) in f 2, too: 1/D(x) =
1 + ∑∞

j=1 f 2 jχ j (x). Expressing γ = ln E in Eq. (A10) and
expanding it in f 2 [with use of Eq. (A6)], we find recurrence
relations for the coefficients χ j . The leading correction is

given by

2αχ1 = ∂xe−U ∂xeU χ1 − 1 + 2E ′′
1 . (A11)

If expanded also in τ , it reproduces the coefficients ∼ f 2 of
1/D(x) in Eq. (2.17).
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