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Ordering kinetics in the active model B
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We undertake a detailed numerical study of the Active Model B proposed by Wittkowski et al., [Nature
Commun. 5, 4351 (2014)]. We find that the introduction of activity has a drastic effect on the ordering kinetics.
First, the domain growth law shows a crossover from the usual Lifshitz-Slyozov growth law for phase separation
(L ∼ t1/3, where t is the time) to a novel growth law (L ∼ t1/4) at late times. Second, the equal-time correlation
function of the density field exhibits dynamical scaling for a given activity strength λ, but the scaling function
depends on λ.
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I. INTRODUCTION

The ordering kinetics of an assembly of self-propelled
particles (SPPs) is of great current interest [1,2]. Each SPP
converts its internal energy into a systematic movement,
thereby violating time-reversal symmetry (TRS) [3]. These
systems range in size from a few μm (e.g., actin and tubulin
filaments, molecular motors [4,5], unicellular organisms such
as amoeba and bacteria [6]) to several meters (e.g., schools
of fish [6], bird flocks [7], human crowds [8]). An important
example of SPPs is an active Brownian particle (ABP), which
is symmetric in shape but has a preferred direction of motion
[9]. However, all symmetric SPPs need not be ABPs. In the
last two decades, there have been many numerical and exper-
imental studies of self-propelled microswimmers and active
colloids on heterogeneous substrates and in confined channels
[10–19]. ABPs constitute a theoretically idealized model for
these systems. In a recent study, Volpe et al. [19] showed
that ABPs do not obey the Maxwell-Boltzmann distribution,
which is a signature of their out-of-equilibrium nature. More-
over, unlike passive Brownian particles, a collection of ABPs
shows directed motion in a microchannel decorated with a
series of asymmetric dents on both walls [19]. In a recent
paper, we found that an ABP shows directed transport in a
corrugated narrow channel, and the transport speed of the
particle depends on the packing fraction of the system [10].
The directed motion of ABPs helps to deliver microscopic
cargoes to a specific location [20].

One of the interesting features of an assembly of ABPs
is that they show motility-induced phase separation (MIPS)
and their self-propulsion speed depends on the local density
[9,21–25]. As the name suggests, this interesting phenomenon
is solely due to the motility of each individual agent. Many
studies have focused on understanding MIPS [26]. A recent
paper by Wittkowski et al. [27] introduced the Active Model B
to study domain growth kinetics in a collection of ABPs. Their
dynamical update equation for the local order parameter of

the system is similar to the Cahn-Hilliard (CH) equation [28]
or Model B [29] for a conserved order parameter. The active
nature of the ABPs is modeled via an additional term (of
strength λ), which cannot be derived from an equilibrium free
energy functional. The resultant update equation is termed
the Active Model B (AMB) [27]. (A microscopic derivation
of the AMB has recently been presented by Bickmann and
Wittkowski [24].) Wittkowski et al. [27] have also presented
preliminary numerical studies of coarsening kinetics in the
AMB. They made two important observations: (i) The domain
growth kinetics is not severely affected by the additional ac-
tivity term. (ii) The static phase diagram is altered due to a
pressure jump across interfaces.

In this paper, we undertake a detailed theoretical study of
domain growth kinetics in the AMB with a critical composi-
tion. We will present results for an off-critical composition
at a later stage. Our results are complementary to those of
Wittkowski et al. However, there are important points of dif-
ference, which we highlight below.

We consider the evolution of the AMB from a homoge-
neous and disordered initial condition, as is customary in
studies of domain growth [30,31]. The evolution is charac-
terized by the emergence and growth of domains or ABP
clusters. The domain size grows as a power law in time
t : L(t ) ∼ t1/z, where z is the dynamic growth exponent. In
the absence of activity (λ = 0), it is well known that z = 3,
which is referred to as the Lifshitz-Slyozov (LS) growth law
[30,31]. We find that the active term has a major impact on
the coarsening kinetics. Most importantly, z shows a crossover
from z = 3 at early times to z = 4 at late times. The crossover
time tc decreases as a power law with the activity strength,
tc ∼ λ−3/2. Moreover, the density correlation function shows
dynamical scaling for a given λ, but the scaling function varies
with λ.

This paper is organized as follows. In Sec. II, we introduce
the AMB proposed by Wittkowski et al. In Sec. III, we present

2470-0045/2021/104(1)/014606(7) 014606-1 ©2021 American Physical Society

https://orcid.org/0000-0002-8207-1608
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.104.014606&domain=pdf&date_stamp=2021-07-22
https://doi.org/10.1038/ncomms5351
https://doi.org/10.1103/PhysRevE.104.014606


PATTANAYAK, MISHRA, AND PURI PHYSICAL REVIEW E 104, 014606 (2021)

detailed numerical results for domain growth in the AMB. In
Sec. IV, we summarize our main conclusions.

II. MODEL

We consider an assembly of ABPs on a two-dimensional
(d = 2) substrate and study the dynamics of the system. The
ABPs move with a self-propulsion speed v0, and their char-
acteristic rotation frequency is τ−1. The local density of the
ABPs is denoted as n(�r, t ), where �r is the position vector. In
the simulations described shortly, we initially set the mean
value of n(�r, 0) = 0.5 with random small-amplitude fluctu-
ations lying between −0.05 and 0.05. The corresponding
order parameter is ψ (�r, t ) = 2n(�r, t ) − 1, so that regions with
ψ > 0 are enriched in particles. This system can be modeled
by a coarse-grained partial differential equation for ψ (�r, t ).
The derivation of the hydrodynamic equation can be found in
Ref. [22]. The resultant model can be expressed as a continu-
ity equation for the conserved order parameter:

∂

∂t
ψ (�r, t ) = −�∇ · �J (�r, t ),

�J (�r, t ) = −�∇μ(�r, t ), (1)

where �J (�r, t ) is the current. The corresponding chemical po-
tential is [27]

μ(�r, t ) = −ψ (�r, t ) + ψ (�r, t )3 − ∇2ψ (�r, t ) + λ| �∇ψ (�r, t )|2.
(2)

The above equations are formulated in dimensionless units.
These are obtained by rescaling space by a persistence length
v0τ , and time by the relaxation time τ . The chemical po-
tential μ in Eq. (2) is the sum of bulk (μ0) and gradient
(μ1) contributions. The bulk part is the same as for Model
B, μ0 = −ψ (r, t ) + ψ (�r, t )3, and is derived from the bulk
free-energy density of a symmetric Ginzburg-Landau (GL)
ψ4-field theory [30]. The gradient term can be written as
the sum of two terms, μ1 = μ

p
1 + μa

1. Here, μ
p
1 = −∇2ψ is

derivable from the square-gradient term in the GL free-energy
density. The term μa

1 is the active term, which breaks TRS and
has strength λ, which is a tunable parameter in our study. This
term is not obtainable as the derivative of a free energy, and
its origin is similar to the lowest-order nonlinear interfacial
diffusion term in the Kardar-Parisi-Zhang or KPZ equation
for surface growth [32]. The nonlinear gradient term arises
due to lateral growth, analogous to the Eden growth of a
surface described by a height profile. This term provides a
positive feedback, which slows down particles in the high-
density region, resulting in an accumulation of the particles.
The activity strength λ depends on the functional form of
the density-dependent speed of the ABPs [27]. Therefore, the
proposed update equation for ψ (�r, t ) in the AMB is

∂

∂t
ψ (�r, t ) = �∇ · [ �∇(−ψ + ψ3 − ∇2ψ + λ| �∇ψ |2)]. (3)

We numerically integrated Eq. (3) on a d = 2 lattice of
size N2 with periodic boundary conditions. We used a sim-
ple Euler discretization scheme with mesh sizes �x = 1.0
and �t = 0.01. The space mesh is small enough to resolve
coarsening interfaces, and the time mesh is adequate to ensure
stability of the numerical scheme. The initial condition for
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FIG. 1. Evolution snapshots of the system at different times (t )
for various values of activity (λ). The system size is N2 = 5122, and
the average order parameter is ψ0 = 0, corresponding to a critical
composition. The color bar denotes the range of ψ-values.

a run consisted of the order parameter field ψ (�r, 0) having
small-amplitude fluctuations about an average value ψ0 = 0.
This case corresponds to a critical composition with an equal
number of occupied and empty sites. All cases with ψ0 �= 0
are referred to as off-critical systems. In our simulations, λ is
varied from 0 to 4. The latter is the largest value of λ for which
we can have coexisting domains [27]. For λ = 0, the model
reduces to the standard Model B [30]. All results presented
here are for lattice sizes N = 512, and statistical quantities
are averaged over 100 independent runs.

III. RESULTS

First, we study the evolving domain morphology for dif-
ferent values of λ. The snapshots of the local order parameter
ψ (�r, t ) for λ = 0.0, 0.5, 1.0, 2.0, 4.0 at different times are
shown in Fig. 1. The light and dark regions represent ψ > 0
and ψ < 0, respectively. There is an asymmetry between the
saturation (fixed point) values of ψ for the two regions. We
introduce the spatial coordinate z, which varies from −∞ to
+∞. The static kink solution ψs(z) of Eq. (3) is obtained from
[27]

−ψs + ψ3
s − d2ψs

dz2
+ λ

(
dψs

dz

)2

= μs, (4)

where the static chemical potential μs is nonzero for λ �= 0.
For small values of λ, a perturbative calculation yields

μs(λ) = 4

15
λ + O(λ3). (5)
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It is clear from Eq. (4) that μs(−λ) = −μs(λ), so that there
are only odd terms in the expansion of μs(λ). At large dis-
tances (z → ±∞) from the kink center, we can ignore the
derivative terms in Eq. (4). Thus, the saturation values of the
order parameter are obtained from

−ψs + ψ3
s = μs(λ). (6)

In the Landau theory of phase transitions, Eq. (6) is recog-
nized as the equation, which determines the magnetization of
a ferromagnet in a magnetic field μs. We can obtain the exact
solutions (ψ0, ψ1, ψ2) of this cubic equation. The correspond-
ing perturbative result is

ψ1 = +1 + μs

2
,

ψ0 = −μs

2
,

ψ2 = −1 + μs

2
. (7)

Clearly, the magnitude of ψs in the light phase (ψ1) is
higher than that in the dark phase (ψ2) for λ > 0. Let us
denote the fraction of the light and dark phases as φ1 and φ2 =
1 − φ1, respectively. The conservation constraint requires that

φ1ψ1 + φ2ψ2 = 0, (8)

as the overall composition is critical. In Model B, ψ1 = +1
and ψ2 = −1, i.e., φ1 = φ2 = 1/2. This results in a bicontin-
uous morphology, seen in the bottom row of Fig. 1. In the
AMB, on the other hand, there is an asymmetry in the order
parameter values in both domains, as seen in Eq. (7). Using
Eq. (8), we obtain

φ1 = − ψ2

ψ1 − ψ2
, φ2 = ψ1

ψ1 − ψ2
. (9)

Therefore, φ1 is less than φ2 for λ > 0: φ2 − φ1 = 2λ/15 +
O(λ3). Hence, we see a droplet morphology at late times
rather than the bicontinuous morphology, which is character-
istic of Model B. We note that Eq. (3) is symmetric under the
transformation ψ → −ψ and λ → −λ. Thus, the evolution
morphologies for λ < 0 are analogous to those in Fig. 1,
except the droplets would be of the particle-poor phase.

The domain morphology is quantitatively characterized by
the two-point correlation function:

C(r, t ) = 〈ψ ( �R + �r, t )ψ ( �R, t )〉 − 〈ψ ( �R + �r, t )〉〈ψ ( �R, t )〉,
(10)

where the 〈..〉 denotes an average over reference positions �R,
spherical averaging over different directions, and 100 inde-
pendent runs. It is apparent from Fig. 1 that the evolution
morphology is characterized by a single length scale L(t ).
This results in the dynamical scaling of the correlation func-
tion [30]:

C(r, t ) = f (r/L), (11)

where f (x) is the scaling function. The domain size L(t ) is
defined as the characteristic scale over which the correlation
function C(r, t ) decays to (say) 0.5 times its maximum value
at r = 0.

We plot L(t ) vs t on a log-log scale for λ =
0.0, 0.5, 1.0, 2.0 in Fig. 2(a). We note that z = 3 for Model
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FIG. 2. (a) Log-log plot of L vs t for λ = 0.0, 0.5, 1.0, 2.0. The
lines labeled 1/3 and 1/4 denote the growth laws L ∼ t1/3 and L ∼
t1/4, respectively. (b)–(e) Plot of effective exponent (1/zeff ) vs t for
λ = 0.0, 0.5, 1.0, 2.0 (from top to bottom). In each frame, we have
drawn horizontal lines at 1/zeff = 1/3 and 1/zeff = 1/4.

B [30], whereas it crosses over from 3 to 4 for the AMB. To
confirm this, we estimate the effective growth exponent 1/zeff

as a function of t :

1

zeff
= d ln L

d ln t
. (12)

In Figs. 2(b)–2(e), we show the variation of 1/zeff with t for
the data sets in Fig. 2(a). These plots show considerable fluc-
tuations, as is usual for the effective exponent. However, the
overall trend is quite clear. For Model B (λ = 0.0) in Fig. 2(b),
1/zeff fluctuates around 0.33. For nonzero λ, 1/zeff 
 0.33 at
early times, and shows a crossover to 1/zeff 
 0.25 at late
times. Moreover, we have shown the longer time variation
of 1/zeff for nonzero λ to confirm the 1/4 growth, as shown
in Fig. 3(b). The crossover occurs earlier for larger values of
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FIG. 3. (a) Log-log plot of tc vs λ. Circles and squares represent
data for N = 256 and 512, respectively. The dashed line has a slope
of −3/2. (b) Variation of 1/zeff with t for N = 512 and λ = 1.0.
The upper and lower dashed lines denote slopes 0.33 and 0.25,
respectively.
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λ. We define the crossover time as tc = (t1 + t2)/2, where t1
and t2 are the times when 1/zeff crosses the value 0.29 for
the first and last times, respectively [33]. Figure 3(a) shows
the variation of tc with λ; we see that tc decays algebraically
with activity, tc ∼ λ−θ . The decay exponent is consistent with
θ 
 1.5. We can combine the early- and late-time behaviors
of the length scale in a crossover function:

L(t ) = t1/3g(t/tc),

g(x) → a, x → 0,

g(x) → bx−1/12, x → ∞, (13)

where a and b are constants. A domain growth law of the form
L ∼ t1/4 has been proposed in the context of systems where
phase separation occurs via surface diffusion rather than bulk
diffusion [34,35]. However, surface diffusion is clearly not
the dominant mechanism for the crossover seen in the AMB,
given the nonconnected droplet morphology in Fig. 1.

A few comments regarding this crossover are appropriate:
(i) Wittkowski et al. have also seen signatures of a slower
asymptotic growth than L ∼ t1/3 in the AMB, see Fig. 2 and
the related discussion in Ref. [27]. However, they are not
conclusive regarding the value of the slower exponent. Our
numerical results clearly identify it as 0.25. (ii) We have
confirmed that the asymptotic slowing down is not due to
finite-size effects via the following checks: (a) First, the ap-
proximate domain size at the latest time in our simulations
(see Fig. 2) is of the order of 20 units for Model B and much
less for AMB. The lateral system size in our simulations is
512, i.e., more than 25 times larger than the maximum domain
size. We expect finite-size effects to manifest only when the
domain scale is larger than approximately 20% of the system
size [36]. (b) Second, in Fig. 3(a), we show tc vs λ for systems
of size 2562 and 5122. This plot shows that the crossover
time is unaffected even by halving the system size used in our
simulations. In Fig. 3(b), we plot 1/zeff vs t up to t = 50000
for λ = 1. The final time is much larger than the crossover
time (tc ∼ 3000); we find that the late-time exponent stays
at 0.25. (c) Third, we have also done test simulations with
larger system sizes and longer times but with poorer statistics.
Again, we find that the asymptotic exponent remains at 0.25.

To gain some insights on this crossover, let us examine the
shrinking dynamics of a bubble of phase 2 (ψ2 < 0) in a back-
ground of phase 1 (ψ1 > 0). For simplicity of presentation, we
consider a bubble in d = 3 though our simulations correspond
to d = 2. The growth laws are expected to be the same for
d � 2, based on our experience of domain growth problems
[30,31]. In that context, different growth laws arise only for
d = 1, where there is no role of curvature. The initial size of
the bubble is R(t = 0) = R0, and the time-dependent size is
R(t ). There is a direct relationship between the dynamics of
R(t ) and L(t ). In the absence of activity (λ = 0), the shrinking
of a d = 3 bubble obeys [31]

dR

dt
= − σ

2R2
, (14)

where σ is the surface tension. The solution of Eq. (14) is

R3
0 − R(t )3 = 3σ t

2
. (15)

Thus, a bubble of size R0 evaporates on the time scale t0,
where R0 = (3σ t0/2)1/3. For the coarsening process, this
means that all structures of size � (σ t )1/3 have vanished by
time t . This directly yields the well-known LS domain growth
law, L(t ) ∼ (σ t )1/3.

How is Eq. (14) modified by the activity λ? Given the
invariance of Eq. (3) under the transformation λ → −λ, ψ →
−ψ , we naively expect that there will be no odd powers of λ

in the generalization of Eq. (14). Let us confirm the validity
of this to O(λ), where the calculation is relatively straightfor-
ward. Our discussion follows that of Bray [31]. The starting
point of our discussion is Eq. (3) in more general notation:

∂ψ

∂t
= ∇2[V ′(ψ ) − ∇2ψ + λ| �∇ψ |2] ≡ ∇2μ, (16)

where we have introduced the ψ4 potential, V (ψ ) =
−ψ2/2 + ψ4/4. In the late stages of domain growth, the bulk
domains are saturated to their equilibrium values ψ1 and ψ2.
There are small fluctuations about these values, e.g., ψ =
ψ1,2 + φ, which drive domain growth. We linearize Eq. (16)
in φ to obtain

∂φ

∂t

 V ′′(ψ1,2)∇2φ − ∇4φ. (17)

As argued by Bray, we can neglect the ∂/∂t and ∇4 terms
in Eq. (17). Therefore, in the bulk domains, the fluctuations
obey the Laplace equation ∇2φ = 0. The linearized chemical
potential in the bulk is μ 
 V ′′(ψ1,2)φ − ∇2φ. Again, the
∇2φ term is negligible with respect to V ′′(ψ1,2)φ because the
additional derivatives in ∇2φ give an extra factor of 1/L2.
Thus, the chemical potential also obeys the Laplace equation
in the bulk:

∇2μ = 0. (18)

Next, we derive the boundary conditions imposed on μ by
the interfaces. We assume that the interfaces are almost equi-
librated to the kink profile ψs(z). We introduce the coordinate
system (g, �s), where g is normal to the interface (going from
ψ2 to ψ1 with the interface located at g = 0). The coordinates
�s are tangential to the interface. To obtain μ at the interfaces,
we need

�∇ψ = ∂ψ

∂g

∣∣∣∣
�s
ĝ,

∇2ψ = ∂2ψ

∂g2

∣∣∣∣
�s
+ ∂ψ

∂g

∣∣∣∣
�s
�∇ · ĝ ≡ ∂2ψ

∂g2

∣∣∣∣
�s
+ ∂ψ

∂g

∣∣∣∣
�s
K. (19)

In Eq. (19), ĝ is the unit vector normal to the interface and K
is the local curvature. Thus, near the interface,

μ = V ′(ψ ) − ∂ψ

∂g

∣∣∣∣
�s
K − ∂2ψ

∂g2

∣∣∣∣
�s
+ λ

(
∂ψ

∂g

∣∣∣∣
�s

)2

. (20)

We multiply Eq. (20) by ∂ψ

∂g |�s, which is sharply peaked at g =
0, and integrate g from −∞ to ∞. This yields

μ�ψ = �V − αK −
∫ ∞

−∞
dg

1

2

∂

∂g

(
∂ψ

∂g

∣∣∣∣
�s

)2

+ βλ, (21)
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where

�ψ = ψ1 − ψ2 = 2 + O(λ2),

�V = V (ψ1) − V (ψ2) = O(λ2),

α =
∫ ∞

−∞
dg

(
∂ψ

∂g

∣∣∣∣
�s

)2

,

β =
∫ ∞

−∞
dg

(
∂ψ

∂g

∣∣∣∣
�s

)3

. (22)

To obtain α and β, we need the static kink solution from
Eq. (4). We use the expansion

ψs(z) = tanh

(
z√
2

)
+ λψ1(z) + O(λ2), (23)

where the leading term is the kink solution for Model B. The
resultant equation for ψ1(z) is

d2ψ1

dz2
+

[
1 − 3 tanh2

(
z√
2

)]
ψ1 = 1

2
sech4

(
z√
2

)
− 4

15
.

(24)

From Eq. (24), it is simple to confirm that ψ1(−z) = ψ1(z).
Thus

α =
∫ ∞

−∞
dg

[
1√
2

sech2

(
g√
2

)
+ λ

dψ1

dg

]2

= 1

2

∫ ∞

−∞
dg sech4

(
g√
2

)
+ O(λ2)

= σ + O(λ2), (25)

where σ = 2
√

2/3 is the surface tension for Model B. For β,
we multiply Eq. (4) by dψs/dz and integrate z from −∞ to ∞.
This yields �V + λβ = μs�ψ . Replacing this in Eq. (20), we
obtain the chemical potential on the interfaces as

μ = − α

�ψ
K + μs. (26)

Recall that we are interested in the shrinking dynamics of
a spherical bubble of radius R(t ). The center of the bubble is
located at r = 0. The chemical potential in the bulk is obtained
as the solution of Laplace’s equation ∇2μ = 0. The curvature
for a d = 3 bubble is K = 2/R. Thus, the appropriate expres-
sion for μ(r) is

μ(r) = − 2α

�ψ

1

R
+ μs, r � R,

= − 2α

�ψ

1

r
+ μs, r > R. (27)

In Eq. (27),

2α

�ψ
= σ + O(λ2)

1 + O(λ2)
. (28)

The shrinking of the bubble occurs via material transport by
the radial current across the boundary, which is located at
r = R(t ). Recalling that the current is obtained as the negative
gradient of the chemical potential, the size of the bubble

obeys

dR

dt
= − 1

�ψ
�∇μ

∣∣
r=R

= − 2α

(�ψ )2

1

R2

 −σ + O(λ2)

2

1

R2
, (29)

yielding the LS growth law with a λ2-dependent prefactor.
From the above discussion, it is clear that a simple general-

ization of bubble dynamics to the case of nonzero background
chemical potential is not adequate to capture the crossover in
the growth law seen in the AMB. We need a more sophis-
ticated theory, which accounts for the modification of α and
β in Eq. (21) by the local curvature of the interface. This is
beyond the scope of the present paper. of course, based on the
numerical results, we can propose several simple phenomeno-
logical equations to capture the crossover in the growth law,
e.g.,

dL

dt
= a1

L2(1 + b1L)
, (30)

or

dL

dt
= a2

L2
√

1 + b2L2
. (31)

However, such a venture would be speculative so we do not
pursue it further.

Finally, let us study the dynamical scaling behavior of
the correlation function C(r, t ) for different values of λ. In
Figs. 4(a)–4(b), we plot C(r, t ) vs r/L [see Eq. (11)] for
λ = 0.5 and 1.0, respectively. We superpose data at four dif-
ferent times, two at t < tc, and two at t > tc. The data sets
neatly collapse and confirm scaling in the system. Clearly, the
crossover in the growth law does not affect the system mor-
phology. The solid curve in Figs. 4(a)–4(b) denotes the scaling
function for Model B. This is seen to differ from the AMB
scaling functions. Recall that Model B shows a bicontinuous
morphology, whereas the AMB shows a droplet morphology,
see Fig. 1. A droplet morphology would arise in Model B for
an off-critical composition, with unequal fractions of the two
species. In Fig. 4(c), we check whether the droplet scaling
function is dependent on λ by plotting C(r, t ) vs r/L for
λ = 0.5, 1.0, 2.0 at t = 25000 � tc(λ). The scaling function
changes continuously with λ. With increase in λ, the composi-
tion asymmetry of the two phases becomes more pronounced.
This changes the relative fraction or effective off-criticality of
the particle-rich and particle-poor phases. It is known that the
scaling function depends on the off-criticality [37], which is
reflected in Fig. 4(c).

IV. SUMMARY

Let us conclude this paper with a summary and discussion
of our results. We have undertaken a detailed numerical study
of ordering kinetics in the Active Model B (AMB) proposed
by Wittkowski et al. [27]. The AMB consists of the usual
Cahn-Hilliard (CH) equation or Model B for the kinetics of
phase separation, supplemented by an active term of strength
λ. The active term breaks time-reversal symmetry and is not
derivable from a Ginzburg-Landau free energy. The CH equa-
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FIG. 4. (a) Scaling plot of C(r, t ) vs r/L for λ = 0.5. We plot
data at the indicated times. The solid line denotes the scaling function
for Model B at critical composition. (b) Analogous to (a), but for
λ = 1.0. (c) Scaling functions for different values of λ at t = 25000.

tion exhibits static kink solutions connecting the particle-rich
(ψ = +1) and particle-poor (ψ = −1) phases. These kink
solutions correspond to a uniformly zero value of the chemical
potential. In the AMB, there also exist static kink solutions
for λ � 4. However, these differ from the CH kinks in two
important ways: (i) the composition of the two phases is asym-
metric; (ii) the background chemical potential is nonzero.

Our numerical study of the AMB demonstrates two impor-
tant features: (i) The domain growth law crosses over from

L ∼ t1/3 (the usual Lifshitz-Slyozov or LS law for phase sep-
aration) at early times to L ∼ t1/4 at late times. The crossover
time scale is consistent with the scaling behavior tc ∼ λ−3/2.
To gain some insights on this crossover, we have examined
possible extensions of the dynamical equation for shrinking
of a bubble. The obvious generalization to the case of nonzero
background chemical potential is not adequate to account for
the crossover. This only modifies the surface tension prefactor
in the LS growth law by a λ2-dependent factor. We need
a more sophisticated modification, which accounts for the
manner in which local curvature is affected by the active term.
(ii) The composition asymmetry of the two phases yields a
droplet morphology, even when the overall composition is
critical. This has important consequences for the dynami-
cal scaling of the correlation function. For a given activity
strength λ, the correlation function obeys dynamical scaling.
Thus, the morphology is not affected by the crossover in the
growth law. However, the scaling function has a continuous
dependence on λ.

Before concluding, it is relevant to discuss some potentially
interesting directions for this problem. In conventional studies
of domain growth [30], it is customary to neglect thermal fluc-
tuations because these are irrelevant in the asymptotic regime
[38]. Following Ref. [27], we have also studied the determin-
istic model in this paper. However, we should emphasize that
it is by no means evident that thermal fluctuations are irrele-
vant for the AMB also. For example, thermal noise enhances
cluster coalescence, which may change the growth exponents
in the intermediate and late stages of growth. Clearly, it is
important to systematically study the effects of noise in the
AMB. Another interesting direction is the role of composition
or off-criticality in the AMB dynamics. A preliminary study of
both these effects has been undertaken by us in a companion
paper [39]. However, many important issues remain open for
further study.

This problem is of great topical interest, given the current
focus on active matter. We hope that our numerical results
will motivate further analytical and numerical interest in this
problem. Clearly, the outstanding problem is the development
of an interface-kinetics theory to explain the crossover in the
domain growth law.
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