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Rheology of granular liquids in extensional flows: Beyond the μ(I )-law
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The Granular Integration Through Transients (GITT) formalism gives a theoretical description of the rheology
of moderately dense granular flows and suspensions. In this work, we extend the GITT equations beyond the case
of simple shear flows studied before. Applying this to the particular example of extensional flows, we show that
the predicted behavior is somewhat different from that of the more frequently studied simple shear case, as
illustrated by the possibility of nonmonotonous evolution of the effective friction coefficient μ with the inertial
number I. By the reduction of the GITT equations to simple toy models, we provide a generalization of the
μ(I )-law true for any type of flow deformation. Our analysis also includes a study of the Trouton ratio, which is
shown to behave quite similarly to that of dense colloidal suspensions.
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I. INTRODUCTION

Granular matter encompasses all systems whose elemen-
tary constituents are large particles (typically bigger than
100 μm) [1]. Such particles are therefore quite sensitive to the
gravitational field on Earth. As a result, most granular flows
we can observe around us are dense flows, with a packing
fraction ϕ typically bigger than 40%. In those conditions,
granular matter is in the so-called granular-liquid state [1].
Granular liquids have been at the center of an intense research
activity both in fundamental physics [2–11] and at the in-
terface between physics and geosciences [12–20] or biology
[21–23].

Granular liquids fall into the category of complex liquids,
meaning that their macroscopic behavior is somewhat be-
tween that of a solid and that of a simple liquid. A convenient
way to quantify how far from a simple liquid the system be-
haves is to study its effective friction coefficient μ. By analogy
with the Coulomb law of solid friction, μ can be used to
determine whether a granular liquid going down a slope with
a given angle can develop a stationary flow or not [24]. Thus a
simple liquid is expected to have μ = 0, whereas more com-
plex soft materials have higher μ as their behavior becomes
increasingly solid-like. Unlike solids, however, the effective
friction coefficient of complex liquids typically depends on
the shear rate in a given flow configuration.

One of the most remarkable properties of granular liquids
is that μ obeys a universal scaling law as a function of the
shear rate γ̇ , or more precisely a dimensionless shear rate,
called the inertial number I [2]. This scaling law is called the
μ(I )-law and can be written as

μ(I ) = μ1 + μ2 − μ1

1 + I0/I
, (1)
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where μ1, μ2, and I0 are characteristics of the material.
The combination of its simplicity, universality, and ability
to provide a satisfactory phenomenological law to describe
experimental and numerical data [6,7,25,26] makes the μ(I )-
law a particularly powerful tool.

Providing a theoretical framework to account for those
phenomena on the other hand is still a challenging task. In that
respect, one promising candidate is the Granular Integration
Through Transients formalism (GITT) [27–30]. It has been
shown that GITT predictions are quantitatively compatible
with the existing experimental and numerical literature [29],
and that GITT equations can be broken down to analytically
tractable toy models from which one can derive the expression
Eq. (1) [30]. Moreover, the GITT framework can easily be
extended to granular suspensions, where it can be used to
provide simple phenomenological laws analogous to Eq. (1)
[30] in cases where no consensus exists yet [25,31–33].

However, the equations derived in previous works [27–30]
apply only to simple shear flows. While this case is relevant
to a number of natural flows, such as avalanches for example
[13,24], it does not provide a full description of the possible
rheological behaviors of granular liquids. This work presents
a generalization of the GITT equations to all steady incom-
pressible flows. Through the study of the particular example of
extensional flows, we show that the law (1) does not account
for all the phenomenology of granular rheology when the
applied stress is not pure shear. Due to the method outlined
in [30] we propose alternatives to the μ(I )-law for granular
liquids and granular suspensions that can be tested experi-
mentally or numerically. This is all the more important and
to the best of our knowledge, the evolution of μ in granular
liquids and suspensions under extensional flows we report
here is quite new. Indeed, even though a number of recent
studies have addressed the rheology of non-Brownian suspen-
sions under extensional flows despite experimental difficulties
[34–43], none of them proposed a study of the evolution of the
effective friction coefficient in those conditions.
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The paper is organized as follows: we first derive the gen-
eral GITT equations. Then we derive from them a proper
framework to describe the evolution of the observables of
granular-liquid rheology. Third, the next section presents the
application of this formalism to the particular case of exten-
sional flows, both planar and uniaxial. Finally, we conclude.

II. GENERAL GITT EQUATIONS FOR INCOMPRESSIBLE
STATIONARY FLOWS

The full derivation of the GITT equations from first prin-
ciples is quite long; we therefore restrict ourselves in the
following to the part most relevant to our purpose and refer
the interested reader to the detailed work [28].

A. The Integration Through Transients formalism

Let us consider a granular liquid consisting of N particles,
represented by frictionless hard spheres interacting through
dissipative collisions with a restitution coefficient ε. This
is a less idealized model than it may appear at first sight
[20,29,44]. Indeed, interparticle friction becomes relevant
only for the rheology of very dense granular liquids close to
the density of the granular solid [8,11,29]. We thus restrict
ourselves to high densities but sufficiently far away from
the friction-dominated regime. It should be noted, however,
that defined in that way, the liquid state of granular matter
does not extend up to the transition to the solid state which
depends on the value of the interparticle friction coefficient
[45–49]. The transition between the liquid and interparticle
friction-dominated regime has been estimated to take place
for inertial numbers I � 0.003 [48].

The rheology of the granular-liquid under consideration is
studied in a stationary flow defined by the average velocity
profile v = κ · r, r being the position vector. Note that κ does
not need to be symmetric, such as for the simple shear flow,
for example, where it can be defined by κi j = γ̇ δixδ jy. In
addition, we restrict ourselves to incompressible flows, so that
Tr(κ ) = 0.

The dynamics of the system is described by a mode cou-
pling equation of motion. The full derivation of this equation
can be found in [28]. Since it is not modified by the intro-
duction of a more general flow matrix κ , and does not play
a central role in what follows, we just recall its most salient
features.

In Mode Coupling Theory (MCT), the dynamical evolution
of the system is studied by use of its dynamical structure
factor �q(t ) which is the normalized density-density corre-
lation function: �q(t ) = 〈ρq(t )ρ−q〉/Sq, where Sq = 〈ρqρ−q〉
is the static structure factor [27,28,50–55]. The general MCT
equation has the structure of a Mori-Zwanzig equation:

�̈q(t ) + νq�̇q(t ) + 
2
q�q(t ) + 
2

q

∫ t

0
dτ mq(t, τ )�̇q(τ ) = 0,

(2)

where νq and 
q are characteristic frequencies, and mq is
a memory kernel. In simple liquids, the memory kernel is
very small, and �q(t ) follows an exponential relaxation, with
a typical rate related to its diffusion coefficient. In complex
liquids, the last term of Eq. (2) grows and typically leads to the

appearance of a plateau in the time evolution of �q(t ) that can
extend over several decades in time. This plateau is related to
the so-called “cage effect,” namely, the slowing of the average
particle’s motion due to its interaction with its neighbors.

In the MCT scope, if the plateau of �q(t ) extends to infinite
times, the system reaches the solid state. Note, however, that
such a scenario can never happen in the systems we study
here, which are always melted by the external shear stress.
Moreover, as explained above, the granular-liquid regime we
study does not extend arbitrarily close to the solid phase.
We are thus interested only in the emergence of the plateau,
due to the steric repulsion between the inelastic hard spheres,
corresponding to the onset of complex behavior in the liquid.
Hence, MCT is used precisely in the regime it best describes.
The full content of the terms in Eq. (2) is not needed in the
rest of this study. The interested reader is referred to [28,29]
for the details.

Our main goal is to study the rheology of the system, which
we do by studying the evolution of the statistical averages
of the components of the stress tensor 〈σαβ (t )〉(γ̇ ). Here the
superscript is used to recall that such an average is taken
over the configurations of the sheared system, which is an
out-of-equilibrium system and is therefore quite challenging
to compute. A way to simplify its computation is to use the In-
tegration Through Transients (ITT) formalism, which relates
the average in the sheared system 〈·〉(γ̇ ) to a statistical average
taken in a fictitious reference system, noted 〈·〉(0) [51–53].

In the context of colloidal suspensions, the reference state
is chosen to be the unsheared state, so that the ITT formalism
transforms averages in the out-of-equilibrium-sheared system
into averages in the unsheared system, which is at equilibrium.
In the case of granular liquids, we keep this choice of refer-
ence state, although because of the dissipative character of the
interactions, the reference system is still out of equilibrium,
and some external source of driving power is needed to main-
tain a liquid state with nonzero granular temperature. More
caution should therefore be used in the latter case (see [28]
for details). Crucially, both the reference state and the sheared
state are stationary states.

Finally, using the mode coupling approximation, all aver-
ages can be projected onto pairs of density operators, so that
the ITT equation writes

〈σαβ〉(γ̇ ) = 〈σαβ〉(0) + 1

2T

∫ +∞

0
dt

∫
k
Vσ

k(−t )�
2
k(−t )(t )Wσ

k,αβ,

(3)
where

∫
k = ∫

d3k/(2π )3, T is the granular temperature, and
the GITT vertices are given by

Vσ
k =

∑
θ,ω

κθωVσ
k,θω = N〈κ : σ el |ρkρ−k〉(0),

Wσ
k,αβ = N〈ρkρ−k|σαβ〉(0)/S2

k , (4)

where “:” denotes a full tensor contraction, N is the number
of particles, and the superscript “el” is here to refer to an
equivalent stress tensor in which all collisions are considered
elastic (the inelastic character of the collisions is already taken
into account at the level of the stress tensor appearing in
the W tensor). The main difference between the general ITT
formalism used to study colloidal suspensions and GITT lies
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in the vertex W , which in particular encodes the dissipative
aspect of the collisions.

Note that due to the mode coupling approximation, most of
the time dependence in Eq. (3) is carried by �k (t ). Moreover,
since in a liquid (even a complex one) �k (t ) decays at least
exponentially fast on a finite time period, the time integral
is always convergent, which ensures that rheological observ-
ables stay finite. Notice also that in Eq. (3), the dynamical
structure factor is evaluated at a time-dependent wave vector
k(−t ). This wave vector is the wave vector advected by the
shear flow, defined as k(t ) = (1 + κt ) · k. The presence of
the advected wave vector has a physical interpretation and
corresponds to the effect of the imposed shear flow on the
internal dynamics of the system. In particular, the advection
of particles by the shear flow, by imposing an average velocity
profile can facilitate the escape of the particles from the cages
formed by their neighbors, thereby providing another decay
channel for the dynamical structure factor. This phenomenon
is crucial insofar as it ensures the efficiency of shear melting
in granular flows with a high packing fraction where the
structural relaxations of �k (t ) in the reference system do not
trigger any decay.

B. The GITT vertices

The computation of the GITT vertices Eq. (4) involves a
priori a high number of different terms. However, a clever
use of the symmetries can reduce this to a smaller number
of defining quantities.

First, let us introduce the orthogonal projectors respec-
tively onto a given vector k and orthogonal to it:

Pαβ
L (k) = kαkβ

k2
,

Pαβ
T (k) = δαβ − kαkβ

k2
. (5)

The microscopic stress tensor can be decomposed on this
projector’s basis as

σαβ (k) = σL(k) Pαβ
L (k) + σT (k) Pαβ

T (k), (6)

so that the computation of the vertices reduces to the evalu-
ation of 〈ρkρ−k|σL〉, 〈ρkρ−k|σT 〉, and their analog in reverse
order (in granular liquids, the time-reversal symmetry is bro-
ken due to the dissipative collisions). This yields, for example
[28],

N〈ρkρ−k|σL〉(0) = 1 + ε

2
T

[ − kS′
k + Sk − S2

k

]
,

N〈ρkρ−k|σT 〉(0) = 1 + ε

2
T

[
Sk − S2

k

]
, (7)

where S′
k = dSk/dk. Note in particular that the contribution

of the dissipative collisions factors out, and has a well-defined
elastic limit ε → 1, yielding back the well-known results in
the MCT study of colloids [51]. A detailed computation of
these averages can be found in [55].

Before going further, let us introduce some more notations.
Indeed, it can be seen in Eq. (3) that in a general flow, many
terms such as those in Eq. (7) would be present, so that it is
useful to define generic scalar quantities which do not depend

on ε, for example, and can therefore be used in the definition
of both V and W . Also, in order to perform the 3D momentum
integral in Eq. (3), it is useful to decompose the vertices
according to their components along k rather than along the
orthogonal projectors of Eq. (5). We therefore define

σ⊥ = T
[
Sk − S2

k

]
,

(8)
�σ = −T S′

k,

which finally allow us to rewrite the vertices as

Vσ
k,αβ = k̂α k̂β k�σ + δαβσ⊥,

Wσ
k,αβ = 1 + ε

2S2
k

[k̂α k̂β k�σ + δαβσ⊥], (9)

where k̂α = kα/k. The additional k factor with �σ comes
from its definition in Eq. (8) relative to Eq. (7).

Finally, we have decomposed the vertices in such a way
that all their anisotropic part appears explicitly. It is thus
possible to perform the integral over the angular variables in
Eq. (3), which leads to

〈σαβ〉(γ̇ ) = 〈σαβ〉(0) + 1

T

∫ +∞

0
dt

∫ +∞

0
dk k2

×
∑
ω,θ

κωθJ
ωθ
αβ �2

k(−t )(t ), (10)

where Jωθ
αβ is the result of the integral over the angular vari-

ables of the product of both GITT vertices. Its full expression
is given in the Appendix A for symmetric κs. Our expressions
can be easily generalized to the nonsymmetric case with the
same reasoning.

The GITT formula (10) can also be written as

〈σαβ〉(γ̇ ) = 〈σαβ〉(0) +
∑
θω

κθω�αβθω(γ̇ ), (11)

where the viscosity tensor �αβθω plays a role analogous to
that of the elasticity tensor in the theory of elasticity. Let us
stress however that this is not to be confused with a linear
approximation of the relation between 〈σαβ〉(γ̇ ) and κ; this has
been emphasized in Eq. (11) by the explicit mention of the
fact that �αβθω is a function of γ̇ . The explicit expression of
�αβθω as well as its decomposition in powers of κ is discussed
in the next section.

All in all, we presented the extension of the GITT equa-
tions to the case of a general incompressible stationary flow.
We wrote it in a form of a double (convergent) integral de-
pending on the flow tensor κ and a vertex tensor J , which
explicit expression in terms of the only two scalars �σ and
σ⊥—defined in Eq. (8)—is given in the equations (A3), (A6),
(A9), and (A11). The general GITT equation (10) can then
be integrated numerically for any given granular-liquid flow,
thereby giving access to the macroscopic averages of all the
components of the stress tensor in the stationary state in the
sheared system.

C. The viscosity tensor �αβθω

Let us discuss in more detail the viscosity tensor � defined
in Eq. (11) which is the analog of the elasticity tensor of
solids and describes how the stress tensor is defined from the
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flow tensor in the presence of shear. Indeed, within the GITT
formalism, this tensor can be expressed explicitly in terms of
a small number of elementary integrals, which allow us to
get access to its finer structure. The following reasoning is
fully general and does not suppose that the flow tensor κ is
symmetric.

First, notice that the tensorial structure of � is directly
caused by that of J ; more precisely, it is inherited from the
momentum structure of the GITT vertices V and W , itself
coming from the decomposition of the σ operator into its
components longitudinal and transverse to k; see Eq. (6). It
is therefore the definition of the microscopic σ itself that
guarantees that � is a tensor of rank four.

The tensorial structure of V and W has been expressed in
Eq. (9) in terms of σ⊥ and �σ . In terms of these variables, we
can reduce the tensorial structure of the integrand to

Vσ
k,θωWσ

k,αβ ∝ δαβδθωσ 2
⊥ + δθωk̂α k̂βkσ⊥�σ

+ δαβ k̂θ (−t )k̂ω(−t )k(−t )σ⊥�σ

+ k̂α k̂β k̂θ (−t )k̂ω(−t )kk(−t )�σ 2. (12)

Let us examine these terms one by one.
The two first terms of Eq. (12) are proportional to δθω.

Hence they never contribute for incompressible flows. Using
the formula ∫

k
kik j f (k2) = δi j

3

∫
k

f (k2), (13)

true for any smooth function f , we can reexpress the two first
terms of Eq. (12) as δαβδθω(Bcomp

0 + Bcomp
1 ), where we defined

the two following scalars:

Bcomp
0 =

∫ +∞

0
dt

∫
k

1 + ε

2S2
k

�2
k(−t )(t )

σ 2
⊥

2T
,

Bcomp
1 =

∫ +∞

0
dt

∫
k

1 + ε

2S2
k

�2
k(−t )(t )

kσ⊥�σ

6T
. (14)

For the next terms, we need to remember that ki(t ) =
(δi j + κi jt )k j , where the sum over repeated indices is implicit.
Then the third term of Eq. (12) can be written δθωδαβBcomp

2 −
δαβDθωB1

P + δαβκθ iκiωB2
P, where we defined the following

quantities:

Bcomp
2 =

∫ +∞

0
dt

∫
k

1 + ε

2S2
k

�2
k(−t )(t )

k2σ⊥�σ

6k(−t )T
,

BP
1 =

∫ +∞

0
dt

∫
k

1 + ε

2S2
k

�2
k(−t )(t )

k2σ⊥�σ

6k(−t )T
t, (15)

BP
2 =

∫ +∞

0
dt

∫
k

1 + ε

2S2
k

�2
k(−t )(t )

k2σ⊥�σ

6k(−t )T
t2.

Again the term proportional to Bcomp
2 does not yield any con-

tribution to 〈σαβ〉(γ̇ ) for compressible flows. Moreover, since
the other terms are proportional to δαβ , they do not contribute
to the shear stress σ0 for the same reason, hence the P super-
script.

For the last term, we need the formula∫
k

kik jkakb f (k2) = Xi jab

15

∫
k

f (k2), (16)

where X is the fully symmetric tensor of rank four expressed
in terms of δ-symbols:

Xi jab = δi jδab + δiaδ jb + δibδ ja. (17)

We also define the Y n
i jab tensors which are the symmetric

combinations of n κ tensors and δ-symbols:

Y 1
i jab = δi jDab + κaiδb j + κb jδai + κa jδbi + κbiδa j,

Y 2
i jab = δi jκacκcb + κaiκb j + κbiκa j, (18)

and the following scalars:

Bσ
X =

∫ +∞

0
dt

∫
k

1 + ε

2S2
k

�2
k(−t )(t )

k3�σ 2

30k(−t )T
,

Bσ
1 =

∫ +∞

0
dt

∫
k

1 + ε

2S2
k

�2
k(−t )(t )

k3�σ 2

30k(−t )T
t, (19)

Bσ
2 =

∫ +∞

0
dt

∫
k

1 + ε

2S2
k

�2
k(−t )(t )

k3�σ 2

30k(−t )T
t2,

in terms of which � finally results in

�αβθω = (
Bcomp

0 + Bcomp
1 + Bcomp

2

)
δαβδθω

− BP
1 δαβDθω + BP

2 δαβκθ iκiω

+ Bσ
X Xαβθω + Bσ

1 Y 1
αβθω + Bσ

2 Y 2
αβθω. (20)

This formula can be read as follows: the first line are terms
that contribute only for compressible flows, in the second line
are the terms that contribute only to the pressure, and the last
line are terms that contribute to the shear stress. Terms are
also classified according to the number of κ terms involved.
In particular, notice that four of those terms involve at least
one power of κ , thereby showing that the GITT approxima-
tion is not a low γ̇ expansion. Additional nonpolynomial γ̇

dependence is also present in the dynamical structure factor
�k(−t )(t ) that accounts for the effect of advection.

It can also be inferred from Eq. (20) that � involves at best
two powers of the κ tensor, which is consistent with the ex-
pressions of the toy model where the only Kn integrals present
in the expression of the rheological observables have n � 2.
This can be traced back to the fact that the V vertex, which is
the time-dependent vertex, is expressed as a statistical average
involving the stress tensor, and can therefore involve at most
two ki(−t ) components, and to our approximation of the time
dependence of the wave vector.

III. RHEOLOGY IN THE GITT FRAMEWORK

A. Rheological observables

In order to compare different flow configurations, we first
need to build from the matrix κ a scalar quantity, the effective
strain rate γ̇ eff , defined by

γ̇ eff =
√

1

2
D:D, (21)

where D is the symmetrized flow matrix D = κ + κT = ∇ ·
v + ∇ · vT . In particular, in the case of simple shear flow,
γ̇ eff = γ̇ , but this does not hold for a general flow.

Then we also need to extract from the nine components of
σ fundamental scalar quantities that can be used to compare
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different flow configurations. In order to do so, we decom-
pose as usual the stress tensor in a diagonal and a deviatoric
component:

σαβ = P δαβ + η Dαβ, (22)

which defines the pressure P, as well as the shear viscosity η

of the liquid. Note that this decomposition has a genuinely
fundamental character since it corresponds to the identifi-
cation of the spin 0 and spin 2 components of σ on the
irreducible representation of the SO(3) group of symmetry.
It is analogous to the decomposition of the stress tensor of a
solid along a bulk and a shear modulus.

The decomposition (22) is also useful to extend to general
incompressible flows the well-known relationship between η,
the shear rate, and the shear stress. Whereas in the case of
a simple shear flow, the shear stress corresponds to the only
nonzero component of σαβ out of the diagonal, the definition
of such a quantity in a more general flow configuration may
not be so obvious.

First, remark that η can be isolated by a full contraction
of σ with the tensor D because the flow is incompressible:
σ :D = ηD:D. Then, since σ is symmetric, σ :D = 2σ :κ , so
that finally σ :κ = η(γ̇ eff )

2
. Thus, we can define a (scalar)

shear stress σ0 by

σ0 = σ :κ

γ̇ eff
= η γ̇ eff . (23)

Note that this definition is still valid in the case of simple shear
flows.

Finally, all these definitions can be used to extend the def-
inition of the effective friction coefficient μ. This quantity is
originally defined as a ratio between a normal and a tangential
force applied to an elementary cell of the fluid. However,
although such a definition is well suited to the simple shear
flow, it is a bit too close to the original law of Coulomb
to be directly used in more general flow configurations. In
this study, we extended the definition of the effective friction
coefficient from the decomposition (22) as

μ = σ0

P
, (24)

which as explained above yields the usual result in the case of
simple shear flow.

All in all, in the following analysis a given flow configura-
tion will be characterized by three scalar quantities, P, σ0, and
μ, which capture the fundamental properties of the flow rhe-
ology and can be compared in different flow configurations.

B. Reduction of the ITT integrals

The computation of the rheological observables from
Eq. (10) is a rather involved task. In order to get a better under-
standing of the physical processes at play in the system, it is
useful to reduce it to simpler toy models, as was done in [30].

Indeed, as far as the rheology is concerned, the central
quantities are global quantities defined at the macroscopic
scale of the system. We can therefore get rid of most of
the momentum dependence, which describes finer structures.
More precisely, let us write �k (t ) in the Vineyard approxima-
tion [56] and reduce the self-interacting part of the dynamical
structure factor to a Gaussian function of the mean-squared

displacement (MSD) �r2:

�k (t ) 	 Sk e−k2�r(t )2
. (25)

The static structure factor Sk is merely an oscillating function
of order one, which role can be overlooked at lowest order.
The controlling factor in Eq. (25) is the second one. In partic-
ular, in a liquid, the MSD follows the law of diffusion, so that
�k (t → +∞) ∼ exp(−�kt ), where �k is some (k-dependent)
decay rate. Above the ideal MCT glass transition, however,
the MSD saturates to some constant value due to the cage
effect, so that �k also saturates and never decays to 0. We can
therefore propose the rather bold ansatz �k (t ) 	 exp(−�t )
to replace the solution to the MCT equation (2) in the ITT
integral of Eq. (10), which as we have shown captures the
main phenomenology of MCT.

However, we must not forget that in Eq. (10) �k (t ) is
evaluated in the advected wave vector k(−t ). This has a major
importance since in Eq. (25) replacing k2 by the ever increas-
ing k(−t )2 provides a new decay channel for the dynamical
structure factor, which ensures that even above the ideal MCT
glass transition the system remains in a liquid state (it is shear
molten). For a general shear flow, the time-dependent wave
vector is

k2(−t ) = k · (1 − D t + κT · κ t2) · k

= k2 − 2t

[∑
α

Tr(κ )k2
α +

∑
α �=β

καβkαkβ

]

+ t2

[∑
α,β,θ

καθκβθkαkβ

]
. (26)

Now examine the second term of Eq. (26). There are two terms
in the bracket: the first one vanishes because the flow is incom-
pressible (Tr(κ ) = 0), and the second one does not contribute
to k2 on average. Finally, 〈k2(−t )〉 − k2 ∝ t2. Therefore, the
effect of advection on the wave vector in the ITT integral can
be taken into account by a Gaussian factor exp(−γ̇ 2t2/γ 2

c )
where γc is a typical strain scale. This Gaussian factor is com-
parable to the screening factor used to study the rheology of
colloidal suspensions with schematic MCT models [51–54],
although in that case a Lorentzian profile was chosen. The
precise form of the profile is mostly irrelevant at our level of
approximation [30].

Our ansatz, modified by the Gaussian advection profile,
can then be inserted into Eq. (10). Interestingly, since the
wave vector dependence has been left aside, the whole k inte-
gral, which contains much of the complexity of the problem
through the combination of structure factors Sk reduces to a
mere constant prefactor. The remaining t integrals can then be
expressed in terms of a linear combination of integrals from
the following family:

Ki =
∫ +∞

0
γ̇ dt (γ̇ t )i e−2�t−2γ̇ 2t2/γ 2

c . (27)

As we have shown in [30], the integral K0 can be computed
exactly and can be estimated to a very good precision by

K0 = γ c

2(1 + γ c u)
, (28)
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where γ c = γc
√

π/2 and u = �/γ̇ is the ratio of the two rates
that compete for the control of the final decay of �k(−t )(−t ).
The further integrals are related to K0 by

Ki =
(

− γ̇

2

d

d�

)i

K0. (29)

Finally, we have shown that it is possible to reduce the ITT
integral (10) to a linear combination of Ki integrals, defined
by the vertex tensor J θω

αβ . These integrals can be reduced to
rational fractions of one variable, u, which is the ratio of
the possible rates controlling the final decay of �k (t ). This
constitutes the so-called two-timescales toy model which cap-
tures successfully the lowest order behavior of rheological
observables as has been shown in [30]. Concrete applications
will be given in the following of the paper.

More subtle variations, such as the μ(I ) law (1), require
a more precise model to be properly described. A way to do
so is to enrich the ansatz we used to describe �k (t ). Indeed,
we have so far reduced the properties of � to the nature of the
timescale responsible for its decay, which can be either the
structural relaxations, with a rate �, or the shear advection,
with a rate γ̇ . But another salient feature of �k (t ) is the exis-
tence or absence of a plateau corresponding to the influence of
cage effect in the complex liquid phase. This is related to the
fact that a precise description of granular-liquid flows involves
not one but two dimensionless numbers: the Péclet Pe number,
related to the ratio of the diffusion and advection timescales,
and the Weissenberg number Wi, which is a ratio of structural
relaxation and advection timescales. The Péclet number can
be expressed from the collision frequency ωc as Pe = γ̇ /ωc;
it is the ratio of a timescale associated with the microscopic
motion of the particles with the advection timescale γ̇ −1. It
is therefore proportional to the inertial number I. On the
other hand, Wi = 1/u = γ̇ /�. The plateau of the cage effect
typically develops between the microscopic timescale and the
final decay of �(t ).

In a Newtonian liquid, the decay of � is given by � ∝ ωc,
so that Wi ∝ Pe, the microscopic timescale corresponds to
the decay of �, and there is no plateau. In a complex liquid,
the structural relaxation and microscopic timescales decouple,
and the plateau develops in between.

A simple way to incorporate this into the toy model is to
use a two-step decay ansatz for �k (t ) [30,57]:

�k (t ) = λ(1) exp(−�(1)t ) + λ(2) exp(−�(2)t ), (30)

where of course the advection factor has to be added when
replacing �k(−t )(t ) in Eq. (10). From the two decay rates
of Eq. (30) we can define u(1) = �(1)/γ̇ ∝ 1/Pe and u(2) =
�(2)/γ̇ ∝ 1/Wi. This constitutes the three-timescales toy
model. By linearity of the ITT integrals, the general form of
the components of the stress tensor in the three-timescales toy
model is the same than in the two-timescales toy model, ex-
cept that each term appears twice, once with each variable u(i),
with appropriate set of constants. [Strictly speaking the ITT
integrand is not linear in �. However, since the toy models
mostly make sense for well-separated timescales, the square
of the exponential sum has still the form of a two-step decay,
so that �2 still has the form Eq. (30)].

C. Application to the simple shear case

Let us now recall how this formalism applies in the case
of simple shear flows. This will also provide a useful point
of comparison for our further investigations. The interested
reader can find the details of the derivation in [29,30].

The simple shear flow is defined from the flow matrix κss
i j =

γ̇ δixδ jy. In that case, Eq. (21) yields γ̇ eff = γ̇ , Eq. (23) yields
σ ss

0 = 〈σxy〉, and as usual Pss = Tr(σ )/3 and μss = σ ss
0 /Pss.

The GITT vertex tensor cannot be directly gotten from the
results in the Appendix A since κ is not symmetric. For the
shear stress, it is given by

J xy
xy = 1

60π2

1 + ε

2S2
k

k3

k(−t )
�σ 2. (31)

Hence, σ ss
0 is proportional to K0. By convention, we call S1

the prefactor accounting for the whole k integral. Thus,

σ ss
0 = S1 K0. (32)

The pressure vertex tensor is given by

J xx
xy + J yy

xy + J zz
xy

= 1 + ε

2S2
k

k3

k(−t )

{
σ⊥�σ

4π2
(γ̇ t ) + k �σ 2

12π2
(γ̇ t )

}
. (33)

The pressure is therefore expressed in terms of the integral
K1. In the second term of Eq. (33), the wave vector integral
includes a �σ 2 term, and it is therefore proportional to S1.
The first term contains an integral of type σ⊥�σ , which we
use to define a new constant S0. Finally,

Pss = P0 + �Pss = P0 + (
S0 + 5

3 S1
)
K1, (34)

where P0 is the pressure in the reference state, which is not
sheared. It corresponds to the pressure of a hard sphere fluid
at the same packing fraction and granular temperature (see
[29] for a detailed discussion).

Now let us examine the two-timescales toy model. In that
model, the rheological observables are given by a competition
between the timescales of structural relaxation t� = 1/� and
advection tγ = 1/γ̇ that compete for the control of the decay
of �(t ). They are thus functions of u given by the simplified
version of the Ki integrals derived from Eq. (28). The shear
stress is

σ ss
0 = σ ss

y

1 + γ cu
, (35)

where σ ss
y = S1γ c. This result is interpreted as follows: in the

Newtonian regime, the decay of � is controlled by structural
relaxations; namely, the decay is caused by the rate � indepen-
dent on the value of γ̇ , hence t� 
 tγ . This is the structural
relaxation-dominated regime. In that regime u � 1, so that
σ ss

0 	 ηss
0 γ̇ , which is the constitutive equation of a Newtonian

liquid of shear viscosity ηss
0 = σ ss

y /(�γ c).
On the other hand, if tγ 
 t� , the decay is caused by advec-

tion, this is the advection-dominated regime. In that regime,
σ ss

0 	 σy, which is the constitutive equation of a yielding fluid.
In particular, the analog of Hooke’s law in the yielding regime
leads to the identification of the shear stress G∞ of the liquid
from σ ss

y = Gss
∞ γc, so that the shear modulus of the yielding

014604-6



RHEOLOGY OF GRANULAR LIQUIDS IN EXTENSIONAL … PHYSICAL REVIEW E 104, 014604 (2021)

fluid is G∞ = S1/2, which gives a physical meaning to this
constant.

If we further impose that all the energy brought to the
system by the shear is dissipated by the collisions, the sys-
tem gets into the Bagnold regime. In that case we need to
make explicit the dependence of σy on the granular tempera-
ture, which finally yields σ ss

0 	 Bγ̇ 2, where B = σ̂ 3
y /�d is the

Bagnold coefficient, σ̂y = σy/T , and �d is the dimensionless
rate of energy dissipated by the inelastic collisions (see [30]
for more details). Importantly, both the Bagnold and the yield-
ing regime are advection-dominated regimes, which means
that u 
 1.

A similar study of the pressure yields

Pss = P0 + Pss
1

(1 + γ cu)2
, (36)

where Pss
1 = (S0 + 5/3S1)γ 2

c/4 is the overpressure caused by
the dynamics of the sheared liquid in the advection-dominated
regime and P0 is the pressure of the unsheared fluid. In the
structural relaxation-dominated regime, the second term in
Eq. (36) is proportional to γ̇ 2, so that �P 
 P0. This is
consistent with the fact that the overpressure effect is expected
to be negligible in Newtonian liquids. In the advection-
dominated regime—yielding and Bagnold regimes—however,
the correction to the pressure is significant. Numerical esti-
mations from the GITT formula (10) indicate that in that case
�P and P0 have the same order of magnitude (see [29] for a
detailed study of the pressure term).

Finally, μ is the ratio of Eq. (35) and Eq. (36). It therefore
takes the form of a Padé approximant with a numerator being
a polynomial of degree 1, and a denominator being a polyno-
mial of degree 2, which we write as P[1/2]. However, as can
be guessed from Eq. (1), not all the constants defined there
are important. In practice, �P can be approximated further
by �P 	 P′

1/(1 + γ cu), which defines the constant P′
1. In that

case, μ takes the form

μss = M1

1 + M2 u
, (37)

with M1 = σy/(P0 + P′
1) and M2 = γ cP0/(P0 + P′

1). Hence, in
the structural relaxation-dominated regime, μss ∝ γ̇ , so that
μ 
 1 as expected in the Newtonian regime. In the advection-
dominated regime, μss 	 M1, it saturates to a finite value. This
behavior can be observed when solving the GITT equation
(10) numerically [30].

In order to get more precision, it is instructive to apply the
three-timescales toy model. Here, in addition to the timescale
controlling the final decay, we also want to examine the time-
scales delimiting the possible cage effect plateau in the evo-
lution of �(t ). This leads us to introduce the timescale
associated with the microscopic motion of the granular parti-
cles, which is simply the timescale associated with the motion
of particles in a pressure field tm = d/

√
P/ρ, d being the

diameter of the particles. In particular, I = tm/tγ . From the
previous analysis we deduce that rheological observables are
then functions of two timescale ratios: u(1) = tγ /tm ∝ 1/I,
and u(2) = tγ /t� ∝ 1/Wi. Their functional form is a sum of
two terms, one for each u(i), each term having the exact same
form as the two-timescales toy model predicts. In the particu-
lar case of μss, and up to some relabeling of the constants, it

FIG. 1. Evolution of the effective friction coefficient in the sim-
ple shear flow with the inertial number for various packing fractions
from ϕ = 0.42 (bottom) to ϕ = 0.58 (top). The open circles are the
numerical data gotten from the full GITT equation (10); the full lines
are curve fitting with help of the toy-model expressions (38).

yields

μss(I, Wi) = μ1

1 + M/Wi
+ μ2 − μ1

1 + I0/I
. (38)

In the Bagnold regime, Wi � 1, so that Eq. (38) reduces to
the μ(I ) law (1). The comparison between Eq. (38) and the
numerical solution to the GITT equations (10) is displayed in
Fig. 1.

One last feature of the toy models is their ability to be
easily generalized to the case of suspensions of granular par-
ticles in a simple liquid of viscosity η∞. In that case, a new
timescale arises, associated with the microscopic motion of
particles in a viscous fluid, given by tη = η∞/P, leading to
the definition of a new dimensionless number J = tγ /tη. If
tm � tη, which corresponds to suspensions in a liquid of very
low viscosity, the cage effect plateau begins at tm, independent
of the value of η∞. In that case, μss is still given by Eq. (38).
For higher viscosities, however, whenever tη � tm, the plateau
extends from tη to t� or tγ (depending on which one controls
the decay), so that the rate �(1) in the two step decay ansatz
(30) depends on tη instead of tm, and u(1) = tγ /tη. As a result,
μss becomes

μss(J , Wi) = μ1

1 + M/Wi
+ μ2 − μ1

1 + J0/J
, (39)

where it should be noted that, apart from J0, all constants are
the same as for the same granular particles evolving without
surrounding fluid according to Eq. (38). This has been noted
earlier in experiments on submarine granular flows [15].

IV. APPLICATION TO EXTENSIONAL FLOWS

A. The stress tensor

In the simple shear flow, the only nonzero components
of the flow tensor κ are outside of its diagonal; however,
this is not true in general. The incompressibility only im-
poses the nullity of its trace. In the following, we focus on a
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complementary family of flows where the only nonzero com-
ponents of κ are on its diagonal: the extensional flows. We
study two examples, a 2D flow and a 3D flow.

1. Planar extension

The planar extensional flow corresponds to an elongation
of the fluid in one direction—hereafter the x direction—
combined with a contraction in one of the orthogonal direc-
tions—hereafter the y direction. Its flow tensor can be written

κ pe =
⎛
⎝γ̇ 0 0

0 −γ̇ 0
0 0 0

⎞
⎠. (40)

From Eq. (21), we can estimate its effective shear rate:

γ̇ eff
pe = 2γ̇ . (41)

The shear stress, defined in Eq. (23) is given in that case by
σ

pe
0 = 〈σxx〉 − 〈σyy〉; note in particular that it does not involve

any component of σαβ outside of the diagonal. Thus, in or-
der to get the evolution of the rheological observables from
Eq. (10), we need the three following combinations of vertex
integrals:

J xx
xx − J yy

xx

= 1 + ε

2S2
k

k2

k(−t )

[
σ⊥�σ

3π2

(
γ̇ t

) + k�σ 2

30π2
(1 + 4γ̇ t + γ̇ 2t2)

]
,

J xx
yy − J yy

yy

= 1 + ε

2S2
k

k2

k(−t )

[
σ⊥�σ

3π2
(γ̇ t ) − k�σ 2

30π2
(1 − 4γ̇ t + γ̇ 2t2)

]
,

J xx
zz − J yy

zz

= 1 + ε

2S2
k

k2

k(−t )

[
σ⊥�σ

3π2
(γ̇ t ) + k�σ 2

15π2
(γ̇ t )

]
, (42)

Note that each contribution consists of two terms: one term
proportional to σ⊥�σ which is the same along any direction,
and therefore only contributes to the pressure, and one term
proportional to �σ 2. By combining the vertices Eq. (42)
and the GITT equations (10), the pressure, shear stress, and
effective friction coefficient can be computed numerically.

In order to get a better understanding of the structure of
the rheology in the planar extensional flow, let us use our toy
models to reexpress the equations above. Since the combina-
tions of σ⊥ and �σ , and therefore of structure factors and
other k-dependent quantities, are the same as in the case of
the simple shear, we can still use the constants S0 and S1 used
in Eq. (32) and Eq. (34) to express our results, what will make
the comparisons easier. We finally get for the shear stress and
the overpressure:

σ
pe

0 = 4S1(K0 + K2),

�Ppe = 4
(
S0 + 5

3 S1
)
K1. (43)

Although for planar extensional flows the overpressure has a
very similar structure to that of the simple shear flow (34), the
shear stress gets an additional term proportional to K2.

From Eq. (43), we deduce that �Ppe = 4�Pss, and that σ pe
0

now takes the form

σ
pe

0 = σ
pe

y

1 + γ c u

[
1 + γ 2

c

2(1 + γ c u)2

]
, (44)

where σ
pe

y = 4σ ss
y and u = �/γ̇ eff .

The overall behavior of σ
pe

0 is not modified much by the
presence of the K2 term. Indeed, it is subdominant in the
Newtonian regime, which can be verified numerically (see
Fig. 2). In the yielding regime, however, the system behaves as
a yielding fluid with an effective yield stress σ eff

y = σ
pe

y (1 +
γ 2

c/2).
The performance of the toy model can be assessed by

fitting the numerical data obtained from the resolution of
the GITT equation (10) with the toy-model expressions of
Eq. (43). The results are shown in Figs. 2 and 3. The simple
toy model agrees well with the numerical data, but it is neces-
sary to upgrade Eq. (43) to their three-timescale equivalent in
order to be able to describe the data close to the MCT ideal
granular glass transition that takes place around ϕ = 0.53,
and separates the yielding and Newtonian regimes at low Pe.
Indeed, the distinction between Wi and Pe is necessary to
reproduce subleading variations, such as the slowing of the
growth of σ

pe
0 around Pe = 10−5 for ϕ = 0.52 displayed in

the insert of Fig. 2.

2. Uniaxial extension

A similar study can be performed on the uniaxial exten-
sion flow, which corresponds to a flow where the liquid is
elongated along one direction—x in the following—and con-
tracted along both orthogonal directions. Its flow matrix is

κue =
⎛
⎝γ̇ 0 0

0 −γ̇ /2 0
0 0 −γ̇ /2

⎞
⎠. (45)

It is therefore a 3D flow. Its effective shear rate is related to
γ̇ by

γ̇ eff
ue =

√
3 γ̇ . (46)

The shear stress σ0 = 〈κ:σ 〉 hence involves only diagonal
components of the stress tensor. In order to compute σ0 and P,
we thus need the following combinations of vertex integrals:

J xx
xx − J yy

xx

2
− J zz

xx

2

= 1 + ε

2S2
k

k2

k(−t )

[
σ⊥�σ

4π2
(γ̇ t )(1 + γ̇ t/4)

+ k�σ 2

60π2
(2 + 7γ̇ t + 11γ̇ 2t2/4)

]
,

J xx
yy − J yy

yy

2
− J zz

yy

2

= 1 + ε

2S2
k

k2

k(−t )

[
σ⊥�σ

4π2
(γ̇ t )(1 + γ̇ t/4)

− k�σ 2

60π2
(1 − 4γ̇ t − γ̇ 2t2/2)

]
,
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FIG. 2. Evolution of the dimensionless shear stress in the planar extension flow with the Péclet number for various packing fractions from
ϕ = 0.42 (bottom) to ϕ = 0.58 (top). The open circles are the numerical data gotten from the full GITT equation (10); the full lines are curve
fitting with help of the toy-model expressions (43). The dashed line indicates the 1/Pe slope for reference. The insert shows in greater detail
the curve ϕ = 0.52.

J xx
zz − J yy

zz

2
− J zz

zz

2

= 1 + ε

2S2
k

k2

k(−t )

[
σ⊥�σ

4π2
(γ̇ t )(1 + γ̇ t/4)

− k�σ 2

60π2
(1 − 4γ̇ t − γ̇ 2t2/2)

]
. (47)

These expressions are sufficient to compute the pressure and
shear stress numerically. The results are displayed in Figs. 4
and 5.

Let us now analyze the structure of the stress tensor
through the two-timescales toy model. First, the vertices in
Eq. (47) are combinations of σ⊥�σ and �σ 2; they can
therefore be expressed in terms of S0 and S1 only. The

FIG. 3. Evolution of the dimensionless correction to the pressure
in the planar extension flow with the Péclet number for various pack-
ing fractions from ϕ = 0.42 (bottom) to ϕ = 0.58 (top). The open
circles are the numerical data gotten from the full GITT equation
(10); the full lines are curve fitting with help of the toy-model expres-
sions (43). The dashed line indicates the 1/Pe2 slope for reference.

decomposition of σ0 and �P on the K integrals writes

σ ue
0 = 3S1(K0 + K1 + 3K2/4),

�Pue = (3S0 + 5S1)(K1 + K2/4). (48)

The structure of σ0 is thus further enriched by the presence of
K1, and in contrast to the simple shear and planar extension
flows, �P is not merely proportional to K1 anymore. This
richer structure is not striking on the numerical data in Figs. 4
and 5, because the role of the additional integrals is only sub-
leading as discussed in the case of the planar extensional flow.
However, as we discuss below, it has a measurable impact on
the behavior of the effective friction coefficient.

FIG. 4. Evolution of the dimensionless shear stress in the uni-
axial extension flow with the Péclet number for various packing
fractions from ϕ = 0.42 (bottom) to ϕ = 0.58 (top). The open circles
are the numerical data gotten from the full GITT equation (10); the
full lines are curve fitting with help of the toy-model expressions
(48). The dashed line indicates the 1/Pe slope for reference.
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FIG. 5. Evolution of the dimensionless correction to the pressure
in the uniaxial extension flow with the Péclet number for various
packing fractions from ϕ = 0.42 (bottom) to ϕ = 0.58 (top). The
open circles are the numerical data gotten from the full GITT equa-
tion (10); the full lines are curve fitting with help of the toy-model
expressions (48). The dashed line indicates the 1/Pe2 slope for
reference.

The final toy-model expressions for the uniaxial extension
flow are

σ ue
0 = σ ue

y

1 + γ c u

[
1 + γ c

2(1 + γ c u)
+ 3γ 2

c

8(1 + γ c u)2

]
,

�Pue = Pue
1

(1 + γ c u)2

[
1 + γ c

4(1 + γ c u)

]
, (49)

where σ ue
y = 3σ ss

0 and Pue
1 = 3Pss

1 . Note also that despite the
increased complexity of the expressions (49) compared to
Eq. (35) and (36) they involve the same number of con-
stants. The effective yield stress in the yielding regime is
σ ue

y (1 + γ c/2 + 3γ c/8), and the overpressure is also distorted
to Pue

1 (1 + γc/2) in this regime.

B. The effective friction coefficient

1. General expressions

The numerical expression of μpe and μue can be directly
evaluated from Eq. (42) and (47). The results are displayed on
Figs. 6 and 7, respectively. These curves show two particular
features that distinguish them from the case of simple shear
flows: the maximum value of μ across the Péclet range is no
longer a growing function of the packing fraction, and μ is no
longer a monotonous function of Pe.

Let us try to explain this with the two-timescales toy model.
The effective friction coefficient can be derived directly from
Eq. (43) for the planar extension flow:

μpe = 4S1(K0 + K2)

P0 + 4(S0 + 5/3S1)K1
, (50)

and Eq. (48) for the uniaxial extension:

μue = 3S1(K0 + K1 + 3K2/4)

P0 + (3S0 + 5S1)(K1 + K2)
. (51)

FIG. 6. Evolution of the effective friction coefficient in the planar
extension flow with the inertial number for various packing fractions
from ϕ = 0.42 (bottom) to ϕ = 0.58 (top). The open circles are the
numerical data gotten from the full GITT equation (10); the full lines
are curve fitting with help of the toy-model expressions (52).

Hence, in both cases, μ can be expressed as a Padé P[2/3],
but with only four independent coefficients. More precisely,
in the planar extension case, μ can be written as

μpe = M pe
00 + M pe

01 u + M pe
02 u2

1 + M pe
11 u + M pe

12 u2 + M pe
13 u3

, (52)

with coefficients M pe
00 = μ

pe
y (1 + γ 2

c/2), M pe
01 = 2γ cμ

pe
y ,

M pe
02 = γ 2

cμ
pe
y , M pe

11 = (3P0 + Ppe
1 )γ c/Ppe

y , M pe
12 = 3γ 2

cP0/Ppe
y ,

and M pe
13 = γ 3

cP0/Ppe
y expressed in terms of the pressure in

the yielding regime Ppe
y = P0 + Ppe

1 and the characteristic
friction coefficient μ

pe
y = σ

pe
y /Ppe

y . Similarly, in the uniaxial

FIG. 7. Evolution of the effective friction coefficient in the uni-
axial extension flow with the inertial number for various packing
fractions from ϕ = 0.42 (bottom) to ϕ = 0.58 (top). The open circles
are the numerical data gotten from the full GITT equation (10); the
full lines are curve fitting with help of the toy-model expressions
(53).
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extension case, it can be written

μue = Mue
00 + Mue

01 u + Mue
02 u2

1 + Mue
11 u + Mue

12 u2 + Mue
13 u3

, (53)

with coefficients Mue
00 = μue

y (1 + γ c/2 + 3γc
2/8), Mue

01 =
γ c(2 + γ c/2)μue

y , Mue
02 = γ 2

cμ
ue
y , Mue

11 = (3P0 + Pue
1 )γ c/Pue

y ,
Mue

12 = 3γ 2
cP0/Pue

y , and Mue
13 = γ 3

cP0/Pue
y expressed in terms

of the pressure in the yielding regime Pue
y = P0 + Pue

1 (1 +
γ c/4), now explicitly dependent on γ c, and the characteristic
friction coefficient μue

y = σ ue
y /Pue

y .
Thus, even though the richer structure of σ0 and P in terms

of powers of u leads to very minor changes on the evolution of
those two quantities, taken separately, compared to the simple
shear case, its impact on the effective friction coefficient has
a measurable effect. Indeed, the ansatz (37) can only lead to a
monotonous evolution of μ with the shear rate, contradicting
the evolutions observed in the numerical data in Figs. 6 and
7. In that respect, we can say that the rheology of extensional
flows is qualitatively different from that of simple shear flows.

Finally, extending the above to the three-timescales toy
model [when we recall that μ becomes the sum of two terms,
both with a functional form similar to that of the expres-
sions (52) and (53) but expressed in terms of u(1) ∝ 1/Pe
and u(2) ∝ 1/Wi] provides expressions that fit the numerical
data with a satisfactory precision, as can be seen in Figs. 6
and 7. Note that this model generalizes trivially to granular
suspensions, with an effective friction coefficient given by the
formulas above for tη 
 tm, and by the same functional form
of the three-timescales toy model with u(1) = tγ /tη ∝ 1/J
and u(2) ∝ 1/Wi if tη � tm.

2. The Bagnold regime

Let us now discuss the case of the Bagnold regime, where
most dry granular flows lie, and where the μ(I )-law holds
for simple shear flows. Since these effects are subleading,
compared to the effects discussed above, the three-timescales
version of the toy model is required. In that case, the effective
friction coefficient is decomposed as μ = μ(1) + μ(2), where
μ(1) and μ(2) have the functionals form of Eqs. (52) and (53)
with appropriate sets of constants.

Let us first focus on μ(2). It is defined as a function of
u(2) = tγ /t� ∝ 1/Wi. In the Bagnold regime, the shear rate
is very strong at the scale of the system evolution; namely,
the decay of �(t ) is caused by advection, and not structural
relaxations. This means that Wi � 1, so that u(2) 
 1; hence,
by use of Eq. (52), μ(2) 	 M pe,(2)

00 which is a constant. As for
μ(1), it is a function of u(1) ∝ 1/Pe ∝ 1/I, which therefore
contains the part of μpe that varies with the inertial num-
ber. It can also be checked from Eq. (52) that when I → 0,
μ(1) → 0. By analogy with the μ(I )-law (1), we can identify
the constant value of μ(2) with the I → 0 limit of μpe and call
it μ1. All in all, dropping the (1) superscript in the constants
of the μ(1) term, the corresponding evolution of μpe with I
writes

μpe = μ1 + M pe
00 + M pe

01/I + M pe
02/I2

1 + M pe
11/I + M pe

12/I2 + M pe
13/I3

. (54)

FIG. 8. Evolution of the effective friction coefficient in the planar
extension flow as a function of the inertial number. The full line is the
numerical data resulting from the resolution of the GITT equations
of Eq. (10); the circles are the best fit with a Padé ansatz P[3/3], the
triangles correspond to P[2/2] and the diamonds to P[1/1].

Equation (54) is the equivalent to the μ(I )-law in the case of
planar extensional flows as predicted by the three-timescales
toy model. It is equivalent to a P[3/3] Padé approximant.

However, we can go further. In the simple shear case, the
form equivalent to Eq. (54) is not exactly the μ(I )-law, but a
more involved Padé P[2/2] approximant [30]. The excellent
agreement between the simpler μ(I )-law and the experimen-
tal or numerical data suggests that most of the physics can be
captured by a simpler ansatz with fewer fitting coefficients, a
P[1/1] function in that case.

We can look for a similar formula in our system as well.
From the structure of the three-timescales toy model in the
high Weissenberg number regime, we know that μ can be
written as a sum of a constant μ1 and a rational fraction.
The possible structures are thus P[3/3]—corresponding to
the full three-timescales toy model of Eq. (54)—P[2/2] and
P[1/1]—corresponding to simpler ansatz that one can pro-
pose to reduce the number of constants in the equivalent of
the μ(I )-law. The results are displayed in Fig. 8. We can
see in this figure that, even if the P[3/3] ansatz of Eq. (54)
performs well as expected, the P[2/2] provides a very good
description of the numerical results too. The P[1/1] form of
Eq. (1) on the other hand is not rich enough to account for the
nonmonotonous evolution of μpe with I. The usual form of
the μ(I ) must therefore be updated to be able to capture the
phenomenology of planar extensional flows.

Another way to understand the reduction to the P[2/2]
ansatz is the following: we established that in the two-
timescales toy model (54) μpe takes the form of a rational
fraction with a polynomial of order three in the denominator,
but with only four independent constants. In the case of the
three-timescales toy model in the Wi � 1 regime, the μ(2)

contribution adds one independent constant, so there are five
of them in total. This corresponds exactly to the number of
independent coefficients of a P[2/2] ansatz.

A similar study can be conducted for uniaxial extensional
flows. Since μ in Eqs. (53) and (52) have similar forms, the
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FIG. 9. Evolution of the effective friction coefficient in the uni-
axial extension flow as a function of the inertial number. The full
line is the numerical data resulting from the resolution of the GITT
equations of Eq. (10); the circles are the best fit with a Padé ansatz
P[3/3], the triangles correspond to P[2/2] and the diamonds to
P[1/1].

reasoning in that case is exactly the same, only the constants
are changed. Hence in the Bagnold regime, μue,(2) 	 μue

1 ,
which is a constant, and the three-timescales toy model de-
scribes μue(I ) as a P[3/3] ansatz. We also compared different
types of Padé ansatz to get the minimal μue(I ) ansatz with
reasonable performance. The results are displayed in Fig. 9.
As in the case of planar extension, the evolution of μue(I )
is well captured by a P[2/2] ansatz. The P[1/1] used in the
simple shear case, however, fails for the same reason, namely,
its monotonous behavior.

All in all, the μ(I ) can be generalized as

μ(I ) = μ1 + μ2 − μ1 + I1/I
1 + I0/I + I2

2/I2
. (55)

This expression generalizes the well-known law (1), and is
valid in any flow configuration. In the case of pure shear
deformations, the constants I1 and I2 can be safely neglected.

C. The Trouton ratio

Consider two flow configurations described respectively
by the flow matrices κa and κb. We want to compare the
fluid’s response to shear in both configurations. We already
saw a way to compare both flow geometries, by the definition
of an effective shear stress γ̇ eff in Eq. (21). However, in an
experiment for example, it can be easier to get access to the
real shear stress γ̇ , defined by the rate of deformation in a
given direction, rather than the effective one. It is therefore
useful to be able to read the deviatoric part of the stress tensor
in two ways:

σ : D = 2 η(γ̇ ) (γ̇ eff )2 = 2 ηeff (γ̇ ) γ̇ 2, (56)

where we recalled that in general, the viscosity of the fluid de-
pends on the shear rate. The fluid’s response to shear at a given
shear rate can then characterised by its effective viscosity ηeff .

FIG. 10. Evolution of the Trouton ratio in the planar extension
flow as a function of the Péclet number for various packing fractions
between ϕ = 0.42 (brown) and ϕ = 0.58 (purple) computed from the
numerical resolution of the GITT equations (10).

Let us define T b
a as the ratio of the effective shear viscosi-

ties of the flow configurations a and b (for sake of simplicity
we get rid of the eff superscript, a viscosity dependent on a
flow geometry being implicitly an effective one):

T b
a = ηb

ηa
. (57)

If the fluid is in the Newtonian regime, the shear viscosity
η is independent of the shear rate, so that the γ̇ dependence of
ηeff in Eq. (56) is the same as that of (γ̇ eff )

2
. Consequently,

T b
a −→

t�
tγ

(
γ̇ eff

b

)2

(
γ̇ eff

a

)2 , (58)

where t� 
 tγ is a way to indicate that the Newtonian limit
is taken. Hence, for any fluid, and in any two flow configu-
rations, the limit of the ratio of the effective shear viscosities
in the Newtonian regime is equal to the ratio of the squared
effective shear rates.

In the particular case where the configuration a is a simple
shear flow, T is called the Trouton ratio [58]. Indeed, since in
simple shear flows γ̇ eff = γ̇ , they constitute a useful reference
point. Our previous study allows us to discuss the evolution of
the Trouton ratios of the planar and extensional flows, T pe

and T ue, respectively, for granular liquids and suspensions.
The results are displayed in Figs. 10 and 11.

In order to facilitate the interpretation of the numerical
results, we will discuss them in the light of the two-timescales
toy model. First let us discuss the case of planar extension.
The Trouton ratio in that case is given by the ratio of ηpe to ηss

that can be related to their respective shear stresses (35) and
(44) by Eq. (23), and the definition of the effective viscosity
(56). The effective shear stresses are related by Eq. (41). Since
� and γ c are determined by the dynamics of the unsheared
reference state, �pe = �ss and γ pe

c = γ ss
c . As a result, upe =

�pe/γ̇ eff
pe = �/(2γ̇ ) = uss/2. Finally, we also established that
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FIG. 11. Evolution of the Trouton ratio in the uniaxial extension
flow as a function of the Péclet number for various packing fractions
between ϕ = 0.42 (brown) and ϕ = 0.58 (purple) computed from the
numerical resolution of the GITT equations (10).

σ
pe

y = 4σ ss
y = 4G∞γ c. Combining all these equations leads to

T pe = 2
1 + γ c u

1 + γ c u/2

[
1 + γ 2

c

2(1 + γ c u/2)2

]
, (59)

where u = uss = �/γ̇ .
As expected, in the Newtonian limit u � 1, T pe → 4 =

(γ̇ eff
pe )

2
/γ̇ 2, which is consistent with Eq. (58). This is of course

no coincidence. Indeed, the value of the Trouton ratio in the
Newtonian limit can be inferred directly from the full GITT
equation (10) through the use of the viscosity tensor �: Let
us consider the computation of the viscosity of the liquid
in the Newtonian regime, and the Trouton ratio. The vis-
cosity is defined from σ :κ , or equivalently κ:�:κ . For the
simple shear flow, κss is a nilpotent matrix. It can therefore
be checked that κss:� : κss = Bσ

X γ̇ 2.
In the Newtonian limit, only the lowest γ̇ dependence is

kept. Thus, the γ̇ dependence of � can be neglected, so that
Bσ

X is independent from the flow geometry in that limit. For
the same reason, in the Newtonian limit, the contributions of
Bσ

1 and Bσ
2 can be neglected compared to that of Bσ

X for any
type of flow. As a result, for any flow of flow tensor κ , the
Newtonian contribution to the viscosity can be written in full
generality as Bσ

X κ:X :κ = Bσ
X D:D/2 = Bσ

X (γ̇ eff )
2
. Since Bσ

X
has the same value for the simple shear flow and for the more
general flow, it follows that T = (γ̇ eff )

2
/γ̇ 2 in the Newtonian

regime.
Pay attention to the fact that strictly speaking Bσ

X κ:X :κ is
not a viscosity but a shear stress, an overall factor γ̇ eff should
be added according to Eq. (23). This factor is canceled in the
Newtonian regime because Bσ

X ∝ 1/u ∝ γ̇ eff .
Outside of the Newtonian regime, T pe becomes nonuniver-

sal. A few of its properties can be understood from Eq. (59).
For example, the limit of T pe in the yielding regime is

T pe −→
t��tγ

2
(
1 + γ 2

c/2
)
, (60)

which can be compared to Fig. 10 where T pe � 2, and its
saturation in the yielding regime is a growing function of

the packing fraction, and so does γ c (remember that it is
a typical strain scale). Some data points on Fig. 10 have
T pe � 2. However, we should keep in mind that deep into the
yielding regime, η ∝ 1/γ̇ is very big, so that the numerical
precision of T pe, a ratio of two big numbers, may result in a
slight underestimation of the Trouton ratio. The form of T pe

in Eq. (60) is given by that of the effective yield stress of the
planar extension flow defined above. Note, however, that the
increase of T pe with Pe is not captured at the level of the two-
timescales toy model; such subleading behaviors require the
distinction between Wi and Pe. Interestingly, the evolution of
T pe in Fig. 10 is similar to that predicted by MCT for colloidal
suspensions [54], thereby highlighting connections between
the rheological behavior of both systems in stationary flows.
The fact that T pe and T ue sharply decrease when the packing
fraction is decreased is consistent with previous numerical
studies on extensional flows of granular matter [59].

A similar analysis can be conducted for the uniaxial elon-
gation flow. In that case, the Trouton ratio can be written

T ue =
√

3
1 + γ c u

1 + γ c u/
√

3

[
1 + γ c

2(1 + γ c u/
√

3)2

+ 3γ 2
c

8(1 + γ c u/
√

3)2

]
, (61)

so that it has the appropriate Newtonian limit T ue → 3. This
can be checked on the numerical data displayed in Fig. 11.
The saturation value in the yielding regime is given by

T ue −→
t��tγ

√
3
(
1 + γ c/2 + 3γ 2

c/8
)
, (62)

which is also inherited from the structure of the effective yield
stress of the uniaxial extension flow. In particular in that case,
T ue �

√
3 	 1.73.

Another striking difference between T pe and T ue in
Figs. 10 and 11 is the fact that contrary to the former, the
latter displays a peak in the Newtonian regime. This can be
understood from Eqs. (59) and (61) by an expansion around
the Newtonian value:

T pe =
u�1

4 − 4

γ c u
+ O

(
1

u2

)
,

T ue =
u�1

3 − 3

γ c u

[
1 +

√
3

(
γ c

2
− 1

)]
+ O

(
1

u2

)
. (63)

In the vicinity of the Newtonian regime, T pe tends to decrease
with Pe, whereas T ue tends to grow, at least as long as γ c �
2(

√
3 − 1)/

√
3 	 0.845, which is always realized in practice.

We can see here again the influence of the presence, in σ ue
0

of a richer structure than σ
pe

0 , notably an additional K1 term,
which was difficult to detect at the level of σ0 itself.

V. CONCLUSION

In conclusion, this study shows the generalization of the
GITT equation to arbitrary incompressible stationary flows.
This equation has also been used to define quantities such
as the viscosity tensor, which allows an easy comparison of
different flow geometries, and reduce the complexity of the
GITT equations to a few integrals dependent on the system’s
dynamics, and some tensorial structure defined by the flow
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geometries. We showed how, in addition to providing a tool
to provide numerical estimates of the rheological observables
of granular liquids and suspensions, GITT can also allow
an analysis of the finer structure of their behavior through
the use of analytically solvable toy models that yield simple
constitutive laws that can be easily compared to numerical
simulations and experiments.

In particular, we have shown that the evolution of μ in a
general flow can be qualitatively quite different from what
is expected in the simple shear case, with bigger amplitudes
of variation and possible nonmonotonous evolution with the
shear rate. Due to the GITT toy models, we were able to
generalize the μ(I )-law to account for these new behaviors;
see Eq. (55). This could be particularly relevant for the study
of flows of pastes and granular suspensions, which frequently
undergo flow different from simple shear in the context of
their various industrial applications. We hope that our work
will help motivate further numerical and experimental studies
to investigate these behaviors.
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APPENDIX A: THE GITT VERTEX TENSOR Jωθ
αβ

In this section we present the vertex tensor, which is ob-
tained after evaluation of the spherical part of the k-integral in
Eq. (3):

J θω
αβ =

∫
d


1

2(2π )3
Vσ

k,θωWσ
k,αβ, (A1)

where d
 is the integration over the angular variables.
For sake of clarity, the following expressions are valid

only for a symmetric version of the flow tensor κ (which
excludes the simple shear case). More general expressions
can be worked out without more difficulty in the general
case. The vertex tensor thus has the following symmetries:
J θω

αβ = J θω
βα = Jωθ

αβ = Jωθ
βα .

Because of the spherical average, it is convenient to distin-
guish four typical configurations.

1. Case α = β, θ = ω

In that case, according to Eq. (9), the MCT vertices are
given by

Vσ
k,θθ = k̂θ (−t )k̂θ (−t ) k(−t )�σ + σ⊥,

Wσ
k,αα = 1 + ε

2 S2
k

(
k̂α k̂α k �σ + σ⊥), (A2)

where �σ and σ⊥ are given by Eq. (8).

Under such conditions, the vertex integral is given by

J θθ
αα = k2

k2(−t )

1 + ε

2 S2
k

{
σ 2

⊥
4π2

k2(−t )

k2
+ σ⊥�σk

12π2

k2(−t )

k2

+ k(−t )�σσ⊥
12π2

Pθ + kk(−t )�σ 2

×
[
Qθα

20π2
+ 1

60π2

∑
β �=α

Qθβ

]}
, (A3)

where we defined

Pθ = (1 + κθθ t )2 +
∑
ω �=θ

(κθωt )2,

Qθα = δθα (1 + κθθ t )2 + (1 − δθα )(κθαt )2 (A4)

The prefactor k2/k2(−t ) comes from the definition of the ·̂
operator.

2. Case α = β, θ �= ω

In that case, according to Eq. (9), the MCT vertices are
given by

Vσ
k,θω = k̂θ (−t )k̂ω(−t ) k(−t )�σ,

Wσ
k,αα = 1 + ε

2 S2
k

(k̂α k̂α k �σ + σ⊥). (A5)

Under such conditions, the vertex integral is given by

J θθ
αα = k2

k2(−t )

1 + ε

2 S2
k

{
k(−t )�σσ⊥

12π2

∑
ν

Nνν
θω

+ kk(−t )�σ 2

[
Nαα

θω

20π2
+

∑
β �=α

Nββ

θω

60π2

]}
, (A6)

where we defined

Nαα
θω = δαθ (καωt + καακαωt2) + δαω(κθαt + καακθαt2)

× (1 − δαθ )(1 − δαω )(καθκαωt2). (A7)

3. Case α �= β, θ = ω

In that case, according to Eq. (9), the MCT vertices are
given by

Vσ
k,θθ = k̂θ (−t )k̂θ (−t ) k(−t )�σ + σ⊥,

Wσ
k,αβ = 1 + ε

2 S2
k

(k̂α k̂β k �σ ). (A8)

Under such conditions, the vertex integral is given by

J θθ
αα = k2

k2(−t )

1 + ε

2 S2
k

kk(−t )�σ 2

30π2
Nθθ

αβ . (A9)

4. Case α �= β, θ �= ω

In that case, according to Eq. (9), the MCT vertices are
given by

Vσ
k,θω = k̂θ (−t )k̂ω(−t ) k(−t )�σ,

Wσ
k,αβ = 1 + ε

2 S2
k

(k̂α k̂β k �σ ). (A10)
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Under such conditions, the vertex integral is given by

J θθ
αα = k2

k2(−t )

1 + ε

2 S2
k

kk(−t )�σ 2

60π2
Mθω

αβ, (A11)

where we defined

Mθω
αβ = (δαθ δβω + δαωδβθ )

[
1 + (καα + κββ )t + (

καακββ + κ2
αβ

)
t2

]
+ [δαω(1 − δβθ ) + δβω(1 − δαθ )][καθ t + (καβκβθ + κββκαθ )t2]. (A12)
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