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Energy rectification in active gyroscopic networks under time-periodic modulations
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Combinations of gyroscopic forces and nonequilibrium activity have been explored recently in rectifying
energy in networks with complex geometries and topologies [Phys. Rev. X 10, 021036 (2020)]. Based on this
previous work, here we study the effect of added time-periodic modulations. Numerical calculations show that
the time-modulated network generates net energy transport between sites and the surroundings, even in the
absence of any temperature gradients. Combining path integral formulation and diagrammatic expansion, we
explain how such anomalous energy transport emerges, and show how the transport pattern in complex networks
can be connected to relatively simple local structures.
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I. INTRODUCTION

Pioneering studies on energy rectification have shown how
energy fluxes can be generated in the absence of tempera-
ture biases [1–13]. Such principles can potentially be applied
to build nanoscale energetic rectifiers [6]. From a theoreti-
cal perspective, energy transport is usually associated with
phonons, but these collective excitations are more difficult to
manipulate compared with single particles [6,14]. Previous
studies have exploited opportunities provided by nonlinear
interactions [4], athermal baths [2], geometric phases from
adiabatic modulations [5], or quantum Floquet systems [15].
Using a combination of parity-breaking metamaterials and
nonequilibrium forcing, our recent work [16] uncovered new
rectification principles which manifest as directed energy
flows between sites in network systems. Unlike many previous
studies that focused on transport between two terminals which
are linked directly [4] or through an asymmetric segment
[2–4], our setup placed all nodes and their connections on an
equal footing [11–13], thus enabling extending rectification
studies to networks with complex topologies and geometries.

Based on our recent work [16], here we study the effect
of added time-periodic modulation. Our model system is a
class of spring-mass networks where each mass is subject to
time-modulated Lorentz force [17,18] and is immersed in an
active bath [19]. Using numerical calculations, we show that
the time-modulated system is able to rectify energy fluxes
between nodes and the bath. In other words, our model can
act as a many-body energy pump despite the absence of tem-
perature biases. As a comparison, our previous unmodulated
system [16] supports net energy transport between sites but
not between sites and baths. The modulation thus expands
the toolbox for manipulating energy transport in complex
networks.
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We capture the numerical results by developing an analytic
framework to understand the energy rectification in complex
networks under time-periodic modulations. We first expand
the energy flux with respect to the modulation amplitude
using the Martin-Siggia-Rose–Janssen–De Dominicis–Peliti
(MSR-JDP) path integral formalism [20–22], which reveals
the mechanism for energy pumping through a modulation-
induced coupling between different Fourier modes of the
response function. We further perform a diagrammatic expan-
sion with respect to the interaction strength using techniques
we developed in Ref. [16], which provides a way to
understand rectification in complex networks from local sub-
networks. We can then engineer flux patterns by designing
local building blocks. As a rule of thumb, roughly the more
neighbors a node has, the more energy it receives from other
nodes. Taken together, we demonstrated modulation-induced
energy pumping in complex network systems, and developed
a theoretical framework to understand the mechanism and
organization of the energy rectification. The rectification prin-
ciple improves our understanding of energy transport and its
control in complex systems.

The remainder of this manuscript is organized as follows.
In Sec. II, we introduce our time-modulated active gyroscopic
model, provide a microscopic definition for the energy flux,
and present numerical results. In Secs. III–V we develop a
theoretical framework for the energy flux that combines path
integral formalism and a diagrammatic approach. In Sec. VI
we utilize the rectification principle to engineer flux patterns.

II. MODEL SYSTEMS AND ENERGY PUMPING

The equation of motion for our modulated active gyro-
scopic network model [Fig. 1(a)] reads [16]

mv̇i = −kgzi +
∑

j

Fji − B̂(t )A1vi − γ vi + ηi. (1)

We used zi ≡ (xi yi )T to denote the displacement of particle i
from its mechanical equilibrium position. Similarly vi and ηi

denote the velocity and the noise. −kgzi is an on-site tether-
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FIG. 1. Model and energy flux in example networks.
(a) Schematic of the model—a spring-mass network where
each particle is subject to a time-modulated Lorentz-like force
and active bath. (b) Energy transferred during each period, Qi,
for networks with shape V and Y . Positive value corresponds to
net energy transferred from the bath to the node. Protocol for
B-field modulation is B̂(t ) = sin 2πt/T , where T is the period of
modulation. (c) Energy flux for disordered network subject to a
step function protocol B̂(t ) = 1 if t < T/2, B̂(t ) = −1 if t � T/2.
Numerical calculations were performed with all parameters set to 1.
The color scale bar applies to both (b) and (c).

ing force. The linearized spring force from particle j to i is
calculated as Fji = k(eT

i jzi + eT
jiz j )(−ei j ), where ei j is the unit

vector that points from the equilibrium position of i to that of
j. Time-modulated Lorentz force is −B̂(t )A1vi = −B̂ (vi,y −
vi,x )T , where B̂ = eB is the product of the electric charge e and

the magnetic field B, and the matrix A1 ≡ ( 0 1
−1 0). The last

two terms are the friction −γ vi and an Ornstein-Uhlenbeck
(OU) colored noise ηi [19] from an active bath. The correla-
tion of the OU colored noise reads

〈
ηi(t )ηT

j (t ′)
〉 = Iδi j

γ Ta

τ
e− |t−t ′ |

τ , (2)

where τ is the correlation time, Ta controls the variance of the
colored noise, and I is the identity matrix with appropriate
dimensions. The friction −γ vi and the OU noise ηi drive
the system out of equilibrium via breaking the fluctuation-
dissipation relation. As a result of the periodically modulated
B field, the system would reach a time-periodic steady state.

The observable we focus on is the energy transport between
particles and baths at the time-periodic steady state. For a
system with pairwise interactions and on-site potentials, the
energy transferred from bath to particle i in each period T ,

averaged over noise realizations, reads

Qi =
∫ T

0
dt〈qi(t )〉, qi(t ) = −γ vi(t )T vi(t ) + vi(t )T ηi(t ).

(3)

The first term (−γ vT
i vi ) measures the energy loss from the

particle to the bath due to friction or dissipation. The second
term (vT

i ηi ) measures the energy gain for the particle due
to fluctuating forcing from the bath. Equation (3) is derived
using stochastic energetics [23,24] and a detailed procedure is
described in Appendix A in Ref. [16].

The immediate consequence of time periodicity is that the
total energy transfer during each period is zero,

∑N
i=1 Qi = 0,

where N is the number of particles in the system. In nonequi-
librium conditions, there seems to be no further constraint
on the value of each Qi; thus there is the possibility that
individual Qi’s are nonzero. Nonzero Qi’s mean that energy
is rectified or pumped from some sites to the others.

Starting from the linearized equations (1), we numerically
solve the time-dependent covariance matrix, from which we
calculate Qi [25,26] (Appendix A). Figures 1(b) and 1(c) show
a collection of numerical results for small and larger networks
under two example protocols for B(t )—a sinusoidal function
and a step function. We see that there is energy pumping from
some sites to the others. A more detailed description of the
average (but not dynamical) picture is as follows: Energy is
transferred from bath to particles labeled by Qi > 0, trans-
mitted through the bonds in the network, and released from
particles labeled by Qi < 0 to their surrounding bath. If we
were to view this phenomenon from the perspective of con-
ventional temperature-driven transport, we see that, although
all particles are subject to the same bath or environment, some
sites appear as if they were hotter (Qi > 0) or colder (Qi < 0).

Conventional transport theories cannot explain the mech-
anism of such energy pumping. Moreover, the energy is
pumped between multiple sites of the network, contrasting
conventional transports between only two terminals. It would
be beneficial to develop a theory to capture such kind of trans-
port between multiple sites, and, specifically, explain how the
pumping depends on the structure of complex networks.

We shall briefly comment on the necessity of colored noise
and the choice of modulating the B field. If one assumes white
noise, the system would remain in Boltzmann distribution and
thus no energy pumping regardless of the time-varying B field,
which can be seen from the Bohr–van Leeuwen theorem [27]
or the Fokker-Planck equation. Modulation of the B field as
opposed to other parameters does not directly alter the energy
or energy transfer. By contrast, a sudden decrease in spring
constant would cause “spurious” energy loss.

III. THEORY OUTLINE: A TWO-STEP
PERTURBATION STRATEGY

We outline a two-step perturbation theory that aims to
explain the emergence of energy fluxes and the connection
of fluxes to local properties. Details of each step will be
discussed in the next two sections. This two-step strategy is
motivated by our recent work on networks under constant B
fields [16], where we developed a diagrammatic approach as
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FIG. 2. Scaling of energy flux with respect to (a) �B̂ and (b) k
for the disordered network as in Fig. 1(c). Each single curve is the
scaling for one node. The modulation protocol is a step function that
switches between �B̂ and −�B̂ with period 1. All other parameters
are set to 1.

an efficient way to connect transport behavior to local prop-
erties. However, the diagrammatic approach cannot directly
be applied to the time-modulated case here because its central
quantity, the response function, would be invalid.

To overcome this obstacle, in the first step, we treat the
time modulation as a perturbation and relate the perturbed
system to the unperturbed ones. We write the time-modulated
B field as B̂(t ) = B̂ + �B̂(t ), where B̂ is a time-independent
reference field and �B̂(t ) is a time-periodic modulation
with a perturbative amplitude. Using the Martin-Siggia-
Rose–Janssen–De Dominicis–Peliti (MSR-JDP) path integral
formalism [20–22], correlators under a time-periodic system
can be expressed in terms of correlators under a time-invariant
reference system. We will see in Eq. (15) that the response
matrix at different Fourier frequencies gets coupled, which is
the main mechanism behind the emergence of the energy flux.

In the second step, we are ready to apply a diagrammatic
approach similar to Ref. [16]. We perform an expansion with
respect to interactions or the spring constant and express the
energy transfer as intuitive diagrams. These diagrams then
enable us to relate the energy flux in complex networks to the
structure of local subnetworks.

Numerical results in Fig. 2 show that to the lowest non-
vanishing order Qi ∼ �B̂(t )2k3. These observations suggest a
goal for analytical efforts, which is to develop an expression to
the order of �B̂(t )2k3, explain why lower order terms vanish,
and more importantly explore properties of energy pumping
on this nonvanishing order. We also observed fluxes whose
leading order terms are higher than �B̂(t )2 or k3 in networks
with higher symmetries. These networks are special cases and
thus are not our focus.

IV. PERTURBATIVE EXPANSION IN THE MODULATION:
A MSR-JDP APPROACH

A. MSR-JDP path integral formalism

The Martin-Siggia-Rose–Janssen–De Dominicis–Peliti
(MSR-JDP) path integral formalism [20–22,28] is a powerful
framework for studying statistical properties, e.g., the average
of an observable O, of a stochastic trajectory when compared
with another trajectory. Applying to our system, the former
trajectory is one under modulated B field, in which the average
is denoted as 〈O〉Bt , and the latter is one under constant B

field, in which the average is denoted as 〈O〉. The average
〈O〉Bt can be expressed as a path integral

〈O〉Bt
=

∫
DzDvDη ON

∏
t

δ(ż − v)δ(mv̇

+ Kz + kgz + γ v + B̂(t )Av − η)P[η], (4)

where the Dirac-δ functions ensure that the equations of mo-
tion are satisfied, P[η] is the probability of the noise, and
N is the normalization constant. We have expressed the N-
particle system using 2N-dimensional column vectors, e.g.,
z = ∑

i |i〉 ⊗ zi, where |i〉 denotes the 2D subspace corre-
sponding to particle i. The matrix K calculates interparticle
spring forces Fs due to particles’ displacements, Fs = −Kz.
The matrix A = ∑

i |i〉 〈i| ⊗ A1.
The modulated B field can be decomposed into a constant

part and a (potentially perturbative) time-varying part, B̂(t ) =
B̂ + �B̂(t ). Contributions to the path integral from these two
parts can be separated via the introduction of an auxiliary
field iu = ∑

i |i〉 ⊗ iui through δ(B̂Av + �B̂(t )Av + · · ·) ∝∫
du e−iuT (B̂Av+··· )e−iuT [�B̂(t )Av]. Further notice that when

�B̂ = 0 the path integral Eq. (4) reduces to 〈O〉. We get

〈O〉Bt
= 〈

O e− ∫
dt �B̂t iuT Av

〉
, (5)

where we have written the time variable in subscripts for
simplicity. In regimes where the amplitude of �B(t ) is small,
the right hand side can be expanded,

e− ∫
ds �B̂siuT Av = 1 −

∫
ds �B̂siu

T
s Avs

+ 1

2

∫
ds ds′ (�B̂siu

T
s Avs

)(
�B̂s′ iuT

s′ Avs′
)

− · · · . (6)

In Eqs. (5) and (6), we have used the MSR-JDP framework
to express the average under modulated conditions in terms of
some other average under unmodulated conditions.

The observable we are interested in is the energy flux from
the bath to the particle, Eq. (3). To account for the site index
more conveniently, we use a projection operator Pi,

Pi = |i〉〈i| ⊗
(

1 0
0 1

)
, (7)

and rewrite the flux quantity qi(t ) as

qi(t ) = −γ (Pivt )
T Pivt + (Pivt )

T Piηt . (8)

Combining Eq. (8) with the expansion Eq. (6), we obtain
expressions for the pumped energy to different orders in �B,

〈
Q(0)

i

〉
Bt

=
∫ T

0
dt〈qi(t )〉, (9)

〈
Q(1)

i

〉
Bt

= −
∫ T

0
dt ds

〈
qi(t )�B̂siu

T
s Avs

〉
, (10)

〈
Q(2)

i

〉
Bt

= 1

2

∫ T

0
dt ds ds′〈qi(t )

(
�B̂siu

T
s Avs

)

× (
�B̂s′ iuT

s′ Avs′
)〉
. (11)
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Here we write down the expansion to quadratic order because,
as we will show in the next subsection, the zeroth order and
the linear order terms vanish.

To calculate the explicit expressions from Eqs. (9)–(11),
one requires the evaluation of two-point correlators and mul-
tipoint correlators. The two-point correlators can be expressed
in terms of spectral response function G+(ω) for the reference
system under constant B,

G±(ω) = [K + kgI ± iω(γ I + B̂A) − mω2I]−1. (12)

The Fourier transform is defined as f̃ (ω) = ∫ ∞
−∞ dt f (t )e−iωt .

The response function describes how the system responds to
fluctuations z̃(ω) = G+(ω)η̃(ω). Explicit expressions of rel-
evant two-point correlators are presented in Appendix B 1.
The multipoint correlators can be written as combinations of
two-point correlators via Wick’s theorem [29].

To make our theory more general, we introduce a function
h(ω) to describe a generic noise spectrum

〈η̃(ω)η̃(ω′)T 〉 = 2γ Tah(ω)2πδ(ω + ω′)I. (13)

For white noise, h(ω) is constant. For the OU colored noise
described in Eq. (2), h(ω) = 1/(1 + ω2τ 2).

The time-periodic modulation �B̂(t ) will be represented
by its Fourier series with coefficients �B̃n,

�B̂(t ) =
∞∑

n=−∞
�B̃neiωnt , ωn = 2πn

T
, (14)

where n = . . . ,−1, 0, 1, . . . and �B̃n = �B̃∗
−n.

B. Zeroth and the linear order flux vanish

The zeroth order modulation corresponds to a constant B
field. This case has been explored previously, which showed
that there is no net energy flux between the bath and the parti-
cle, 〈Q(0)

i 〉Bt = ∫ T
0 dt〈qi(t )〉 = 0 (Appendix C in Ref. [16]).

One may expect that the linear order flux also vanish,
because sin-wave modulation and its opposite, − sin, should
result in the same periodic steady state. However, this argu-
ment does not account for modulations that consist of multiple
sinusoidal waves. Through explicitly calculating the linear
order energy flux, we show that different modes of modula-
tion are decoupled; thus the linear order term also vanishes
(Appendix B 2).

C. Quadratic order flux explains pumping mechanism

There is no a priori reason for quadratic order energy flux
to vanish. Starting from the expression for 〈Q(2)

i 〉Bt , Eq. (11),
we calculate the six-point correlators and get (details in
Appendix B 3)

〈
Q(2)

i

〉
Bt

= 4γ TaT
∞∑

n=1

|�B̃n|2
∫

dω

2π

× {
ω2(ω + ωn)[h(ω + ωn) − h(ω)]

× Re[i tr PiG
+(ω)AG+(ω + ωn)AG+(−ω)T ]

}
.

(15)

This theoretical expression can explain how energy pumping
is generated in the presence of the colored noise and the
modulation.

The role of the colored noise takes effect through the
factor h(ω + ωn) − h(ω). If the noise spectrum h(ω) is flat,
which corresponds to a white noise, this factor vanishes. Only
colored noise with nonflat spectrums can generate a nonzero
〈Q(2)

i 〉Bt .
The role of modulated B field is to induce couplings be-

tween different modes of the response function, which is
manifest through the factor G+(ω)AG+(ω + ωn)AG+(−ω)T .
This is in contrast with the unmodulated case where G+(ω)
at different frequencies are uncoupled, which leads to no
pumping [16]. Thus the coupling between different modes is
one necessary mechanism for energy pumping in our model.

Another flux property related to the modulation is that
contributions from different terms in the Fourier series of
�B(t ) are independent, which can be seen from the summa-
tion

∑∞
n=1 |�B̃n|2(· · · ). As a consequence, we only need to

discuss the flux from each mode of �B(t ). Then the flux for
arbitrary modulation protocols can be obtained by weighted
combinations of the individual modes.

V. FURTHER EXPANSION IN THE INTERACTION:
A DIAGRAMMATIC APPROACH

A. Diagrammatic expansion and two useful properties

Having explained the mechanism of energy pumping, we
now study detailed properties of the flux, in particular, the re-
lationship between flux pattern in a complex network and the
structure of local subnetworks. When interactions are weak,
it can be expected that the flux for a node mainly depends
on its immediate surroundings. The diagrammatic approach
provides a tool to explicitly find such dependence.

Starting from the expression (15), we expand the re-
sponse functions with respect to small k into products of the
noninteracting part (matrix G+|k=0) and the interacting part
(matrix K). Due to the pairwise spring-mediated interactions,
the matrix K has a block structure, which depends on the
topology and the geometry of the network. Further expansion
based on the blocks results in terms that can be pictorially
represented as diagrams and are closely related to the network
structure. Diagrams for the energy flux between site i and
the bath are paths that start from i, iteratively step to bonded
neighbors or to the site itself, and finally end at site i. Dia-
grams with |l| steps correspond to mathematical expressions
that are on the order of k|l|, which we will denote as |l|’s
order diagrams. In the small-k regime a lower-order diagram
contributes more to the flux. The mathematical expression
corresponding to each diagram is lengthy, which we present
in Appendix C 1.

We point out two useful properties of the diagrams. The
first property is that if there is no loop on a site, then the
diagram is equivalent to a simplified one where all other
branches on the site are removed [Fig. 3(a), Appendix C 1].
The second property is that if a diagram consists of solely
loops, its value vanishes [Fig. 3(b), Appendix C 2]. As we
saw from numerical results in Fig. 2, energy fluxes scale as
k3. Using the two properties described above, we will show
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FIG. 3. Two useful properties of the diagrams. The starting and
ending site is labeled in green. (a) If there is no loop on a site, then the
diagram is equivalent to a simplified one where all other branches on
the site are removed. (b) Diagrams consisting of only loops vanish.
The symbol n in the figure represents an arbitrary number.

in the following two subsections why lower order diagrams
vanish and how the third order diagrams reveal an explicit
relationship between fluxes in complex networks and local
structures.

B. First and second order diagrams vanish

The first order diagrams mean those with only one step.
The only possible first order diagrams are those with one loop
on the node. According to the second property, all first order
diagrams vanish.

Second order diagrams also vanish for the following rea-
son. The second order diagrams for site i have the form
i → j → i, where j’s are the bonded neighbors [Fig. 4(a);
diagrams with only loops are eliminated]. Using property one,
these diagrams are equivalent to the diagram 1 → 2 → 1 in
a network that consists of only two nodes, 1 and 2. From
symmetry, the flux in the two-node network is zero. At the
k2 level, this means that the sum of a looped diagram and a
1 → 2 → 1 diagram is zero [Fig. 4(b)]. Thus the 1 → 2 → 1
diagram and equivalently i → j → i diagrams vanish.

C. Third order diagrams reveal connection between
flux and local properties

The third order diagrams do not vanish in general. Inves-
tigation of the third order diagrams shows how the flux in a
complex network can be represented using local properties.

In Fig. 5(a), we write down all diagrams for a node in
arbitrary networks. The network fragment in Fig. 5(a) is rep-
resentative of all possible connections surrounding a node

FIG. 4. Second order diagrams vanish. (a) Diagrammatic expan-
sion of the energy flux on the order of k2. Diagrams with only loops
are eliminated. From property one, these i → j → i diagrams are
equivalent to the 1 → 2 → 1 diagram in a two-node network. (b) In
the two-node network, the sum of diagram 1 → 1 → 1 and diagram
1 → 2 → 1 is zero. Using property two, the diagram 1 → 2 → 1
vanishes.

i, which include bondings between i and its neighbors j’s,
bondings between two of its neighbors, and bondings between
its neighbors and other nodes in the network. The flux on the
generic node i from the third order equals the sum of all third
order diagrams.

All third order diagrams can be classified into three classes
and then simplified using property one. The first class of
diagrams contain a loop on node i, such as i → i → j → i,
i → j → i → i. The sum of all class one diagrams is equal to
the third order flux of node i in a trimmed subnetwork centered
around i, where all neighbors of j and all connections between
j’s are removed. The second class of diagrams contain a loop
on node j, e.g., i → j → j → i. Each diagram in class two is
equal to the flux of node i in a trimmed subnetwork centered
around j. The third class of diagrams are triangles that con-
tain arrows between bonded j’s, e.g., i → j1 → j2 → i. The
above classification shows an explicit relation between fluxed
in complex networks and local properties, which is depicted
in Fig. 5(b).

If a network does not contain any triangular connections,
then its flux can be obtained by summing over trimmed sub-
networks of the first two classes. A consequence is that we can
simply reconstruct the flux in large-scale networks from small
subnetworks. Figure 6 is a numerical demonstration that such
reconstructed fluxes match well with the original ones.

VI. UTILIZING LOCAL BUILDING BLOCKS TO CREATE
COMPLEX PATTERNS OF ENERGY TRANSPORT

The connection between flux in a network and in its local
subnetworks can be exploited to create complex patterns of
energy transport. If we assume that the energy in the bath
diffuses slowly, then energy fluxes can lead to temperature
changes, which means that our setup could potentially be used
to engineer temperature inhomogeneities using homogeneous
modulations.

The objective can be posed as follows: given a grid of
unconnected nodes and a target pattern, we design connec-
tions between the nodes such that the consequent flux pattern
matches a target one. From the relation between flux in com-
plex networks and its local structures (Sec. V C), we can
inversely use the local subnetworks as building blocks. The
building blocks considered here are star-shaped networks with
one central node and a number of evenly spaced neighbors.
Figure 7(a) shows that the flux of the central node increases in
its magnitude as the number of branches increases. Based on
this observation, we can create connections simply by consid-
ering the difference between the degree of a node and degrees
of its neighbors. Consider a target drawing that consists of
a white background and darker patterns; we first highlight
nodes corresponding to darker pixels in the pattern. Then
for each highlighted node we create connections to nonhigh-
lighted ones with angles as even as possible. The degree
of a highlighted node is proportional to the darkness of its
corresponding pixel. The average degree of nonhighlighted
nodes, due to their larger population, is smaller than that of the
highlighted ones. We avoid connections between highlighted
nodes or between nonhighlighted nodes, in order to avoid in-
fluence from triangle diagrams. Note that the connections built
from this strategy can be long ranged in space. In Fig. 7(b)
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FIG. 5. Third order diagrams for a node in arbitrary networks. (a) All third order diagrams for the node labeled in green. The number in
circles labels the order in the path. (b) These diagrams or their partial sums can be classified into three groups and then simplified. The third
order flux of the labeled node is equal to the sum of fluxes of corresponding nodes in trimmed subnetworks and fluxes of triangle diagrams.

we demonstrate the pattern of a gray-scaled book constructed
through the above strategy. It may be possible to achieve a
broader range of patterns or avoid long-ranged connections
using other strategies.

The observed relation between flux amplitude and the num-
ber of branches [Fig. 7(a)] can be quantified and explained by
our diagrammatic theory in the perturbative regime. For a star-
shaped network with evenly spaced branches, the flux of the
central node, Qc, is proportional to the square of the number
of branches, N . A brief explanation of the flux scaling is as
follows. For the flux on a side node, Qs(= −Qc/N ), the contri-
bution comes from the diagram side → center → center →
side (other diagrams vanish). Due to the loop on the center,
the value of the diagram depends on the force response of the
central node, which increases linearly with the number of its
neighbors (for N � 3). As a result, Qs ∝ N, Qc = −NQs ∝

FIG. 6. Energy fluxes reconstructed from local subnetworks
match well with the original ones. (a) Fluxes calculated from the
full network. (b) Fluxes calculated from local subnetworks then
combined according to reconstruction rules. The system and the
modulation protocol are mostly the same as in Fig. 1(c) except that
�B̂ = 0.1, k = 0.1. The color scale bar applies to both (a) and (b).

N2 (see Appendix D for details). Using evenly spaced star-
shaped building blocks to approximate more irregular ones,
we obtain a pattern that roughly the more neighbors a node
has (compared with degrees of its neighbors), the “colder”
(Qi < 0) it is [Figs. 1(b) and 1(c)].

VII. CONCLUSION

In conclusion, we have constructed an active gyroscopic
network model where the B field is modulated in a time-
periodic manner. We numerically demonstrated that our
model is able to rectify energy transport between nodes and
baths in the absence of any temperature biases. Importantly,
by combining the MSR-JDP formalism and our diagrammatic

FIG. 7. Creating target flux patterns by exploiting the connection
between flux in a network and in its local subnetworks. (a) For
star-shaped networks with parameters specified below, the flux am-
plitude of the central node increases with the number of branches.
(b) Constructed network and its flux pattern that mimics a grayscaled
book. The modulation is a step function where B̂(t ) switches between
−1 and 1. The period is taken to be infinite so that steady states are
reached before B̂(t ) changes its value. All parameters are set to 1
except k = 0.05.
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approach, we formulate a connection between flux pattern in
complex networks and the flux pattern in local subnetworks.
Such connection enables us to understand and control en-
ergy pumping in arbitrary complex networks. In particular,
we can engineer flux patterns by designing building blocks,
for example, by connecting a desired “colder” node with
more neighbors. The combined MSR-JDP and diagrammatic
approach can in principle be applied to calculate generic cor-
relators for perturbed linear networks with arbitrary geometry
and topology.
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APPENDIX A: NUMERICAL CALCULATION OF ENERGY
FLUX FROM TIME-DEPENDENT COVARIANCE MATRIX

We first consider the evolution of our active gyroscopic
network under a constant B field. Then we numerically ap-
proximate the time-varying B field by discretizing it into short
segments, each under a constant B.

Under constant B field, the evolution of our system as
described in the extended space X = {z, v, η} obeys linear dy-
namics. Here the Ornstein-Uhlenbeck colored noise is treated
by the evolution [19]

τ η̇i = −ηi +
√

2γ Taξi. (A1)

For a general linear stochastic equation with time-independent
drift μ and diffusion factor σ ,

dX = μ dt + σ dW, (A2)

its steady-state covariance matrix C = 〈XX T 〉 can be numeri-
cally solved from the matrix equation −(μC + CμT ) = σσ T

[25,26]. The evolution of the covariance C(t ) starting from an
initial state C0 reads

C(t ) = C + eμt (C0 − C)eμT t . (A3)

From C(t ) we can extract the energy flux, qi(t ) = −γ vT
i vi +

vT
i ηi, and subsequently calculate its time integral.

Our numerical procedure to calculate Qi is as follows.
Given a protocol B(t ), we discretize it into short segments in
time. In each segment the B field is constant and is evaluated
at the starting time of that segment. Consequently, the covari-
ance matrix in each segment can be calculated using Eq. (A3).
The evolution C(t ) for protocol B(t ) can thus be solved by
combining results from all segments. We choose a starting C0

to be the steady state under constant B(0) and evolve C(t ) for
many periods until C(nT ) − C(nT + T ) is smaller than target
numerical precision, which indicates that the time-periodic
steady state is achieved. Then we evolve C(t ) from this steady
state and calculate the pumped energy Qi. The source of
numerical errors mainly come from discretization. Numerical
calculations are performed using Mathematica with custom
code.

APPENDIX B: PERTURBATIVE EXPANSION
IN MODULATED B FIELD

1. Two-point correlators expressed in terms
of the response function

Correlators relevant to calculating 〈Q(1)
i 〉Bt and 〈Q(2)

i 〉Bt

involve vt , ηt , iut (but not zt ). In this Appendix, we express
the relevant two-point correlators in terms of the response
function G+(ω).

Correlators that do not involve the auxiliary field iut can
be calculated directly. We show an example calculation of the
correlator 〈vtv

T
s 〉,

〈
vtv

T
s

〉 =
∫

dω

2π
eiω(t−s)(iω)(−iω)2γ Tah(ω)G+(ω)G−(ω)T

(B1)

=
∫

dω

2π
eiω(t−s)iωTah(ω)[G+(ω) − G−T (ω)], (B2)

where to reach the second line we have used G−T − G+ =
2iωγ G+G−T [30].

To calculate correlators that involve the auxiliary field, we
first need to review the connection between the auxiliary field
and the response of the system. Consider an unmodulated
system that is perturbed by an external force f (t ),

mv̇ = −Kz − γ v − B̂Av + η + f . (B3)

The MSR-JDP result can be obtained by simply replacing
−�B̂Av in Eq. (5) by f , which reads

〈O〉 f = 〈
O e

∫
dt iuT f

〉
. (B4)

The correlators can then be related to the response

〈Oiui,s〉 = δ

δ fi,s
〈O〉

∣∣∣∣
f →0

, (B5)

〈Oiui,siui′,s′ 〉 = δ

δ fi,sδ fi′,s′
〈O〉

∣∣∣∣
f →0

, (B6)

where we have expressed the component of the vector f , iu
explicitly. From the above expressions we see that these cor-
relators are connected to responses to an external perturbation,
for which reason the auxiliary field iu is also called a response
field. For our linear reference system, such response can be
expressed in terms of the response function G+(ω).

The two-point correlators needed to calculate 〈Q(1)
i 〉Bt and

〈Q(2)
i 〉Bt are summarized as follows:

〈
vtv

T
s

〉 = 1

2γ

(〈
vtη

T
s

〉 + 〈
vsη

T
t

〉T )
, (B7)

〈
vtη

T
s

〉 = 2γ Ta

∫
dω

2π
eiω(t−s)iωh(ω)G+(ω), (B8)

〈
ηtη

T
s

〉 = 2γ Ta

∫
dω

2π
eiω(t−s)h(ω), (B9)

〈
vt iu

T
s

〉 =
∫

dω

2π
eiω(t−s)iωG+(ω), (B10)

〈
ηt iu

T
s

〉 = 0, (B11)

〈
iut iu

T
s

〉 = 0. (B12)
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2. Linear order perturbation in modulation

In this Appendix, we derive the linear order energy flux
with respect to modulation of the B field. We show that this
contribution vanishes.

From Eqs. (10) and (8), the linear order energy flux reads

〈
qi(t )(1)

〉
Bt

= −
∫

ds �B̂s
{〈 − γ (Pivt )

T Pivt iu
T
s Avs

〉

+ 〈(Pivt )
T Piηt iu

T
s Avs〉

}
. (B13)

Using Wick’s theorem for four-point correlators,

〈aT bcT d〉 = tr 〈abT 〉 tr 〈cdT 〉 + tr 〈acT 〉〈dbT 〉
+ tr 〈adT 〉〈cbT 〉, (B14)

the first and the second term in Eq. (B13) are reduced to

−γ 〈(Pivt )
T Pivt iu

T
s Avs〉 = −γ ( tr Pi

〈
vtv

T
t

〉
tr A

〈
vsiu

T
s

〉
+ 2 tr Pi

〈
vt iu

T
s

〉
A
〈
vsv

T
t

〉
), (B15)

〈
(Pivt )

T Piηt iu
T
s Avs

〉 = tr Pi
〈
vtη

T
t

〉
tr A

〈
vsiu

T
s

〉
+ tr Pi

〈
vt iu

T
s

〉
A
〈
vsη

T
t

〉
. (B16)

The sum of the first terms on both right hand sides (RHSs)
vanishes because(−γ tr Pi

〈
vtv

T
t

〉 + tr Pi
〈
vtη

T
t

〉) = 〈qi(t )〉 = 0. (B17)

The sum of the second terms on both RHSs can be simplified
to − tr Pi〈vt iuT

s 〉A〈vsη
T
t 〉T using Eq. (B7). Plugging in expres-

sions for correlators presented in Appendix B 1, we get〈
qi(t )(1)

〉
Bt

= 2γ Ta
∫

dω
2π

dω′
2π

ds{�B̂sei(ω−ω′ )(t−s)

×(iω)(iω′)h(ω′) tr [PiG+(ω)AG+(ω′)T ]}. (B18)

Integration over s can be written with the Fourier transform
of �B,∫

ds �B̂se
i(ω−ω′ )(t−s) = �B̃(ω − ω′)ei(ω−ω′ )t . (B19)

We then integrate over t . Since �B̂(t ) is a periodic function
with period T , it can be expanded in discrete Fourier modes,

�B̂(t ) =
∞∑

n=−∞
�B̃neiωnt , ωn = 2πn

T
, (B20)

�B̃(ω) =
∑

n

�B̃n2πδ(ω − ωn), (B21)

with the property �B̃n = �B̃∗
−n. The integration over t reads

∫ T

0
dt eiωnt =

{
T, if ωn = 0,

1
iωn

(eiωnT − 1) = 0, if ωn �= 0,
(B22)

= T δn,0. (B23)

We introduce an auxiliary function

f1(ω,ω′) = 2γ Ta(iω)(iω′)h(ω′) tr [PiG
+(ω)AG+(ω′)T ].

(B24)

The linear order energy flux at time instant t reads

〈qi(t )(1)〉Bt =
∫

dω

2π

dω′

2π
�B̃(ω − ω′)ei(ω−ω′ )t f1(ω,ω′)

(B25)

=
∑

n

∫
dω

2π
�B̃neiωnt f1(ω,ω − ωn), (B26)

which shows that different modulation modes, �B̃n, are de-
coupled.

After time integration the result reads

〈
Q(1)

i

〉
Bt

=
∫ T

0
dt〈qi(t )(1)〉Bt (B27)

= T
∫

dω

2π
�B̃0 f1(ω,ω) (B28)

= 2γ TaT
∫

dω

2π
{�B̃0h(ω)(iω)2

× tr [PiG
+(ω)AG+(ω)T ]} = 0. (B29)

This result shows that the only contribution is the zero-
frequency mode of �B̂(t ); thus the flux should vanish. The
mathematical proof is as follows: since G+(ω)T PiG+(ω) is a
symmetric matrix and A is an antisymmetric matrix, the trace
of their product is zero.

3. Quadratic order perturbation in modulation

In this Appendix, we derive the expression for the
quadratic order energy flux with respect to modulation of the
B field, Eq. (15) in the main text. We also perform sanity
checks that the energy balance is satisfied and that flux van-
ishes if the modulation is constant.

We start from expressions (11) and (8), and get the
quadratic order energy flux at time t ,

〈
qi(t )(2)

〉
Bt

= 1

2

∫
ds ds′〈[−γ (Pivt )

T Pivt + (Pivt )
T Piηt ]

× (
�Bsiu

T
s Avs

)(
�Bs′ iuT

s′ Avs′
)〉
. (B30)

This expression involves six-point correlators, which emit 15
terms using the Wick’s theorem. However, many of these
terms will turn out to vanish, which greatly simplifies the
calculation.

Our first task is to identify these vanishing terms. The
quadratic order perturbation can be expanded as

∫
dt

〈
qi(t )(2)

〉
Bt

= 1

2

∫
dt ds ds′�B̂s�B̂s′

[〈qi(t )〉〈iuT
s Avs

〉〈
iuT

s′ Avs′
〉 + 〈

qi(t )iuT
s Avs

〉
c

〈
iuT

s′ Avs′
〉

+ 〈
iuT

s Avs
〉〈

qi(t )iuT
s′ Avs′

〉
c
+ 〈

qi(t )iuT
s Avsiu

T
s′ Avs′

〉
c

]
, (B31)

where subscript “c” means the terms are “connected” inside the same trace. The first term vanishes due to 〈qi〉 = 0. The second
and the third term vanish due to

∫
dt〈qi(t )(1)〉Bt = 0. Now we only need to consider the last term which involves the trace
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connecting all six points. These terms have the form

〈aT bcT deT f 〉c = tr 〈acT 〉〈df T 〉〈ebT 〉 + tr 〈acT 〉〈deT 〉〈 f bT 〉 + tr 〈adT 〉〈c f T 〉〈ebT 〉 + tr 〈adT 〉〈ceT 〉〈 f bT 〉
+ tr 〈aeT 〉〈 f dT 〉〈cbT 〉 + tr 〈aeT 〉〈 f cT 〉〈dbT 〉 + tr 〈a f T 〉〈edT 〉〈cbT 〉 + tr 〈a f T 〉〈ecT 〉〈dbT 〉. (B32)

Applying the above form and noticing that some two-point
correlators are zero, the expression for the quadratic order
energy flux Eq. (B31) simplifies to

〈
qi(t )(2)〉

Bt
=

∫
ds ds′�Bs�Bs′

{
tr

[
Pi

〈
vt iu

T
s

〉
A
〈
vsη

T
s′
〉
A
〈
ius′vT

t

〉]

− tr
[
Pi

〈
vt iu

T
s

〉
A
〈
vsiu

T
s′
〉
A
〈
vtη

T
s′
〉T ]}

. (B33)

We next plug in explicit expressions for the two-point
correlators (B7)–(B12) and integrate over s, s′ and t . We get

〈
Q(2)

i

〉
Bt

= 2γ TaT
∞∑

n=−∞
|�B̃n|2

∫
dω

2π

× {
iω2(ω − ωn)[h(ω − ωn) − h(ω)]

× tr PiG
+(ω)AG+(ω − ωn)AG+(−ω)T

}
. (B34)

It can be shown that the ωn term and the −ωn term form a
complex conjugate pair. From this property and Eq. (B34), we
reach the final expression for the quadratic order energy flux
(15) in the main text.

APPENDIX C: FURTHER PERTURBATIVE
EXPANSION IN INTERACTION

1. Procedure and result of the diagrammatic approach

The diagrammatic approach is built on an expansion of the
response function. We first review the diagrammatic expan-
sion of a single response function [16], then combine the three
response functions and other parts in Eq. (15) or Eq. (B34) to
get the diagrammatic expression for the energy flux.

In the small-k regime, the response function G+(ω)
[Eq. (12)] can be expanded as

G+ = 1

(G+|k=0)−1 + K
=

∑
|l|=0

G+|k=0[(−K )G+|k=0]|l|.

(C1)

The noninteracting part G+|k=0 is block diagonal: G+|k=0 =∑
i |i〉 〈i| ⊗ g+(ω). Here g+(ω) is the 2×2 response matrix for

a single noninteracting node, which manifests as a rotation
matrix of a complex angle αω,

g+(ω) = 1

k0,ω

(I cos αω − A1 sin αω ), (C2)

k0,ω =
√

(kg + iωγ − mω2)2 − (ωB̂)2, (C3)

cos αω = 1

k0,ω

(kg + iωγ − mω2), (C4)

sin αω = 1

k0,ω

iωB̂. (C5)

The interacting part K consists of blocks

(−K )ii = 〈i|(−K )|i〉 =
∑
j, j �=i

( − ei je
T
i j

)
, (C6)

(−K ) ji = 〈 j|(−K )|i〉 = ei je
T
i j, (C7)

where ei j denotes the unit vector that points from the equilib-
rium position of i to that of j.

We insert resolution of identity I = ∑
i |i〉 〈i| into the ex-

pansion (C1). As an example,

〈i|G+|k=0(−K )G+|k=0(−K )G+|k=0| j〉
=

∑
m

g+(ω)(−K )img+(ω)(−K )m jg
+(ω). (C8)

For block (−K )im to be nonzero, either site i and site m are
bonded, or m = i. Likewise for block (−K )m j . These con-
straints on path i → m → j can be conveniently addressed
using diagrams: first draw the network, label the nodes i and
j, then identify node m’s that satisfy the constraints.

Now we apply the diagrammatic approach to energy flux
for site i, Eq. (15) or Eq. (B34). Each term in the expansion of
the energy flux can be represented as a diagram, or a path l :
i = l0 → l1 → · · · → l|l|−1 → l|l| = i, where |l| is the length
of the path. Consecutive nodes in the path either have to
be bonded or they are the same node. The path has to start
and end at node i because of the existence of the projection
operator Pi. The three G+’s dictate that path l needs to be
partitioned into three segments with lengths {|l|1, |l|2, |l|3}
(|l|1 + |l|2 + |l|3 = |l|), and each segment sets how each G+
is expanded.

Taken together, the diagrammatic expression of 〈Q(2)
i 〉Bt

can be written as a sum over paths,

〈
Q(2)

i

〉
Bt

= Ta

∞∑
n=1

T |�B̃n|2
∑

l

k|l| fi,n;l , (C9)

fi,n;l =
∑

|l|1+|l|2+|l|3=|l|
fi,n;l;|l|1,|l|2,|l|3 . (C10)

fi,n;l denotes the mathematical expression for path
l . fi,n;l;|l|1,|l|2,|l|3 denotes the expression for partition
{|l|1, |l|2, |l|3}, which reads

fi,n;l;|l|1,|l|2,|l|3

= 2 Re
∫

dω

2π
ω(ω + ωn)(h(ω + ωn)

− h(ω)) tr {M[(−K )g+(ω)]l|l|1+|l|2 →···iA

× M[g+(ω + ωn)(−K )]l|l|1 →···l|l|1+|l|2 g+(ω + ωn)A

× M[g+(−ω)T (−K )]i→···l|l|1 [g+(−ω)T − g+(ω)]}.
(C11)
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Symbol M[·] denotes the expression for a segment of the path,

M[(−K )g+(ω)]l0→l1→···→ln

= (−K )ln,ln−1 g+(ω) · · · (−K )l2,l1 g+(ω)(−K )l1,l0 g+(ω),
(C12)

M[g+(ω)(−K )]l0→l1→···→ln

= g+(ω)(−K )ln,ln−1 · · · g+(ω)(−K )l2,l1 g+(ω)(−K )l1,l0 .

(C13)

From Eqs. (C9), (C10), and (C11), we obtain the procedure
to write down energy flux for site i on the order of k|l| as
follows. First, draw all possible closed paths with length |l|
that starts from node i, iteratively navigates to its bonded
neighbors or to itself for |l| steps, and ends at node i. Sec-
ondly, for each path l , find all partitions {|l|1, |l|2, |l|3} and
calculate fi,n;l;|l|1,|l|2,|l|3 according to Eq. (C11). Finally, sum

up all partitions to get fi,n;l [Eq. (C10)], then sum up all paths
to obtain 〈Q(2)

i 〉 on the k|l| order [Eq. (C9)].
Path l and its corresponding mathematical expression fi,n;l

can be presented as diagrams. An arrow i → j in the diagram
corresponds to (−K ) ji mathematically and, as a result, if i �=
j, the contribution from this arrow is independent of the other
neighbors of i or j [Eq. (C7)]. If i = j, however, neighbors of
i cannot be removed because they do affect the value of i → i
through (−K )ii [Eq. (C6)]. As a result, if a diagram contains
no loops on some node j, the diagram is equal to a trimmed
diagram where we remove all neighbors of j except for those
appearing in the path. This basic property helps to simplify
the diagrams without explicit calculations of fi,n;l .

2. Diagrams that consist of only loops vanish

For diagrams with only loops, the expression M[·] simpli-
fies to multiplication of the same matrix. Denoting (−K )ii =
Mi, fi,n;l;|l|1,|l|2,|l|3 reads

fi,n;l;|l|1,|l|2,|l|3 = fMi,1(|l|1, |l|2, |l|3) − fMi,2(|l|1, |l|2, |l|3), (C14)

fMi,1(|l|1, |l|2, |l|3) = 2 Re
∫

dω

2π
ω(ω + ωn)(h(ω + ωn) − h(ω)) tr {[Mig

+(ω)]|l|3 A[g+(ω + ωn)Mi]
|l|2

× g+(ω + ωn)A[g+(−ω)T Mi]
|l|1 g+(−ω)T }, (C15)

fMi,2(|l|1, |l|2, |l|3) = 2 Re
∫

dω

2π
ω(ω + ωn)(h(ω + ωn) − h(ω)) tr {[Mig

+(ω)]|l|3 A[g+(ω + ωn)Mi]
|l|2

× g+(ω + ωn)A[g+(−ω)T Mi]
|l|1 g+(ω)}. (C16)

From the above definitions, it is straightforward to prove
the following three relations:

fMi,1(|l|1, |l|2, |l|3) = fMi,2(|l|1 + 1, |l|2, |l|3 − 1), (C17)

fMi,1(|l|1, |l|2, 0) = − fMi,1(|l|2, |l|1, 0), (C18)

fMi,2(0, |l|2, |l|3) = − fMi,2(0, |l|3, |l|2). (C19)

With these relations, fi,n;l can be shown to be zero,

fi,n;l =
∑

|l|1+|l|2+|l|3=l

{ fMi,1(|l|1, |l|2, |l|3)

− fMi,2(|l|1, |l|2, |l|3)} (C20)

=
l−1∑

|l|1=0

l−1−|l|1∑
|l|2=0

fMi,1(|l|1, |l|2, l − |l|1 − |l|2)

+
l∑

|l|1=0

fMi,1(|l|1, l − |l|1, 0)

−
l∑

|l|2=0

fMi,2(0, |l|2, l − |l|2)

−
l∑

|l|1=1

l−|l|1∑
|l|2=0

fMi,2(|l|1, |l|2, l − |l|1 − |l|2)

= 0. (C21)

Thus diagrams consisting of only loops vanish.

APPENDIX D: FLUX SCALING IN STAR-
SHAPED NETWORKS

For a star-shaped network with evenly spaced branches, we
numerically showed in Fig. 7(a) that the flux amplitude of the
central node, |Qc|, increases with the number of branches, N .
In this section, we explain this observation using perturbation
theory, and show that, in the perturbative regime, |Qc| ∝ N2.
We will analyze the flux on a side node, Qs; then due to
symmetry and energy balance, Qc = −NQs.

Numerical calculations of fluxes at various values of �B̂
and k show that [Fig. 8(a)], as k decreases, the relation be-
tween Qs and N approaches a linear relation.

Using our diagrammatic theory, the flux through side
node 2 can be decomposed as the sum of three diagrams
[Fig. 8(b)]. Diagrams 2 → 2 → 1 → 2 and 2 → 1 → 2 → 2
can be shown to vanish. Only diagram 2 → 1 → 1 → 2 sur-
vives.

The vanishing of diagrams 8(b1) and 8(b2) can be seen
from their equivalent diagrams on a two-node network. Since
there are no loops on node 1, all neighbors except for node 2
can be removed according to diagram property Fig. 3(a). For
a two-node network, all fluxes vanish for symmetry reasons;
so does the sum of all diagrams on the order of k3,

f 2-node
2,n;2→2→1→2 + f 2-node

2,n;2→1→2→2 + f 2-node
2,n;2→1→1→2 = 0. (D1)
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FIG. 8. (a) At small k’s (k = 0.005 in the plot), the flux on a side
node of star-shaped networks scales linearly with the number of side
nodes. (b) Diagrammatic decomposition for flux through side node 2
of a star-shaped network with five branches. The modulation is a step
function where B̂(t ) switches between −�B̂ and �B̂. The period is
taken to be infinite. All parameters except for �B̂ and k are set to 1.

fi,n;l denotes the flux for node i from B-field mode n and
path l . The expression of fi,n;l itself is lengthy [Eqs. (C10)
and (C11)], but comparisons between different paths can be
simplified. The important components are blocks of the force
matrix K [Eqs. (C6) and (C7)]. f 2-node

i,n;l for three paths reads

f 2-node
2,n;2→2→1→2=

∑
tr · · · (−K )21 · · · (−K )12 · · · (−K )22 · · · ,

(D2)

f 2-node
2,n;2→1→2→2=

∑
tr · · · (−K )22 · · · (−K )21 · · · (−K )12 · · · ,

(D3)

f 2-node
2,n;2→1→1→2=

∑
tr · · · (−K )21 · · · (−K )11 · · · (−K )12 · · · ,

(D4)

where omitted parts (· · · ) are identical for the three f 2-node
2,n;l ’s.

Plugging in the relation

(−K )11 = (−K )22 = −(−K )12 = −(−K )21 (D5)

for two-node networks, we see that the three f 2-node
2,n;l ’s are

equal. Since their sum is zero [Eq. (D1)], each of the three
f 2-node
2,n;l ’s equals zero and thus diagrams 2 → 2 → 1 → 2 and

2 → 1 → 2 → 2 vanish:

f 2-node
2,n;2→2→1→2 = f 2-node

2,n;2→1→2→2 = f 2-node
2,n;2→1→1→2 = 0. (D6)

Due to equivalence of diagrams, corresponding diagrams for
star-shaped networks vanish:

f star
2,n;2→2→1→2 = f star

2,n;2→1→2→2 = 0. (D7)

Now we analyze diagram 2 → 1 → 1 → 2. The formula
for f star

2,n;2→2→1→2 has the same form as Eq. (D4), except that
(−K )11 becomes

(−K )11 =
N+1∑
j=2

(
cos2 θ j cos θ j sin θ j

cos θ j sin θ j sin2 θ j

)
= N

2

(
1 0
0 1

)
,

(D8)
where θ j = 2π ( j − 2)/N + φ is the orientation of the bond
1 − j and φ is an arbitrary phase. The second equality holds
for N � 3.

As a result, the diagram 2 → 1 → 1 → 2 and thus the
flux through a side node Qs is proportional to the number of
branches N . The flux through the central node Qc ∝ N2.
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