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We investigate the solution landscapes of the confined diblock copolymer and homopolymer in two-
dimensional domain by using the extended Ohta–Kawasaki model. The projection saddle dynamics method
is developed to compute the saddle points with mass conservation and construct the solution landscape by
coupling with downward and upward search algorithms. A variety of stationary solutions are identified and
classified in the solution landscape, including Flower class, Mosaic class, Core-shell class, and Tai-chi class.
The relationships between different stable states are shown by either transition pathways connected by index-1
saddle points or dynamical pathways connected by a high-index saddle point. The solution landscapes also
demonstrate the symmetry-breaking phenomena, in which more solutions with high symmetry are found when
the domain size increases.
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I. INTRODUCTION

The diblock copolymers are composed of two different
blocks linked together through covalent bonding. A large
number of copolymers interact with each other to produce a
wide variety of microstructures, resulting from a compromise
between phase segregation and polymer architecture [1–4].
The diblock copolymer materials have aroused great inter-
est in both industrial and theoretical research. Moreover, an
important commercialized application of copolymers is ther-
moplastic elastomers, which have been widely used as jelly
candles, outer coverings for optical fiber cables, adhesives,
bitumen modifiers, etc. [5,6]. Much scientific interest on the
self-assembly of block copolymers is due to the pattern for-
mation and the potential applications of the microstructures
led by the confinement mechanism, which restricts degrees of
freedom in space and breaks symmetry of the structure [7].

Extensive experimental and theoretical studies have
demonstrated that confinement can be used to control the
self-assembly of diblock copolymers [8]. The diblock copoly-
mers under different confinements have been well studied,
such as two-dimensional (2D) cylindrical confinement [9–12],
three-dimensional (3D) cylindrical confinement [13–15], and
3D spherical or polyhedral confinement [16–18]. Many mor-
phologies have been discovered [8,11,19,20], for example, the
onion-like and layered structures for symmetric copolymers
under spherical confinement in experiments [21,22]. These
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resulting morphologies are often distinctly different from
those in the bulk phase [23] and thus defined as the “frus-
trated phases” [24]. Meanwhile, many mathematical models
and numerical studies have been carried out to investigate the
confinement of copolymers and their self-assembly, including
Monte Carlo simulation [9,14,16,25], cell dynamics simula-
tion [26–29], the self-consistent field theory [30–32], and the
phase-field method [33–36].

The first qualitative model for the block copolymers was
proposed by Ohta and Kawasaki [37] in the form of a gen-
eralized Landau free-energy functional with nonlocal term to
describe the linkage between the different blocks in copoly-
mers. In contrast to Leibler’s work [38], which proposed a
weak-segregation theory, the Ohta-Kawasaki model referred
to a strong segregation for the density functional theory. In
the strong-segregation limit, the interfacial thickness is suf-
ficiently small compared to the structure-domain dimension.
After that, the density functional was carefully rederived in
a more mathematical formulation by Nishiura et al. [39],
considering a fractional power of the Laplace operator to
represent the long range interaction. Compared to the Green
functions, this elegant fractional operator is more suitable
for variational problems [21,39]. With this introduction to
mathematical community, some other people then started to
work in this direction. For example, Teramoto and Nishiura
used this model to study the diblock copolymer problem
in a three-dimensional space for the topological properties
of the energy minimizers and the morphology transition be-
tween them [23]. Choksi and Ren also rederived the density
functional by using the self-consistent mean-field theory for
microphase of diblock copolymers and blends [34,40]. The
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above-mentioned Ohta-Kawasaki model was extended to a
system composed of block copolymers and homopolymers
with two phase variables to describe the macrophase sepa-
ration between the copolymers and homopolymers, as well
as the microphase separation between the two components
of the diblock copolymers [33,41]. Hereafter, we call the ex-
tended Ohta–Kawasaki free-energy functional as the diblock
copolymer-homopolymer (DCH) free-energy functional for
simplicity. Multiple stable self-assembled phases can be found
by numerically solving two coupled Cahn-Hilliard equations
of the DCH free-energy functional, including layers, tennis
balls, onions, and multipods under the nano-confinements
[16–18,21]. However, there are two remaining questions
which need to be addressed. The first question is what are the
relationships between different stable states? To answer it, one
needs to compute the transition pathways connecting these
stable states. The second question is how to efficiently search
possible stationary solutions of the DCH free-energy func-
tional? The traditional numerical algorithms need to carefully
choose suitable initial conditions, which often requires good
intuition of physical systems or the guide from experiments,
to find more solutions. It is eager to develop a systematic nu-
merical approach to compute all stationary solutions without
tuning unwanted initial guesses.

The stationary solutions correspond to the solutions of
the Euler-Lagrange equation of the DCH free-energy func-
tional with the mass conservation. The Euler-Lagrange
equation usually has multiple solutions, including both
stable/metastable solutions, i.e., local minima, and unstable
saddle points of the system. The properties of stationary
solutions can be characterized by the Morse index of the
solution. The Morse index of a stationary solution is equal
to the number of negative eigenvalues of its Hessian matrix
[42]. In particular, a local minimum or stable state can be
regarded as an index-0 solution with no unstable directions.
Compared to computing a stable state by gradient dynamics,
the saddle point is much more difficult to find due to its
unstable nature, while often plays critical roles in determining
the properties of the model system. For instance, to find the
transition pathways between two stable states, one needs to
compute the transition state, which is an index-1 saddle point
and the corresponding Hessian matrix has one and only one
negative eigenvalue. It has attracted substantial attentions to
find multiple stationary solutions of the nonlinear problems
[43]. Considerable efforts have been made to develop various
numerical algorithms, such as the minimax method [44], the
deflation technique [45], the eigenvector-following method
[46], and the homotopy method [47,48]. In particular, Yin
et al. proposed a saddle dynamics (SD) and implemented
a high-index optimization-based shrinking dimer method to
compute any-index saddle points [49,50]. By combining the
SD with the downward and upward search algorithms, Yin
et al. further constructed a solution landscape, which is a
pathway map consisting of all stationary solutions and their
connections, for the unconstrained systems [51,52]. It shows a
hierarchy structure that starts with a parent state (the highest-
index saddle point) and then relates the lower-index saddle
points down to the minima. This numerical approach has been
successfully applied to the Landau–type free-energy func-
tional, including the defect landscape of confined nematic

liquid crystal on a square using a Landau–de Gennes model
[51,53] and the transition pathways between period crystals
and quasicrystals by applying the Lifshitz–Petrich model [54].

In this paper, we apply the DCH model to investigate the
solution landscape of the diblock copolymers and homopoly-
mers in 2D confinement. To deal with the mass-conservation
constraint, instead of using the Cahn-Hilliard dynamics in
the H−1 inner product for the saddle point calculation, we
introduce the projection operator to the SD method in the L2

inner product, which only requires a simple linear projection
step and avoids the numerical challenge due to the H−1 metric.
Here, the space H−1 is denoted by the dual space to H1

0 .
Applying the PSD method, we systematically construct the

solution landscapes with two critical parameters: one repre-
sents the preference intensity and the other corresponds to
the domain size. A variety of stationary solutions are found
in the solution landscapes, including Flower class, Mosaic
class, Core-shell class, and Tai-chi class. Furthermore, the
solution landscapes demonstrate the relationships between
different stable states by either transition pathways connected
by index-1 saddle points or dynamical pathways connected by
a high-index saddle point. The solution landscapes also reveal
the symmetry-breaking phenomena, in which more solutions
with high symmetry are identified when the domain size in-
creases.

The rest of the paper is organized as follows. The DCH
model is briefly introduced in Sec. II. The PSD method and the
numerical algorithm of construction of a solution landscape
are presented in Sec. III. We numerically construct the solu-
tion landscapes with different preferences and domain sizes
in Sec. IV. Final conclusions and discussions are presented in
Sec. V.

II. DIBLOCK COPOLYMER-HOMOPOLYMER MODEL

We consider the mixture of AB diblock copolymers and
C homopolymers [33], with two independent and conserved
phase-field order parameters η and φ. η represents the
macrophase separation with a phase boundary that can be
understood as a confining surface, which arises naturally
to separate the homopolymer phase from the copolymer
phase. The copolymers are assumed to be immersed in an
external-medium homopolymers or solvent, such as water.
In the copolymer-rich domain, another variable φ describes
the microphase separation between the block A and block
B. When the above two systems interact with one another,
the morphologies consist of the confinement surface and
copolymer components within the surface, and then undergo
a macrophase and microphase separation described by η and
φ, respectively.

The DCH free-energy functional can be written as a sum
of short-range contribution and long-range contribution

F {η; φ} = FS{η; φ} + FL{η; φ}. (1)

The short-range contribution FS is given by

FS{η; φ} =
∫

�

[
D1

2
|∇η|2 + D2

2
|∇φ|2 + W (η, φ)

]
dr, (2)
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where � is a Lipschitz-boundary domain in R2. D1, D2 are
parameters controlling the size of the macrophase and mi-
crophase separation interface, respectively.

The potential is taken as the polynomial form,

W (η, φ) = (η2 − 1)2

4
+ (φ2 − 1)2

4

+ b1ηφ − b2

2
ηφ2 − b3

2
η2φ + b4

2
η2φ2.

(3)

The first two terms in Eq. (3) exhibit double-well potential for
η and φ, respectively, and the rest terms describe the coupling
between the AB copolymers and the solvent C [33,41]. The
coefficients b1, b2, b3 and b4 are positive constants, which
are related to the molecular parameters and could be de-
rived in principle by the generalized method [33,37,41,55].
These parameters are chosen so that W (η, φ) has a triple-
well structure with three distinct minima corresponding to
the phases of block A, block B, and solvent C. Thus, we set
b3 = b4 = 0 and only change b1, b2. When b1 = 0, b2 = 1,
W (η, φ) has three minima at (−1, 0), (1, 1), and (1,−1), and
the free-energy functional is symmetrical corresponding to φ,
indicating that η or the confining surface has equal preference
for positive or negative φ, such as the morphology of layer
[21,22,55]. Conversely, the nonzero b1 would cause symme-
try breaking between microphase separated domains, i.e., the
selective preference between block A (φ > 0) and block B
(φ < 0).

The long-range contribution FL is given by

FL{η; φ} =
∫

�

α

2

∣∣(−�)−
1
2 (φ − φ̄)

∣∣2
dr, (4)

where φ̄ represents the spatial average of φ. In the original
paper, the Green functions are used to represent long-range
interactions [37], which was replaced with a nonlocal opera-
tor, the fractional power of the Laplace operator for variational
problems [39]. The long-range contribution prevents the
copolymers from forming a large macroscopic domain and
brings about many fine structures, such as layers or onions.
α is inversely proportional to the square of total chain length
of the copolymer and related to the bonding between block
A and block B in copolymers, hence it is a measure of the
connectivity between two blocks [56]. When α = 0, there is
no linkage between A and B blocks, and the absence of the
nonlocal term will induce the separation macroscopically. If
α �= 0, then we have microphases within the copolymer-rich
domain and multiple morphologies emerge.

Now we nondimensionalize the system with r̃ = r/λ, then
the rescaled free-energy functional is

F̃ {η̃; φ̃} =
∫

�

D1

2
|∇̃η̃|2 + D2

2
|∇̃φ̃|2

+ λ2

(
1

4
(η̃2 − 1)2 + 1

4
(φ̃2 − 1)2

+ b1η̃φ̃ − 1

2
b2η̃φ̃2

)

+ αλ4

2

∣∣(−�̃)−
1
2 (φ̃ − φ̄)

∣∣2
dr̃, (5)

where �̃ is a unit square [0, 1] × [0, 1], and λ is the length of
the square domain. In what follows, we drop the tildes and all
statements are in terms of the rescaled variables. Here both η

and φ are the conserved order parameters satisfying∫
�

(η − η̄)dr = 0,

∫
�

(φ − φ̄)dr = 0. (6)

The stationary solutions of the DCH functional with mass
conservation are the solutions of the Euler-Lagrange equa-
tions as follows:

δF (η, φ)

δη
− ξη = 0, (7a)

δF (η, φ)

δφ
− ξφ = 0. (7b)

ξη and ξφ are the Lagrangian multipliers to keep the mass
conservation.

III. NUMERICAL METHOD

A. Projection saddle dynamics method

To find the multiple stationary solutions of the Euler-
Lagrange Eq. (8) with the mass conservation Eq. (6), we need
to develop an efficient numerical algorithm to compute the
saddle points with mass conservation. The original SD method
is designed for unconstrained gradient systems [50]. Recently,
Huang et al. proposed a constrained high-index saddle dy-
namics method to compute the constrained saddle points and
construct the solution landscape with equality constraints by
using Riemannian gradient and Hessian [57]. In the DCH
model, since the mass conservation is only a linear constraint,
we propose a simple PSD method to compute index-k sad-
dle points (k-saddles) with the mass-conservation constraint.
Here, the projection is defined as follows:

P(ξ ) = ξ −
∫

�

ξdr, ξ ∈ L2(�). (8)

Both gradient and Hessian of F (η; φ) are updated by the
projected forms. In addition, to eliminate the unphysical direc-
tions, we translate the order parameters η and φ to η̂ = η − η̄

and φ̂ = φ − φ̄ so that
∫
�

η̂dr = 0,
∫
�

φ̂dr = 0. In the fol-
lowing, we also drop the hats and all statements are in terms
of the translated variables.

The PSD for computing a mass-conserved k-saddle (k-
PSD) is governed by the following dynamic equations:

η̇ = −P
δF (η; φ)

δη

+ 2
k∑

j=1

〈
P

δF (η; φ)

δη
v j + P

δF (η; φ)

δφ
w j, v j

〉
, (9a)

φ̇ = −P
δF (η; φ)

δφ

+ 2
k∑

j=1

〈
P

δF (η; φ)

δη
v j + P

δF (η; φ)

δφ
w j,w j

〉
. (9b)

Equations (9) allow [η; φ] to move along an ascent direc-
tion on the subspace V = span([v1; w1], · · · , [vk ; wk]), and a
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descent direction on the subspace V⊥, the orthogonal comple-
ment space of V . [vi; wi](i = 1 · · · k) are the orthonormal and
unit eigenvectors, i.e., 〈[vi; wi], [v j ; w j]〉 = δi, j , correspond-
ing to the smallest k eigenvalues λ1, · · · , λk of the Hessian
∇2F (η; φ). They can be obtained via the constrained opti-
mization problem and governed by the following equations:

[
v̇i

ẇi

]
= −

(
I −

[
vi

wi

][
vi

wi

]T

+ 2
∑i−1

j=1

[
v j

w j

][
v j

w j

]T)
(

P
P

)
∇2F (η; φ)

[
vi

wi

]
, i = 1, · · · , k. (10)

Here I is the identity operator. The k-saddle [η; φ] and k
direction variables [vi; wi] are coupled. We note that vi and
wi are also needed to apply the projection P to keep mass
conservation, namely

∫
�

vidr = ∫
�

widr = 0.
To avoid the direct calculation of Hessians, we approx-

imate Hessian by using the central difference scheme for
directional derivations on k dimers centered at [η; φ] [49,50].
The ith dimer has a direction of [vi; wi] with a small dimer
length 2l and then ∇2F (η; φ) is approximated by

∇2F (η; φ)[vi wi]

≈
∇F

([
η + lvi

φ + lwi

]) − ∇F
([ η − lvi

φ − lwi

])

2l
.

We choose periodic boundary conditions and apply the
Fourier spectral method for the space discretization on �. The
numerical simulations are performed on a 2D 128 × 128 grid
which was verified to give well-resolved numerical results.
We use the explicit Euler scheme and Barzilai–Borwein gradi-
ent method to determine the step sizes for time discretization
of Eq. (9) [58]. Furthermore, we apply the locally optimal
block preconditioned conjugate gradient (LOBPCG) method
[59] to compute the smallest k eigenvalues and the corre-
sponding eigenvectors of the Hessian.

The initial condition is given as

[η(0) φ(0)] = [η0 φ0],[vi(0) wi(0)] =[
v0

i w0
i

]
, i = 1, · · ·, k,

where [η0; φ0] are zero mean, and [v0
1; w0

1], · · · , [v0
k ; w0

k ] are
the unit orthogonal vectors with zero mean.

B. Algorithm for the solution landscape

The solution landscape of the DCH model is constructed
via two algorithms: downward search and upward search
[51]. The downward search algorithm enables us to efficiently
search for all connected low-index saddles and minima from
a high-index saddle, and the upward search algorithm aims
to find the possible higher-index saddles. The details of two
algorithms coupled with PSD method are as follows:

1. Downward search algorithm

Assuming we have an m-saddle [η
; φ
] and the m normal-
ized vectors [v


1; w

1], · · · , [v


m; w

m] corresponding to the m

negative eigenvalues of the Hessian matrix ∇2F (η
; φ
). We
then apply the (m − 1)-PSD Eq. (9) to search the (m − 1)-
saddles by choosing [η
; φ
] ± ε[v


m; w

m] as an initial state

and [v

i ; w


i ], · · · , [v

m−1; w


m−1] as initial unstable directions.

Once a (m − 1)-saddle is obtained, we continue to apply the
(m − 2)-PSD to search the (m − 2)-saddles.

By repeating the above procedure, we can establish a
systematic search for all saddle points branched from this
m-saddle as a parent and to construct a family tree that even-
tually connects to the local minima.

2. Upward search algorithm

If the parent state (the highest-index saddle point) is un-
available beforehand or multiple parent states exist, then one
can conduct the upward search to find the high-index saddle
points starting from a local minimum or a low-index saddle
point.

Starting from an m-saddle [η
; φ
], we apply the (m + 1)-
PSD to search an (m + 1)-saddle. The initial state is chosen as
[η
; φ
] ± ε[v


m+1; w

m+1], and [v


1; w

1], · · · , [v


m+1; w

m+1] are

taken as the initial ascent directions, in which [v

m+1; w


m+1] is
the eigenvector corresponding to the smallest positive eigen-
value of its Hessian matrix.

Each downward search represents the relaxation of a pseu-
dodynamics, the so-called dynamical pathway, starting from
a high-index saddle point to a local minimum. By combining
the downward search and upward search, we are able to sys-
tematically find possible stationary solutions and uncover the
connectivity of the solution landscape.

IV. RESULTS

Now we present the numerical results for the solution land-
scapes of the diblock copolymers and homopolymers under
2D confinement. To see the effect of the preference intensity
b1 and the domain size λ, we choose three cases: the equal
preference, the selective preference, and the equal preference
in a larger domain.

A. Solution landscape with equal preference

In the case of equal preference (b1 = 0, λ = 1), we plot
three stable states (Layer 3Y , Layer 3B, and Layer 2) in Fig. 1.
Some parameters are set as D1 = D2 = 0.0025, b2 = 1, α =
60, η̄ = −0.5, φ̄ = 0. Since the preference for block A (yel-
low) and block B (blue) are equal, Layer 3Y and Layer 3B
are a pair of solutions only with block A and B switched,
and the two blocks in Layer 2 have the same area and shape.
From an energy point of view, Layer 2 is the stable phase
with the lowest energy, while Layer 3Y and Layer 3B are the
metastable phases.

The solution landscape with equal preference is shown in
Fig. 2. The homogeneous phase (η ≡ η̄, φ ≡ φ̄) is clearly a
trivial solution, which is a 8-saddle. Using it as the parent
state, we are able to find three distinct 5-saddles via the down-
ward search, specifically, Flower 6 looks like a blooming
flower with three yellow petals alternating with three blue
petals, and Circle 2Y S and Circle 2BS are a pair of solutions
due to the equal preference of blue blocks and yellow blocks.

The periodic boundary condition implies that the Hessian
at a nonhomogeneous state has at least two zero eigenvalues
in most cases, which explains why no 6-saddles or 7-saddle
are found in Fig. 2. Down from these 5-saddles, a vari-
ety of complex morphologies in Triangle class and Flower
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1

η

φ

A

0

-1B

1

0

-1C

AB

FIG. 1. Three stable states: Layer 3Y , Layer 3B, and Layer 2
with equal preference. The first row and the second row show the
spatial distributions of η and φ, respectively. In the plot of η, and
AB copolymers and C homopolymers are represented by yellow
and blue, respectively. In the plot of φ, block A and block B of
copolymers are distinguished by yellow and blue, respectively. All
subsequent figures share the same color bar for φ.

class are obtained. In the Triangle class, the shapes of inner
blocks are isosceles triangles with the apex angle less than
60 degrees (TriangleY 1 and Triangle B1), isosceles triangles
with the apex angle greater than 60 degrees (TriangleY 2
and Triangle B2), and equilateral triangles (TriangleY 3 and
Triangle B3). In Flower class, the asymmetric and symmet-
ric flower solutions, Flower 4N1, Flower 4Y 2, Flower 4B2,
and Flower 4, have two yellow petals alternating with two
blue petals. Flower 3Y has one yellow petal between two
blue petals and Flower 3B has one blue petal between two
yellow petals. The asymmetric Layer 3NY (Layer 3NB) is
the transition state between the metastable solution Layer 3Y
(Layer 3B) and the stable solution Layer 2 in Fig. 1.

From the solution landscape, we can also extract the transi-
tion pathways between three stable states Layer 3Y , Layer 3B,
and Layer 2 (Fig. 3). There are two transition pathways
between Layer 3B and Layer 2: Layer 3B → Flower 3B →
Layer 2 and Layer 3B → Layer 3NB → Layer 2 in Fig. 3(a).
The latter one has the smaller energy barrier �F (the energy
difference between the transition state and the initial stable
state), thus has higher possibility to take place. With the
equal preference, it is easy to see the transition pathways
between Layer 3Y and Layer 2 are analogous: Layer 3Y →
Flower 3Y → Layer 2 (�F = 4.1e − 3) and Layer 3Y →
Layer 3NY → Layer 2 (�F = 3e − 4). Figure 3(b) shows
the switching process between Layer 3B and Layer 3Y , along
which blue block and yellow block swap, connected by the
transition state Flower 4 with two opposed blue petals and
two opposed yellow petals. In the process from Layer 3B to
Flower 4, the yellow block on both sides of the blue block
push into the middle of blue block. The shape of blue block
changes from an ellipse to an hourglass, and is further cut into
two small petals. In the process from Flower 4 to Layer 3Y ,
the two yellow petals connect together resulting in a yellow
hourglass and relax to an ellipse between two small blue
ellipses. From Fig. 2, Layer 3B and Layer 3Y can also be
connected via Layer 2, that is, Layer 3B → Layer 3NB →
Layer 2 [Fig. 3(a)] and Layer 2 → Layer 3NY → Layer 3Y .

--
--

--

-

-

--

--

-

---

-

-

FIG. 2. Solution landscape with equal preference. The height of
a phase approximately corresponds to its energy. The φ plot of each
phase is shown in square domain with name on the top and index of
corresponding saddle point at the bottom.

In fact, this transition pathway has a lower energy barrier and
is more probable than the one in Fig. 3(b).

B. Solution landscape with selective preference

We next study the solution landscape with selective prefer-
ence (b1 = 0.1, λ = 1), namely the affinity of the blue block
for homopolymers (solvent) is higher than that of the yellow
one. This leads to the symmetry breaking of the morpholo-
gies in contrast to the one with equal preference. In Fig. 4,
the homogeneous phase (8-saddle) is still the parent state,
and the transition states between Layer 3Y and Layer 2Y are
also Layer 3NY and Flower 3Y . While due to the symmetry
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0.2952

0.2971

0.2974

0.3012

Transition Pathway

0.2971

0.3026

Transition Pathway

ΔF=5.5e-3

F

F

ΔF=4.1e-3

ΔF=3e-4

(a)

(b)

-

-
-

-

-

-

FIG. 3. Transition pathways between stable states with equal
preference. (a) Transition pathways between Layer 3B and Layer 2
with the transition state Flower 3B (energy barrier 4.1e − 3) or
Layer 3NB (energy barrier 3e − 4). (b) Transition pathway between
Layer 3B and Layer 3Y with the transition state Flower 4 (energy
barrier 5.5e − 3).

breaking, the structure of the solution landscape has changed
dramatically. On the one hand, we lose nearly half of the
stationary solutions observed in Fig. 2. For instance, Flower 6
in Fig. 2 with alternative yellow and blue blocks merges
into Circle 2Y S with blue ring surrounding the yellow blocks
at the center. Although Flower 6 disappears in the case of
selective preference, Flower 4 still survives with larger blue
petals and smaller yellow petals. Moreover, since the area of
inner yellow blocks becomes smaller, Flower 4N1 in Fig. 2
merges into Flower 4Y 2, and TriangleY 1 and TriangleY 2
in Fig. 2 merge into the regular triangle TriangleY 3. The
Layer 3B solution loses stability and becomes an 1-saddle.
However, alternative solutions appear. For example, the 5-
saddle Circle 2Y S connects to a 4-saddle Circle 2Y B, and the
1-saddle Flower 3Y bifurcates into an asymmetric 2-saddle
Flower 3NY .

C. Solution landscape with equal preference in a larger domain

We further investigate the solution landscape with equal
preference in a larger domain (b1 = 0, λ = 1.4). In Fig. 5,
the homogeneous state becomes a 12-saddle and more sta-
tionary solutions emerge in the solution landscape, such as
9-saddle PentagonY with the same symmetric property as a
pentagon and 7-saddle Flower 8 with four blue petals and
four yellow petals. It is worth mentioning that we find stable
solutions such as Dendrit ic 3B, Layer 4, and Circle 2B. The
Dendrit ic 3B solution, which looks like a steering wheel,
appears in the larger domain. This phase is a 2D analogy
to the multipod phase in 3D [21]. The layer numbers of the
Layer-class solutions also increase to 3 (e.g., Layer 3B) and
4 (e.g., Layer 4). The Circle 2B becomes a local minimum in
the larger domain.

-

-

-

-

-

-

-

-

-

-

-

FIG. 4. Solution landscape with selective preference. The height
of a phase approximately corresponds to its energy. The φ plot of
each phase is shown in square domain with name on the top and
index of corresponding stationary solution on the bottom.

To illustrate the solution landscape more clearly, we clas-
sify the stationary solutions from 2-saddles to 6-saddles into
four classes: Flower class, Mosaic class, Core-shell class, and
Tai-chi class, according to the configuration and connections
between them. Mosaic indicates the morphology has multi-
ple alternative yellow and blue blocks. Core-shell represents
the class of morphologies that one of the block polymers
is surrounded by the other one completely or partially. It is
similar to the Circle class, but loses the symmetry of the circle.
Tai-chi indicates a class of morphologies that both the blue
and yellow parts seem like the yin and yang fishes engaged
with each other. If there exists one saddle point in Flower class
connecting to another saddle point in Mosaic class, then we
present this connection by an arrow from Flower to Mosaic in
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---

----

----

---

-

--

-

FIG. 5. Solution landscape with equal preference in a larger do-
main. The stationary solutions with index from 2 to 6 are classified
by Flower class, Mosaic class, Core-shell class and Tai-chi class, and
the typical solution is inserted in each class as an illustration. The
symmetric stationary solutions obtained by switching blue block and
yellow one are omitted here.

Fig. 5. Hence the connections between four classes are Flower
↔ Mosaic ↔ Core-shell ← Tai-chi, but the connection from
Core-shell class to Tai-chi class has not been found yet. These
four classes play key role in connecting the high-index (in-
dex >6) saddle points to the transition states (1-saddles) and
minima. For example, we observe the Flower class can be
connected from the well defined 7-saddles RhombusY and
Flower 8 and then connect to the lower-index saddle points
Flower 4, Dendrit ic 3N2 and Layer 4N . We can observe the
Mosaic class can be connected from almost all 7-saddles and
connect to almost all 1-saddles. Here, we treat each class
as a whole and omit the detailed connections between the
members of each class and the 1 (or 7)-saddles.

Fig. 6 shows four solution landscapes of Flower class,
Mosaic class, Core-shell class, and Tai-chi class. In
each class, different solutions have subtle differences. The
Flower class, including a typical state Flower 6 and many
axisymmetric structures, was shown in Fig. 6(a). The Mosaic
class with the richest solutions is shown in Fig. 6(b). For
instance, 2-saddle Mosaic 6 is the typical mosaic, which looks
like a floor tile with three yellow blocks alternating with three
blue blocks in the elliptic confinement. The Core-shell class
can connect to the circle phase Circle 2B (minimum), shown

(b) Mosaic class

(d) Tai-chi class

(a) Flower class

(c) Core-shell class

--

-

- -

- - -

-

-

- - - -

--

--

-

--- -

- - - -

- -

- - ---

-

-

-

-

- - -

-

---

-

--

-

FIG. 6. Solution landscapes of the Flower class (a), Mosaic class
(b), Core-shell class (c), and Tai-chi class (d). The typical solutions in
Fig. 5: Flower 6, Mosaic 6, Core-shell 2B3 and Tai-chi 2 are marked
with red box.

in Fig. 6(c). The typical core-shell is 3-saddle Core-shell 2B3.
At last, we also observe the beautiful Tai-chi class in Fig. 6(d).
The typical tai-chi phase is 5-saddle Tai-chi 2 with long tails
and finally connects to a 2-saddle tai-chi with short tails.

From the solution landscape in Fig. 5, there exist multi-
ple transition pathways between the stable states (Dendritic
3B, Layer 3B, Layer 4, and Circle 2B). For example,
there are two transition pathways between Dendritic 3B
and Layer 3B: Dendrit ic 3B → Dendrit ic 3N1 → Layer 3B
and Dendrit ic 3B → Dendrit ic 3N3 → Layer 3B. However,
not all pairs of stable states can be connected by a single
transition state. For example, Circle 2B cannot be directly
connected to Dendritic 3B or Layer 4. Thus, the transi-
tion pathways between them need multiple transition states.
More specifically, the transition pathway between Circle 2B
and Dendritic 3B can be Circle 2B → Core − shell 2B2 →
Lay 3B → Dentritic 3N3 → Dendritic 3B. Figure 7 shows the
3-saddle Core-shell 2B3 is the stationary solution in the inter-
section of the smallest closures of all four stable states. The
dynamical pathways from Core-shell 2B3 can be constructed
to connect every stable state passing through one 2-saddle and
one 1-saddle. Our numerical results highlight the differences
between transition pathways mediated by multiple transition
states (1-saddles) and dynamical pathways mediated by single
high-index saddle point.

D. Symmetry breaking

Finally, we investigate the symmetry-breaking phenomena
shown in the solution landscapes with different preference
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-

-- -

- - - -

---

FIG. 7. Solution landscape starting from Core-shell 2B3 solu-
tion. All stable states including Dendritic 3B, Layer 3B, Layer 4 and
Circle 2B are connected by the index-3 Core-shell 2B3 solution.

intensity and domain size. In view of the previous results,
symmetric (reflectional and rotational) properties are quite
useful to classify the morphologies for the equal preference as
in Figs. 2 and 5. The solutions in Dk coincide by itself when
rotating by angles 2π j

k , j = 1, ..., k − 1, or reflecting about the
symmetry axes. For instance, the highest-index homogeneous
phase has D∞ symmetry (any rotation and reflection is al-
lowed).

In Fig. 8, one can observe the symmetry-breaking process
from circular-shape states that has D∞ to the lower symmetric
solutions with some Dk (2 � k < ∞) symmetry, e.g., (a) Cir-
cle 2YS (D∞) �⇒ Flower 6 and Triangle Y3 (D3) �⇒ Flower
4 and Layer 3Y (D2); (b) Circle 2YS and Circle 2YB (D∞)
�⇒ Triangle Y3 (D3) �⇒ Flower 4, Layer 3B, and Layer
3Y (D2); and (c) Circle 3Y (D∞) �⇒ Pentagon Y (D5) �⇒
Flower 8 (D4) �⇒ Flower 6, Core-shell 2Y3, and Dendritic
3Y (D3) �⇒ Square Y, Rhombus Y, Flower 4, Core-shell 2Y2,
and Layer 3Y(D2).

Figure 8 also shows the effect of the preference intensity
and the domain size on the symmetric property. In the case of
equal preference, there are 8 symmetric solutions in Fig. 8(a).
While, as b1 is changed from 0 to 0.1, the selective preference
breaks the symmetry and the number of symmetric solutions
is reduced to 6 in Fig. 8(b). As stated before, Flower 6 and
Triangle B3 disappeared. For the case of equal preference in
a larger domain [Fig. 8(c)], the number of symmetric solu-
tions increases to 21. This is because the larger domain can
accommodate more copolymer molecules and multiple finer
structures, e.g., the phases Pentagon Y, Flower 8, Square Y,
and Rhombus Y.

We also note that the highest symmetry Dk increases from
D3 to D5 when the domain size λ is changed from 1 to

D3D4 D2D5D∞

(a) equal preference

(c) equal preference in a larger domain

(b) selective preference

 × 2 × 2 × 2

 × 2

 × 2

 × 2

 × 2

 × 2  × 2

 × 2  × 2

 × 2
- - - - ---

- - -

- - --

-

- -

--

FIG. 8. The comparison of symmetric properties of the solutions
in the solution andscapes with (a) equal preference in Fig. 2, (b) se-
lective preference in Fig. 4, and (c) equal preference in a larger
domain in Fig. 5. The notation “×2” means there exists a pair of
phases, e.g., Circle 2Y S and its counterpart Circle 2BS.

1.4, except of D∞. Thus, we expect that, for the stationary
solutions of polygonal shapes (except of the homogeneous
and circle phases), the upper bound of k in symmetry group
Dk will continuously increase with the increase of the domain
size in the case of equal preference.

V. CONCLUSIONS AND DISCUSSIONS

In this work, we studied the solution landscapes of the
diblock copolymers and homopolymers under 2D confine-
ment with the DCH model. The PSD method is developed
to efficiently compute the high-index saddle points with mass
conservation and construct the solution landscape of the DCH
free-energy functional by coupling with downward and up-
ward search algorithms.

We systematically constructed the solution landscapes by
varying the preference intensity and the domain size, which
not only provides a global structure of stationary solutions,
but also guides our understanding of the dynamical pathways
and symmetry-breaking properties of the polymer systems.
In the case of equal preference, branching from the homoge-
neous phase, the solution landscape was obtained, including
the Circle-class solutions, Flower-class solutions, Triangle-
class solutions and Layer-class solutions. Furthermore, the
solution landscape reveals the informative transition pathways
between stable and metastable phases. While, with selective
preference, the solution landscape loses nearly half of the
stationary solutions compared with the one of the equal pref-
erence. We can observe the symmetry-breaking phenomenon
and the surface has more preference for the blue blocks,
which starts to surround the yellow blocks, with the increase
of the preference intensity b1. These results are consistent
to the work by Avalos et al. [21] and the solution land-
scape provides good guideline for experiments. In the case
of equal preference in a larger domain, the solution landscape
shows more alternative and interesting stationary solutions. In
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particular, we can classify the solutions as Flower class,
Mosaic class, Core-shell class, and Tai-chi class. The relation-
ships between different stable and metstable states are shown
by the dynamical pathways connected by a single high-index
saddle point (Core-shell 2B3). We further demonstrate that the
symmetry-breaking phenomena largely exist in the solution
landscapes from high-index saddle points to local minima.
The number of stationary solutions with symmetry Dk and the
upper bound of k increase as the domain size increases.

The numerical results of solution landscapes of the DCH
model propose several follow-up questions. First, the exten-
sion of the solution landscape from 2D to 3D is a fertile
ground. The richer and more complex solutions are expected
in the solution landscape in the 3D confinement, such as the
multipod solution and twisted solution [21]. On the other
hand, the viewpoint of symmetry becomes more important
in 3D case and more studies will be proceeded in the sub-
sequent work. The numerical difficulty of construction of the
solution landscape on 3D comes from the increment of the
computational complexity. The degree of freedom O(N2) for
2D immediately increases to O(N3) for 3D with N referring
to the grid number. Moreover, since the index of the homoge-
neous state (parent state in the solution landscape) has a large
increase from 2D to 3D, the solution landscapes on 3D will
become more complicated, which brings a huge numerical
challenge to finding all solutions.

The framework of solution landscape is believed to be a
promising approach to find exotic morphologies with the tight
control of the initial conditions (saddle point and associated

unstable directions), which overcomes the difficulty of tuning
initial guesses to search stationary solutions. This approach
can be widely used in the diblock copolymer free-energy
functionals. For example, the conjugated diblock copolymers
have been used to control over the ratio of two blocks to
tune the molecular organization and nanoscale morphology
in the solar cells [60,61]. We may derive the generalized
Landau free-energy model for the diblock-copolymer solar
cells and apply the proposed methods to construct the solu-
tion landscape of the solar cells systems. To deal with the
mass-conservation constraint, the PSD method is developed
using the typical L2 inner product. We note that the study
of SD can also be extended to incorporate the use of dif-
ferent inner products for defining the dynamic systems. One
way is to apply the Cahn-Hilliard dynamics using the H−1

inner product to avoid imposing the additional conservation
constraint [62]. It is interesting to develop the constrained
SD method using the H−1 inner product to compute any-
index saddle points with mass conservation in the future
work.
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