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Long-range correlations in pinned athermal networks
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We derive exact results for displacement fields that develop as a response to external pinning forces in
two-dimensional athermal networks. For a triangular lattice arrangement of particles interacting through soft
potentials, we develop a Green’s function formalism which we use to derive exact results for displacement fields
produced by localized external forces. We show that in the continuum limit the displacement fields decay as 1/r
at large distances r away from a force dipole. Finally, we extend our formulation to study correlations in the
displacement fields produced by the external pinning forces. We show that uncorrelated pinned forces at each
vertex give rise to long-range correlations in displacements in athermal systems, with a nontrivial system size
dependence. We verify our predictions with numerical simulations of athermal networks in two dimensions.
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I. INTRODUCTION

Networks composed of athermal constituents such as
jammed particles arise in a variety of contexts [1], including
in granular [2,3] and glassy systems [4], active matter [5], as
well as biological tissues [6–8]. Such materials are robust to
thermal agitations and differ from thermal systems in their
response to external perturbations, as well as fluctuations in
positions and forces [9]. The response of athermal materials
to external perturbations has many industrial as well as bio-
logical applications [10–15] and continues to be the subject of
active research. Similarly, athermal systems driven by local
active forces arise in various contexts in physics and biol-
ogy [16–20]. Although many properties of athermal systems
have been extensively studied over the past few decades, the
fluctuations in displacement fields, as well as the long-range
correlations that develop in such systems, are relatively less
well understood [21–25]. Developing theories for the collec-
tive behavior of athermal systems in the presence of external
forces such as gravity or active internal forces therefore rep-
resents a new challenge [26,27].

The quasistatic response of athermal materials to local pin-
ning forces is also important in the study of granular materials
as well as glasses [28–30], where local force perturbations
can be used to extract lengthscales [31]. In such systems, the
constraints of mechanical equilibrium alone do not provide
enough equations to solve for the stress tensor, which can lead
to nontrivial stress transmission properties [32,33]. Although
theories of continuum elasticity posit constitutive relations
between the microscopic stress and strain fields, it is as yet
unclear how such relationships emerge at large lengthscales
in disordered athermal materials. For example, the continuum
equations that emerge can be elliptic, or hyperbolic [34], de-
pending on the nature of the underlying medium, but a clear
understanding of this phenomenon is still lacking. Moreover,
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predicting fluctuations and correlations in athermal ensembles
remains a challenging theoretical task. In this context it is
useful to appeal to systems where the strain field can be
computed exactly to determine the nature of the correlations
and response in athermal systems.

The stress response of triangular networks with micro-
scopic force balance constraints has been a paradigmatic
model of stress transmission in granular systems [32,35,36],
and it has been used to model continuum athermal elasticity at
large lengthscales [37]. However, incorporating the effects of
microscopic disorder, such as in the external forces, within an
exact framework has remained difficult owing to the nontrivial
spatial arrangements of particles in minimum energy config-
urations. In this context it is important to appeal to systems
where exact results can be obtained. In this paper we present
exact results for displacement fields and their correlations in
athermal networks using a model of frictionless soft particles
in an initial triangular lattice arrangement. Our exact results
demonstrate that in the athermal systems where mechanical
equilibrium is exactly imposed at the local level, uncorrelated
external forces can give rise to large correlated regions in the
system. Indeed, as we show, in addition to being long-ranged,
the displacement correlations have a nontrivial system size
dependence.

II. PINNED NETWORK MODEL

We study a system of equal-sized particles with initial
positions {�ri,0} ≡ {xi,0, yi,0}, arranged in an L × L triangular
lattice with lattice constant R0. We impose periodic boundary
conditions in both the x and y directions. Each particle inter-
acts with its nearest neighbors through a distance dependent
force law. We consider these interactions to be harmonic, with
a spring constant K and an equilibrium bond length Lrest. Our
results can be easily generalized to other types of interactions
as well. The Hamiltonian of the system is given by

H =
L2∑

i=1

p2
i

2mi
+ K

2

L2∑
i=1

∑
〈i j〉

(|�ri − �r j | − Lrest )
2, (1)
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FIG. 1. The displacement response of an athermal membrane
composed of soft particles to the presence of pinning (external)
forces imposed on each site (depicted with arrows). The particles
are colored according to their displacements from the crystalline
positions along the x direction. The external forces are drawn from
uncorrelated underlying distributions. The displacements of the sites
from their crystalline positions as a response, displaying large cor-
related regions. The separation between the particles in the initial
crystalline state is R0 = 1.2, and the equilibrium bond lengths are
Lrest = 1.1.

where mi is the mass and �ri represents the instantaneous posi-
tion of the ith particle. The brackets 〈〉 in the above summation
denote nearest neighbors on the triangular lattice network with
j > i. We define R0 = Lrest(1 + α), where α quantifies the
compression of the initial crystalline state. When α < 0 the
system is overcompressed and the forces between the vertices
(particles) are repulsive, whereas when α > 0 the system is
under-compressed and the forces are attractive. We consider
the athermal version of this system, i.e., the zero temperature
limit in which the momentum term in Eq. (1) is irrelevant,
and we only deal with the minimum of the potential energy.
In addition to the interparticle forces, we impose forces �fi,ext

at every vertex i that represent the external pinning forces
acting on the system. We display a typical force balanced
configuration of such a network in the presence of random
pinning forces in Fig. 1.

III. SIMULATION DETAILS

To verify that the predictions from our theory are able to
capture the nontrivial nature of the response in such systems,
we simulate the athermal triangular network in the presence
of external forces. We consider an ideal triangular lattice with
lattice parameter R0 �= Lrest. At every vertex i, we impose
an external force �fi,ext. We consider force balanced configu-
rations, i.e., configurations at energy minima. We minimize
the energy of the system using the fast inertial relaxation
engine (FIRE) algorithm [38], which can naturally incorpo-
rate externally imposed forces. The implementation of the

FIG. 2. The labeling convention used in our computation. The
six neighbors of every node i of the lattice are labeled j = 0 to 5.
The angles of the bonds between nodes in the reference crystalline
state can take any of six values (depending on j) with the positive
x-axis, θi j = 2π j/6.

algorithm is simple and rapidly leads to a minimum energy
configuration. At every time step we compute the power
P = �F .�v in the entire system. If P > 0, then the velocity
is set to �v → (1 − β )�v + βF̂ |�v|, the time step is increased
as �t = �t finc, up to the maximum value �t = �tmax and
β is changed to β fβ . If P < 0, then the velocity is set to
zero, the time step is decreased �t = �t fdec and β is reset
back to its initial value βstart. In our simulations, we use
β = βstart = 0.01, �t = 0.0001, �tmax = 0.001, fβ = 0.99,
finc = 1.1, and fdec = 0.5.

IV. LINEARIZED FORCE BALANCE

We begin by analyzing the response of the ideal triangular
lattice in the limit of weak external forces. The interparticle
forces are determined from Eq. (1) and are given by

f x
i j = −K

(√
x2

i j + y2
i j − Lrest

)xi j

ri j
,

f y
i j = −K

(√
x2

i j + y2
i j − Lrest

)yi j

ri j
. (2)

Here f x(y)
i j are the x(y) components of the force between

nodes i and j and x(y)i j = x(y) j − x(y)i represents the dis-
tance between particles i and j along the x(y) directions. The
ground state of the system is determined by the condition of
mechanical equilibrium, i.e., each site is in force balance with

5∑
j=0

f x
i j + f x

i,ext = 0,

5∑
j=0

f y
i j + f y

i,ext = 0, ∀ i, (3)

where the sum includes the six neighbors j = 0 to 5 of the ith
site (Fig. 2). In addition to the above force balance equations
at every site, we also impose global force balance on the
system with

L2∑
i=1

f x
i,ext = 0,

L2∑
i=1

f y
i,ext = 0. (4)

In the absence of external forces, the ground state con-
figuration is the unperturbed triangular lattice with particle
positions {�ri,0}. We next treat the introduction of external
forces as a perturbation to the crystalline ordered state [9,39].
As a response to this perturbation, the positions of the vertices
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change as

xi = xi,0 + δxi,

yi = yi,0 + δyi. (5)

Here δxi and δyi are the x and y displacements of the ith
site from their positions in the initial triangular lattice. The
force law in Eq. (2) is a nonlinear function of the interparticle
distances xi j and yi j . In the limit of small perturbations, we can
expand Eq. (2) up to linear order in the relative displacements
δx(y)i j = δx(y) j − δx(y)i, leading to

δ f x
i j = Cxx

i j δxi j + Cxy
i j δyi j,

δ f y
i j = Cyx

i j δxi j + Cyy
i j δyi j . (6)

Without loss of generality we may set K = 1. The linear
coefficients Cμν

i j are then given by

Cxx
i j = −2R0 + Lrest − Lrest cos

( 2 jπ
3

)
2R0

,

Cxy
i j = −Lrest sin

( 2 jπ
3

)
2R0

,

Cyx
i j = −Lrest sin

( 2 jπ
3

)
2R0

,

Cyy
i j = −2R0 + Lrest + Lrest cos

( 2 jπ
3

)
2R0

. (7)

We note that the coefficients Cμν
i j represent the elements of

the Hessian matrix of the crystalline system. Crucially, these
coefficients Cμν

i j , being drawn from the unperturbed crys-
talline arrangement are translationally invariant, i.e., they do
not depend on the site index i. Next, using these linearized
expressions we can relate the changes in positions to the
external forces as

5∑
j=0

Cxx
i j (δx j − δxi ) +

5∑
j=0

Cxy
i j (δy j − δyi ) = − f x

i,ext,

5∑
j=0

Cyx
i j (δx j − δxi ) +

5∑
j=0

Cyy
i j (δy j − δyi ) = − f y

i,ext. (8)

These translationally invariant equations of force balance
can be simplified in Fourier space. To define a Fourier
transform we assign the displacement field (δxi, δyi ) ≡
[δx(�r), δy(�r)] to every site i at the unperturbed lattice po-
sitions �r ≡ �ri,0. The Fourier transform of the displacements
is δx̃(ỹ)(�k) = ∑

�r exp(i�k.�r)δx(y)(�r) and external forces is

f̃ x(y)
ext (�k) = ∑

�r exp(i�k.�r) f x(y)
i,ext . Here �k = (kx, ky) ≡ ( 2π l

2L , 2πm
L )

are the reciprocal lattice vectors of the triangular lattice and
the volume of the system is V = 2L2 [40]. It is also convenient
to define the basic translation coefficients in Fourier space (see
Supplemental Material for details [41]),

F j (�k) = exp(−i�k.�r j ), (9)

where �r j represent the lattice translation vectors given
by �r0 = (2, 0), �r1 = (1, 1), �r2 = (−1, 1), �r3 = (−2, 0),
�r4 = (−1,−1), �r5 = (1,−1). Next, multiplying Eq. (8) by
exp(i�k.�r) and summing over all sites of the lattice, we arrive at

the following matrix equation at each reciprocal lattice point:(
Axx(�k) Axy(�k)

Ayx(�k) Ayy(�k)

)(
δx̃(�k)

δỹ(�k)

)
=

(
− f̃

x
ext(�k)

− f̃
y
ext(�k)

)
. (10)

The above matrix elements Aμν can be expressed in terms of
the coefficients Cμν

i j as

Axx(�k) = −
5∑

j=0

[1 − F j (�k)]Cxx
i j ,

Axy(�k) = −
5∑

j=0

[1 − F j (�k)]Cxy
i j ,

Ayx(�k) = −
5∑

j=0

[1 − F j (�k)]Cyx
i j ,

Ayy(�k) = −
5∑

j=0

[1 − F j (�k)]Cyy
i j . (11)

The solution for the displacements in Fourier space in
response to externally imposed forces can then be obtained
by solving Eq. (10).

V. RESPONSE GREEN’S FUNCTIONS

We can interpret the matrix elements of A−1 as Green’s
functions in Fourier space as

G = A−1 =
(

G̃xx(�k) G̃xy(�k)

G̃yx(�k) G̃yy(�k)

)
. (12)

These Green’s functions can then be used to derive the Fourier
transformed displacements as

δx̃(�k) = −G̃xx(�k) f̃ x
ext(�k) − G̃xy(�k) f̃ y

ext(�k),

δỹ(�k) = −G̃yx(�k) f̃ x
ext(�k) − G̃yy(�k) f̃ y

ext(�k). (13)

The external forces therefore play the role of a source term
that generate the displacement fields at every site. To obtain
the actual displacements up to linear order, we perform an
inverse Fourier transform of Eq. (13). Defining the Green’s
function in real space �r = (x, y) as

Gμν (�r) = 1

V

2L−1∑
l=0

L−1∑
m=0

e−i�k·�rG̃μν (�k), (14)

we arrive at the following form of the displacement field in
real space

δx(�r) = −
∑

�r′

[
Gxx(�r − �r′)δ f x

ext(�r′) + Gxy(�r − �r′)δ f y
ext(�r′)

]
,

δy(�r) = −
∑

�r′

[
Gyx(�r − �r′)δ f x

ext(�r′) + Gyy(�r − �r′)δ f y
ext(�r′)

]
.

(15)
The advantage of our technique can be described as fol-

lows. There are two constraint equations at each vertex
corresponding to forces in the x and y directions. Therefore,
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to solve for the displacements of the L2 vertices in the x
and y directions, one needs to simultaneously solve the 2L2

constraint equations. A Fourier transform reduces the problem
to an inversion of a 2 × 2 matrix at each reciprocal lattice
point �k.

As mentioned above, the elements of the matrix A−1 in
Eq. (12) can be interpreted as the Green’s function of the
response to a point charge in Fourier space. To obtain simpli-
fied expressions for these Green’s functions, it is convenient
to define the following quantities

	1(kx, ky, α) = −3 − 6α + 2α cos(2kx )

+ (3 + 4α) cos(kx ) cos(ky),

	2(kx, ky, α) = −3 − 6α + 2(1 + α) cos(2kx )

+ (1 + 4α) cos(kx ) cos(ky),

η(kx, ky, α) =
√

3 sin(kx ) sin(ky). (16)

Here α represents the compression in the system, with lattice
constant of the crystalline system given by R0 = Lrest(1 +
α). In terms of the above functions, the expressions for the
Green’s functions simplify to

G̃xx(kx, ky, α) = −(1 + α)
	1

(	1	2) − η2
,

G̃xy(kx, ky, α) = −(1 + α)
η

(	1	2) − η2
,

G̃yx(kx, ky, α) = −(1 + α)
η

(	1	2) − η2
,

G̃yy(kx, ky, α) = −(1 + α)
	2

(	1	2) − η2
. (17)

A. Continuum Green’s functions

We next use the framework developed above to derive the
continuum behavior of this system. To obtain the behavior
at large distances r, we analyze these expressions at small
values of k. In the limit k → 0, we obtain the following
expression for the Green’s functions in Fourier space, with
(kx, ky) ≡ [k cos(ψ ), k sin(ψ )] :

G̃xx(k, ψ ) = − 1

k2

(2 + 2α)[3 + 8α + 4α cos(2ψ )]

(3 + 16α + 16α2)(2 + cos(2ψ ))2
,

G̃xy(k, ψ ) = − 1

k2

2
√

3(1 + α)[sin(2ψ )]

(3 + 16α + 16α2)[2 + cos(2ψ )]2
,

G̃yy(k, ψ ) = − 1

k2

(2 + 2α)[5 + 8α + 4(1 + α) cos(2ψ )]

(3 + 16α + 16α2)[2 + cos(2ψ )]2
.

(18)

The transverse Green’s functions of the response are equal
with G̃yx(�k) = G̃xy(�k). We note that all the Green’s functions
display a ∼1/k2 behavior at small k. Therefore, in the small
k limit we have G̃μν (k, ψ ) = g̃μν (ψ )/k2, where g̃μν (ψ ) en-
codes the angular dependence of these functions. The above
expressions make it clear that the response of the medium has
a nontrivial dependence on the compression α. In Fig. 3 we
plot these Green’s functions in Fourier space, for small values

FIG. 3. The Green’s functions of the response G̃μν (�k) in Fourier
space �k ≡ (kx, ky ) ≡ [k cos(ψ ), k sin(ψ )]. (a) G̃xx (�k), (b) G̃xy(�k), (c)
G̃yy(�k). Note that the limits are different along different angles ψ as
k → 0. (d) All the Green’s functions display a ∼1/k2 behavior at
small k.

of k. We note that the expressions in Eq. (18) have different
limits as k → 0 along different directions. Such singularities
are linked to the tensorial nature of the mechanical equilib-
rium constraints governing the stress tensor [33].

B. Green’s functions in real space

We next study the Green’s function in real space �r ≡ (r, θ ),
which can be obtained as an inverse Fourier transform of the
expressions in Eq. (17). In the infinite system size limit L →
∞, Eq. (14) can be expressed as an integral:

Gμν (�r) = 1

(2π )2

∫ π

−π

∫ π

−π

e−i�k·�rG̃μν (�k)dkxdky. (19)

We can now use these equations to predict the continuum
response at large r. We convert this into an integral over the
radial and angular coordinates in Fourier space as (kx, ky) ≡
[k cos(ψ ), k sin(ψ )]. Using Eq. (18) we have

Gμν (�r) = 1

(2π )2

∫ π

−π

∫ π

−π

g̃μν (ψ )

k2
exp(−i�k · �r)d2�k, (20)

which can be simplified to yield

Gμν (�r) = 1

(2π )2

∫ π

0

∫ π

−π

g̃μν (ψ )

k

× exp[−ikr cos(θ − ψ )]dkdψ. (21)

Since for point forces f̃ x
ext(�k) and f̃ y

ext(�k) are constant fields
in Fourier space, the individual Green’s functions can be in-
verted in Fourier space, and represent the solution to the point
charge. As the integral over the radial coordinate in Eq. (21)
diverges as k → 0, we regularize it by adding a constant in
the numerator that cancels this divergence. The large distance
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FIG. 4. Plots of (a) the displacements of each particle along the x direction produced by a force dipole obtained from simulations, (b) x
displacements from theory, (c) difference in x displacements from theory and simulations. (d) The displacements along the y direction obtained
from simulations, (e) y displacements from theory, (f) difference in y displacements from theory and simulations. The external forces are placed
on adjacent sites at the origin, with an orientation along the x direction (φ = 0). The magnitude of the force dipole is f0 = 0.005.

behavior can then be derived using the relation∫ π

0

1 − exp(ikx)

k
dk = γ + log[πx] − CosIntegral(πx)

− iSinIntegral(πx), (22)

where γ = 0.5772... is the Euler-Mascheroni constant. Using
the fact that log(r)  CosIntegral(r) for large r, we have
Gμν ∼ log(r) at large distances r. Therefore, the predicted
displacement fields due to a single unbalanced force in the
system diverges at large distances, as force balance is not
satisfied. One therefore needs to consider a pair of Green’s
functions, i.e., a force dipole, that produces a convergent an-
swer.

VI. RESPONSE TO A FORCE DIPOLE

Having developed an exact framework for the response
of the athermal network to external forces, we apply our
theory to the case of a single force dipole. This represents
the simplest possibility of externally imposed or active forces
that obey the global force balance constraint. We model the
external dipole as forces �fp,ext and �fq,ext exerted on two ver-
tices p and q of the lattice. The forces act along an angle
φ with respect to the x direction as shown in Fig. 7(a). To
ensure mechanical equilibrium, we have �fp,ext = − �fq,ext. The
strength of the dipole is then | �fp,ext| = | �fq,ext| = f0. The field
of external forces is given by

�fi,ext = �f0(δip − δiq). (23)

We consider the general case of a dipole of length 2d
centered at the origin, with forces along an angle φ = 0 with
respect to the x axis. The two external forces are placed at
�rp = −�d and �rq = �d , respectively. We can then use Eq. (15)
to obtain the displacement fields δx(y)(r, θ ) at a general po-
sition �r ≡ (r, θ ). For the simple case of φ = 0 illustrated in
Figs. 4(a)–4(f), we have

δx(r, θ ) = f0[Gxx(�r + �d ) − Gxx(�r − �d )],

δy(r, θ ) = f0[Gyx(�r + �d ) − Gyx(�r − �d )]. (24)

The displacement fields δx(�r) and δy(�r) generated as a re-
sponse to the external force dipole can be represented in
polar coordinates �r ≡ (r, θ ), with r =

√
x2 + y2 and θ =

tan−1 ( y
x ) respectively as δx(r, θ ) and δy(r, θ ). To characterize

the behavior of these displacement fields we define radially
averaged and angular averaged displacement fields as

Dx(y)
r (θ ) =

∫ rm

0
δx(y)(r, θ )rdr,

(25)

Dx(y)
θ (r) =

∫ 2π

0
|δx(y)(r, θ )|dθ,

where rm = min[ Lx
2 ,

Ly

2 ] is the maximum value of r in the
system. We calculate these quantities in our simulations and
compare them with results from our theory. In Fig. 5, we
plot Dx(y)

θ (r) and Dx(y)
r (θ ) for three different system sizes with

L = 32, 64 and 128 obtained from numerical simulations. The
dipole is placed at locations (−d, 0) and (d, 0) with d = 0.5.
In these simulations, the rest length of the springs is set
to Lrest = 1.1, while the interparticle distance in the initial
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FIG. 5. Comparison of the radially averaged Dx(y)
r (θ ) and angu-

lar averaged displacement fields Dx(y)
θ (r) as a response to a single

force dipole, obtained from the theory (solid lines) and numerical
simulations (points). (a) Variation of Dx

r (θ ) with θ . (Inset) Collapse
obtained by scaling with the system size. (b) Variation of Dy

r (θ ) with
θ . (Inset) Collapse obtained for different system sizes. (c) Variation
of Dx

θ (r) and (d) Dy
θ (r) with r for different system sizes, displaying a

r−1 decay at large distances. The parameters chosen are Lrest = 1.1,
length of the dipole 2d = 1 and orientation φ = 0. The strength of
the dipole is f0 = 0.005.

configuration is R0 = 1.2. We also plot results obtained from
our theory, which match the numerical simulations exactly.
We have also verified our theory for different orientations
φ and lengths d of the dipole as well as for different pre-
compressions in the lattice (see Supplemental Material for
details [41]).

Continuum response to force dipole

We next derive the continuum limit of the displacement
response to a force dipole. We consider the simplest case of
a dipole of length 2d centered at the origin (0,0). The field of
external forces is then expressed as

δ f x
ext(�r) = f0 cos(φ)[δ(�r − �d ) − δ(�r + �d )],

δ f y
ext(�r) = f0 sin(φ)[δ(�r − �d ) − δ(�r + �d )]. (26)

For simplicity, we consider the external forces to be acting
along the x direction (φ = 0), however the generalization to
nonzero φ is straightforward. The displacement fields at a
distance �r = (r, θ ) from the center of the dipole (see Fig. 6) is
then given by

δx(r, θ ) = f0[Gxx(�r1) − Gxx(�r2)],

δy(r, θ ) = f0[Gyx(�r1) − Gyx(�r2)]. (27)

Next, using the identity in Eq. (22), and keeping only the real
terms, the displacement fields can be expressed as

δx(r, θ ) = 2 f0

4π2

∫ π

−π

g̃xx(ψ )

{
log

[
r2 cos(θ2 − ψ )

r1 cos(θ1 − ψ )

]
+ CosIntegral[πr1 cos(θ1 − ψ )]

FIG. 6. Schematic of the geometry used in the computation of
displacement fields as a response to a force dipole. The two circles
(purple) represent the positions of the external forces which are at
a distance 2d apart. The displacements are measured at a position
(r, θ ) away from the center of the dipole.

− CosIntegral[πr2 cos(θ2 − ψ )]

}
dψ,

δy(r, θ ) = 2 f0

4π2

∫ π

−π

g̃yx(ψ )

{
log

[
r2 cos(θ2 − ψ )

r1 cos(θ1 − ψ )

]
+ CosIntegral[πr1 cos(θ1 − ψ )]

− CosIntegral[πr2 cos(θ2 − ψ )]

}
dψ. (28)

Next, we express the distances and angles r1, r2, θ1, θ2 in
terms of r, θ , d (see Fig. 6) to get the following:

r1 cos(θ1 − ψ ) = r[(cos θ + β ) cos ψ + sin θ sin ψ],
(29)

r2 cos(θ2 − ψ ) = r[(cos θ − β ) cos ψ + sin θ sin ψ],

where β = d
r . Using Eq. (29), and using the fact that at large r,

log(r)  CosIntegral(r), the limiting solution to the displace-
ment field at large r is given by

δx(r, θ ) = 2 f0

4π2

∫ π

−π

dψ g̃xx(ψ )

{
log

[
cos(θ − ψ ) − β

cos(θ − ψ ) + β

]}
,

δy(r, θ ) = 2 f0

4π2

∫ π

−π

dψ g̃yx(ψ )

{
log

[
cos(θ − ψ ) − β

cos(θ − ψ ) + β

]}
.

(30)

As is clear from the above expressions, the r dependence in
the displacement fields in the continuum limit arises due to
β = d/r which emerges as the only relevant lengthscale in
the system. Therefore, using the expression for the continuum
Green’s function in Eq. (30), it is easy to show δx(r) ∼ d

r

and δy(r) ∼ d
r at large distances r away from the dipole. In

Fig. 7 we display the displacement fields obtained using the
above theory, which is identical to the response found from
simulations. We also display the convergence of the numerical
results to the continuum theory predictions as larger system
sizes are approached. The changes in interparticle forces as a
response to the external force dipole can now be computed at
every bond using Eq. (24) and the linearized expressions in
Eq. (6).
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FIG. 7. (a) The displacement δx of every vertex along the x-axis
as a response to external forces at two sites (force dipole) with an
orientation φ. (b) These displacement fields decay as 1/r at large
distances away from the dipole. (c) The angular behavior of the
displacement field δx(θ ) with φ = 0, and (d) δy(θ ) at a fixed r = 25
and β = d/r = 1/50 for different system sizes L = 64, 128, 256
obtained from simulations. The predictions from the theory (solid
lines) match the simulations exactly. The numerical results converge
to the continuum limit predictions in Eq. (30) (black line) at larger
system sizes. Here the compression of the system is α = 1/11.

VII. RANDOMLY PINNED NETWORKS

Finally, we turn our attention to randomly pinned athermal
networks. Such a situation naturally arises in systems of active
particles at high densities where large jammed regions can
arise, such as in systems displaying motility induced phase
separation [42]. In such systems a large collection of particles
become “actively jammed” with the directions and magnitude
of the individual active forces of each particle being randomly
distributed, with fixed orientations [43,44]. For near-rigid par-
ticles, the limit that we are interested in, it is reasonable to
assume that the relaxation timescale of the system to settle
into a force balanced configuration is much smaller than the
timescale of the fluctuations in the directions and magnitude
of the forces. Jamming occurs as a result of local as well as
global force balance on the network. To model such a situa-
tion, we start with a compressed lattice (α �= 0), and external
forces δ f x(y)

ext (�r) at each vertex are chosen from a δ-correlated
Gaussian distribution such that〈

δ f μ
ext(�r)δ f ν

ext(�r′)
〉 = σ 2δμνδ(�r − �r′), (31)

where the angular brackets 〈〉 denote the average over
realizations of the disorder. These random forces may
lead to a nonzero total force on the system, therefore
to ensure global force balance, we impose an additional
force −1/L2 ∑L2

i=1
�fext,i at each vertex. This ensures that

δ f̃ μ
ext(�k = 0) = 0 in Fourier space. The force correlations are

then given by

〈
δ f̃ μ

ext(�k)δ f̃ ν
ext(�k′)

〉 = σ 2δμν

[
δ(�k + �k′) − δ(�k)δ(�k′)

L2

]
. (32)

FIG. 8. Correlations in the displacement fields produced by un-
correlated pinning forces at each site. (a) The δx correlations along
the x direction Cxx (x, 0) = 〈δx(�r)δx(�r + xx̂)〉 for different system
sizes display long-ranged behavior, following the scaling prediction
in Eq. (44) as displayed in panel (b). The scaled correlation functions

1
ρ2 [cxx (0, 0) − cxx (ρ, θ )] with ρ = r/L along two different angles
(c) θ = 0 and (d) θ = π

2 . These scaled correlations display different
logarithmic corrections along different directions.

The translation invariance of the system ensures that the
correlations are nonzero only when �k + �k′ = 0. Using these
external force correlations, we can compute the correlations
in the displacement fields

Cx(y)x(y)(�r − �r′) = 〈δx(y)(�r)δx(y)(�r′)〉. (33)

In Fourier space the correlations are given by C̃μν (�k) =∑
�r Cμν (�r) exp(i�k.�r), therefore C̃xx(�k) = 〈δx̃(�k)δx̃(−�k)〉.

Using the expressions in Eqs. (13) and (32) we have

C̃μν (�k) = σ 2
∑

α

[G̃μα (�k)G̃να (−�k)], (34)

where α ≡ x, y. Finally, using the expressions in Eq. (18)
with G̃μν (�k) ∼ 1

k2 in the limit k → 0, we arrive at the small

k behavior of the correlation functions C̃μν (�k) ∼ 1
k4 . The cor-

relations in real space can now be computed as an inverse
Fourier transform. Using Eq. (34) we arrive at the following
form for the displacement correlations:

Cμν (�r − �r′) = σ 2

V

∑
�k

[∑
α

G̃μα (�k)G̃να (−�k)

]

× exp[−i�k · (�r − �r′)].

The displacement fields obtained using the above expressions
are plotted in Fig. 8(a). These correlations display long-ranged
behavior and scale with the size of the system as shown in
Fig. 8(b).

Displacement correlations in the continuum limit

Finally, we derive continuum limit expressions for the
displacement correlations in randomly pinned athermal
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networks. Transforming the sum in Eq. (35) to an integral in
the L → ∞ limit, the displacement correlation function can
be expressed as

Cμν (�r − �r′) = σ 2

(2π )2

∫ π

−π

∫ π

−π

[∑
α

G̃μα (�k)G̃να (−�k)

]

× exp[−i�k · (�r − �r′)]d2�k. (35)

We can then express Eq. (35) in radial coordinates in
Fourier space �k ≡ [k cos(ψ ), k sin(ψ )] as

Cμν (�r) = σ 2

(2π )2

∫ π

−π

dψ

∫ π

ε

dk

[∑
α

G̃μα (�k)G̃να (−�k)

]

× exp(−i�k · �r). (36)

Since the �k = 0 point is excluded, ε = 2π
L ξ represents the

system-size dependent lower limit in radial coordinates in
Fourier space. ξ represents an O(1) tuning parameter that
accounts for the transformation to radial coordinates. Next,
using the relation G̃μν (�k) = g̃μν (ψ )

k2 and g̃μν (ψ ) = g̃μν (π + ψ )
we can express the correlations in terms of the angular factors
g̃μν (ψ ) as

Cμν (�r) = σ 2

(2π )2

∫ π

−π

dψ

[∑
α

g̃μα (ψ )g̃να (−ψ )

]

×
∫ π

ε

dk
exp(−i�k · �r)

k3︸ ︷︷ ︸
I(ε,r,θ,ψ )

. (37)

To derive a scaling form for the displacement correlations, we
analyze the behavior of the integral

I (ε, r, θ, ψ ) =
∫ π

ε

dk
exp(−i�k · �r)

k3
, (38)

in the limit r  1 and εr � 1. We perform a variable trans-
formation κ = k

ε
and ρ = r

L . In terms of these variables, the
integral can be expressed as

I (ξ, ρ, θ, ψ ) = L2

(2π )2ξ 2

∫ π
ε

1

exp[−i2πξκρ cos(θ− ψ )]

κ3
dκ.

(39)

In the ε → 0 limit we can extend the limit of the integral π
ε

→
∞, therefore

I (ξ, ρ, θ, ψ ) = L2

(2π )2ξ 2

∫ ∞

1

exp[−i2πξκρ cos(θ− ψ )]

κ3
dκ.

(40)

Next, using the identity∫ ∞

1
dk

e−ikR

k3
= 1

2
+ R2

4
(logR2 + 2γ − 3) + O(R3), (41)

for small R, along with R = 2πρξ cos(θ − ψ ), Eq. (40) can
be expressed as

I (ξ, ρ, θ, ψ ) = L2

(2π )2ξ 2

(
1

2
+ 1

4
(2πρξ )2 cos2(θ − ψ )

×{log[cos2(θ − ψ )]

+ 2 log(2πξρ) + 2γ − 3}
)

. (42)

Substituting this form back into Eq. (37) leads to the following
scaling form for the correlations

Cμν (�r) = σ 2V cμν

(
r

L
, θ

)
≡ σ 2V cμν

(
x

L
,

y

L

)
. (43)

Using Eq. (42), the scaled correlations can be shown to have
the following form:

cμν (ρ, θ ) ≈ constμν − (aμν (θ ) + bμν (θ ) log ρ)ρ2, (44)

where the coefficients constμν , aμν (θ ), and bμν (θ ) depend on
the angle θ at which these correlations are measured (see
Supplemental Material for details [41]). Finally, to elucidate
the nature of the logarithmic terms in the scaled correlation
functions, in Figs. 8(c) and 8(d) we plot σ 2ρ2[cxx(0, 0) −
cxx(ρ, 0)] as a function of log(ρ) for two different angles θ =
0 and θ = π/2, where ρ = r

L . The asymptotic behavior in the
ρ → 0 limit displays a logarithmic behavior with different
slopes along different directions. The ratio bxx(π/2)/bxx(0) ≈
6 is consistent with the prediction using our continuum limit
expressions.

A surprising aspect of these displacement correlations is
their long-range nature, which in addition to scaling with the
system size, also diverges as the volume of the system. We
can interpret these as arising from the long-range nature of the
response to localized forces, as demonstrated by the example
of the force dipole. The displacement correlations obtained
from the above analysis are plotted in Fig. 8. We also sim-
ulate actively pinned networks by averaging over 1000 force
balanced configurations with uncorrelated external forces for
each system size with σ = 10−4 (see Fig. 1). Our numerically
obtained correlations match exactly with the theory developed
above (see Supplemental Material for details [41]).

VIII. DISCUSSION

In this paper we have characterized the response of
athermal networks to the presence of external or active
forces. Using a triangular lattice arrangement, we developed
a Green’s function formalism that relates the displacement
“fields” produced as a response to the external “charges”
imposed by the active forces. This enabled us to derive ex-
act results for the displacement fields and correlations as a
response to external force perturbations. Our analytic results
demonstrate that uncorrelated active or pinning forces gener-
ate long-range correlations in such athermal systems. These
results are also relevant in biological networks, where con-
tractile forces are important in many processes such as wound
healing and the motion of cytoskeletons mediated by active
internal forces [18–20]. Our analysis can be generalized to
incorporate transverse forces [16,17,45], as well as different
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periodic backgrounds, in two as well as three dimensions. The
techniques introduced in this paper can also be used to study
the response of athermal networks in the presence of disorder,
such as in disordered crystals [9,39,46]. Finally, it would be
interesting to study the effect of thermal fluctuations on the
correlations in such systems to understand the emergence of
lengthscales associated with amorphous disorder [30,31].
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