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Supercoiled DNA, crumpled interphase chromosomes, and topologically constrained ring polymers often
adopt treelike, double-folded, randomly branching configurations. Here we study an elastic lattice model for
tightly double-folded ring polymers, which allows for the spontaneous creation and deletion of side branches
coupled to a diffusive mass transport, which is local both in space and on the connectivity graph of the tree. We
use Monte Carlo simulations to study systems falling into three different universality classes: ideal double-folded
rings without excluded volume interactions, self-avoiding double-folded rings, and double-folded rings in the
melt state. The observed static properties are in good agreement with exact results, simulations, and predictions of
Flory theory for randomly branching polymers. For example, in the melt state rings adopt compact configurations
and exhibit territorial behavior. In particular, we show that the emergent dynamics is in excellent agreement with
a recent scaling theory and illustrate the qualitative differences with the familiar reptation dynamics of linear
chains.
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I. INTRODUCTION

The behavior of melts of nonconcatenated ring polymers
has caught the interest of physicists over many years [1–12]
and appears to provide a natural explanation for the terri-
torial chromosomal arrangement in eukaryotic cells during
interphase [13–15]. With their microscopic topological state
permanently quenched, the equilibrium statistics and dy-
namics of nonconcatenated ring polymers is fundamentally
different from the behavior of their linear counterparts. A
powerful approximation is available through the analogy with
ring polymers in an array of fixed obstacles [1,3,7,8]. In this
view, crumpling can be understood by the successive appli-
cation of three different strategies for entropy maximization:
double folding, branching, and swelling. Firstly, and most
importantly, the rings adopt double-folded configurations to
minimize the threadable surface, as this reduces the impor-
tance of the topological constraints they impose on each other.
Secondly, double-folded rings can increase their entropy by
branching. Thirdly, there is a certain amount of swelling due
to partially screened excluded volume interactions leading
to asymptotically compact conformations characterized by
the scaling exponent of the radius of gyration, ν = 1/d for
d � 4 dimensions. Double-folding, branching, and swelling
due to excluded volume interactions also occur in plectone-
mic configurations of supercoiled circular DNA [16–20].
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Similarly, viral RNA may effectively behave like branched
polymers [21–23]. From a more general perspective, the map-
ping of (double-folded) ring polymers to randomly branched
polymers or trees suggests analogies to phenomena such as
gelation [24], percolation [25], and the critical behavior of
magnetic systems [26–29]. This may explain, why polymer
physics [24,30–32] is often concerned with exponents, which
characterize the essence of the behavior of all members of a
universality class and are independent of microscopic details
differentiating particular experimental polymers as well as
lattice and off-lattice models from each other.

Recent numerical work on the static properties of self-
avoiding trees and lattice tree melts [33–35] has shown that
the behavior of randomly branching chains under different
solvent conditions is in excellent qualitative agreement with
a suitably generalized Flory theory [13,36]. A multiscale ap-
proach to the construction of ring melts based on this analogy
faithfully captures many aspects of the conformational statis-
tics of properly equilibrated systems [11,12]. However, Monte
Carlo algorithms optimized for rapidly equilibrating the static
structure of randomly branching chains [37,38] [Fig. 1(c)]
generate an artificial dynamics.

To generate a physically more realistic dynamics, Monte
Carlo simulations [39–41] need to obey the same conservation
laws [42] as the modeled target systems. In the present case,
this requires a scheme where the mass transport is local both
in space and on the connectivity graph of the tree.

Below we present Monte Carlo simulations of a suitable
elastic lattice polymer model which accounts for double fold-
ing [4,43], the local accumulation of contour length on the
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FIG. 1. (a) Branched tree on a trigonal lattice and (b) a corre-
sponding (tightly wrapped) double-folded ring polymer. Small loops
represent bonds of zero length, where adjacent monomers along
the ring occupy identical lattice sites. (c) Example of a nonlocal
“amoeba” Monte Carlo move [37,38] altering the tree structure. The
dashed brown line shows the location of a branch prior to the MC
move, and the solid brown line shows an arbitrary location where
the branch could be reattached to the tree. (d) Examples of local
MC moves for the present model of double-folded ring polymers.
Dots represent monomers, and black lines represent an allowed
conformation of the double-folded chain. The allowed (forbidden)
moves are indicated by the green (red) color. R: the Repton move.
H: the Hairpin move. F: Forbidden move that does not preserve the
double-folded structure.

primitive tree [4,40,44–46], as well as excluded volume inter-
actions [44–46].

The manuscript is structured as follows: In Sec. II we intro-
duce relevant observables and the related exponents. Also, we
briefly summarize the theoretical background. The model and
the simulations are described in Sec. III. In Sec. IV we present
and discuss our results. After some first qualitative insights in
Sec. IV A, we validate that the static properties of our model
are in good agreement with theoretical and numerical work
on trees (Sec. IV B). The next step, Sec. IV C, focuses on
comparison of the single ring dynamics with the predictions
of a recent scaling theory [3,8]. Furthermore, we compare
the dynamics of double-folded rings to the motion of linear
chains in the tube model [47] (Sec. IV D). Finally, we briefly
conclude in Sec. V.

II. THEORETICAL BACKGROUND

A double-folded ring polymer can be mapped on a
randomly branched primitive tree [1,3,4,7,8,11,48,49]. In
analogy to protein or RNA structures, such conformations
can be discussed in terms of a primary, a secondary, and a
tertiary structure [50]. The primary structure is simply de-
fined through the connectivity of the ring monomers. The
secondary structure arises from the double folding and can be

specified through the mapping of the ring onto a graph with
the connectivity of the primitive tree. The tertiary structure
describes the embedding of the rings and trees into (three-
dimensional) space. We define corresponding observables in
Secs. II A and II B. Sections II C and II D briefly summarize
scaling arguments for the effect of excluded volume interac-
tions and the dynamics of randomly branched double-folded
ring polymers.

A. Secondary structure

Two standard measures of the tree connectivity are the
mean contour distance L between tree nodes and the average
weight of branches Nbr, separated from the tree by severing
a randomly chosen link. Both depend on the weight N of the
rings through power law relations

〈L(N )〉 ∼ Nρ, (1)

〈Nbr (N )〉 ∼ Nε, (2)

where ε = ρ is expected to hold in general [38]. The (tight)
wrapping of a tree by a ring polymer introduces an additional
metric on the embedded graph [50]. The central quantity is
the length of the shortest path on the tree or tree contour
distance, L, between two monomers i and j along the ring. For
short ring contour distances, n = |i − j|, one simply expects
〈L(n)〉 ∼ n. However, beyond the typical distance between
branch points, the ring does not follow a linear path on the
tree but wraps side branches. For n � N , Eq. (1) suggests
〈L(n)〉 ∼ nρ . Due to the ring closure 〈L(n)〉 ≡ 〈L(N − n)〉
reaches its maximum for n = N/2 before reducing to zero at
the total ring size, 〈L(N )〉 ≡ 0. The simplest functional form
accounting for this constraint is [50]

〈L(n)〉N ∼
[
n
(

1 − n

N

)]ρ

. (3)

B. Tertiary structure

The simplest measures of the tertiary structure are the
overall tree gyration radii,

〈
R2

g(N )
〉 ∼ N2ν, (4)

as a function of the chain length. For a more detailed un-
derstanding, it is useful to consider the mean-square spatial
distance between nodes,

〈R2(L)〉 ∼ L2νpath , (5)

as a function of their contour distance on the tree, where ν =
ρ νpath. Combining Eqs. (5) and (3) suggests [50]

〈R2(n)〉N ∼
[
n
(

1 − n

N

)]2ν

(6)

for the mean-square spatial distance of monomers as a func-
tion of their distance, n = |i − j|, along the ring.

C. Flory theory

Exact values for the exponents are known only for a very
small number of cases. For ideal noninteracting trees, the ex-
ponents ρ ideal = εideal = ν ideal

path = 1/2 and ν ideal = 1/4 [51,52].
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For interacting trees, the only known exact result [26] is the
value ν = 1/2 for self-avoiding trees in d = 3.

Flory theories [7,13,36,53,54] of interacting tree systems
are formulated as a balance of an entropic elastic term and an
interaction energy [55]

F = Fel (N, R) + Finter (N, R). (7)

In the present case, the elastic free energy takes the form [13]

Fel

kBT
∼ R2

lK L
+ L2

Nl2
K

. (8)

The first term of Eq. (8) is the usual elastic energy contribution
for stretching a polymer of linear contour length L at its
ends [13]. The second term penalizes deviations from the ideal
branching statistics, which lead to longer paths and hence
spatially more extended trees. Optimizing L for annealed trees
for a given asymptotic, R ∼ Nν , yields [13,36]

ρ = 1 + 2ν

3
, (9)

νpath = 3ν

1 + 2ν
, (10)

independently of the type of volume interactions causing the
swelling in the first place. Plausibly, a fully extended sys-
tem, ν = 1, is predicted not to branch, ρ = 1, and to have
a fully stretched stem, νpath = ν = 1. For the radius of ideal
randomly branched polymers, ν = 1/4, one recovers ρ = 1/2
and Gaussian path statistics, νpath = 1/2.

Reference [36] reviews the predictions of the Flory theory
for randomly branching polymers for a a wide range of condi-
tions characterized by different expressions for the interaction
energy in Eq. (7). For self-avoiding trees, Finter (N,R)

kBT ∼ v2
N2

Rd

represents the two-body repulsion between segments, which
dominates in good solvent. In this case, Flory theory pre-
dicts [13]

ν = 7

3d + 4
1 � d � 8, (11)

in qualitatively excellent and almost quantitative agreement
with the exact results [33]. In dense melts, all terms of the
virial expansion of the partially screened excluded volume
interactions become relevant and the trees are expected to be
compact [36]:

ν = 1

d
1 � d � 4. (12)

While Flory theory describes the average behavior of the
tree observables mentioned above, we note for completeness
that the corresponding non-Gaussian distribution functions
are typically of the Redner–des Cloizeaux (RdC) form of a
power law multiplied with a stretched exponential. Most of
the additional exponents characterizing the tails of the dis-
tributions can be related to each other and the standard tree
exponents [35,50].

D. Dynamics

In the following we summarize the arguments for the dy-
namics of randomly branched double-folded ring polymers
from Refs. [3,4,8]. Consider the division of a tree into its trunk
(the longest path on the tree) and the branches hanging off this

trunk. The trunk has a length of L ∼ aNρ , where a is the lat-
tice constant and the number of branches is proportional to L.
The slowest relaxation process is the transport of mass along
the trunk, while the intrabranch dynamics is irrelevant and
may be neglected [3,4]. The elementary step of the dynam-
ics is the reptonlike exchange of mass between neighboring
branches along the trunk [56]. Each elementary event changes
the average projected position of the monomers along the
trunk by an amount δsCM ∼ a/N . The number of such events
by an elementary unit of time τ0 is proportional to the number
of branches. As a consequence, 〈δs2

CM (τ0)〉 ∼ (a/N )2Nρ , cor-
responding to a diffusion constant for the curvilinear motion
along the trunk of D||(N ) ∼ 〈δs2

CM (τ0)〉/τ0 ∼ (a2/τ0)Nρ−2.
To completely relax the internal tree structure, the tree CM
has to diffuse over the entire trunk length. As a consequence,

τmax(N ) ∼ (aNρ )2

(a2/τ0)Nρ−2
∼ τ0Nρ+2, (13)

or, using Eq. (9), τmax(N ) ∼ τ0N (7+2ν)/3. As this corresponds
to a mean-square spatial displacement of 〈δR2

CM (τmax)〉 ∼
〈R2

g(N )〉 ∼ a2N2ν , the long-time CM and monomer diffusion
are given by

g1,3(t � τmax(N )) ∼ DCM (N ) t (14)

with

DCM (N ) ∼ a2

τ0
N2ν−ρ−2 (15)

or DCM (N ) ∼ a2

τ0
N (4ν−7)/3.

Furthermore, one can invert Eq. (13) to obtain the mass,

n(t ) ∼
( t

τ0

) 1
ρ+2

, (16)

of rings (or ring sections) which are equilibrated after a
given time, τ0 < t < τmax. During a corresponding time in-
terval, monomers move over a spatial distance of the order of
a2n(t )2ν :

g1(τ0 < t < τmax) ∼ a2
( t

τ0

) 2ν
ρ+2

, (17)

which is independent of the total ring length. Similarly, one
can estimate the CM motion by noting that each of the n(t )/N
equilibrated ring sections independently moves over a dis-
tance of the order of a2n(t )2ν . As a consequence,

g3(τ0 < t < τmax) ∼ g1(t )
n(t )

N
∼ 1

N
a2

( t

τ0

) 2ν+1
ρ+2

. (18)

III. MODEL AND METHOD

Monte Carlo simulations [39–41] can be expected to
generate physically realistic results if they obey the same
conservation laws [42] as the modeled target systems. As an
illustration in the present context, consider first an algorithm
on the tree level, which removes or adds segments with a
probability governed by a chemical potential. While this al-
lows control of the average tree weight, such an algorithm
is clearly inappropriate to simulate (double-folded) ring poly-
mers of fixed weight. This difficulty is partially overcome by
the amoeba algorithm of Seitz and Klein [37], which attempts
to move one-functional tree “leaves” to random locations on

014501-3



GHOBADPOUR, KOLB, EJTEHADI, AND EVERAERS PHYSICAL REVIEW E 104, 014501 (2021)

the tree [Fig. 1(c)]. Since this operation conserves the tree
weight, the algorithm can be meaningfully employed to study
static aspects of the ring polymer and the chromosome folding
problem [11,14,34,49]. The same holds true for a variant of
the same idea by Janse van Rensburg and Madras [38], which
achieves a much higher efficiency in dilute systems by cutting
and relocating entire branches. Similarly, one could envision a
(probably highly efficient) variant of the connectivity altering
double-bridging scheme [57] for tree melts, where neighbor-
ing trees swap entire branches of equal weight without moving
them in space. Such moves can be expected to have a much
higher acceptance probability in dense systems, since they
preserve the uniform monomer density. However, none of
these algorithms can be used to simulate the configurational
dynamics of double-folded ring polymers. Instead we require
a scheme where the mass transport is local in space and on
the connectivity graph of the tree.

In the following, we first review the elastic lattice polymer
model [40,43–46], which is a simple and efficient Monte
Carlo algorithm for studying the dynamics of entangled linear
chains (Sec. III A). In Sec. III B we describe the generaliza-
tion to randomly branching double-folded ring polymers [4].
Sections III C and III D provide more details on the systems
studied and on how we initialized and equilibrated our runs.

A. Elastic lattice polymer models

The dynamics of topologically constrained linear polymers
can be efficiently studied in Monte Carlo (MC) simula-
tions of the coarse-grained elastic lattice polymer model
[40,43–46]. In this model the continuum dynamics of a poly-
mer melt is replaced by a lattice version. The mapping is
achieved by dividing the space into cells where the centers of
these cells form a regular lattice. By moving all the monomers
residing in a cell to the center, the polymer conformation
and its dynamics are discretized. The maximum number of
monomers per site is a free parameter of the model that
depends on the coarse graining, e.g., it can be calculated by
considering the volume of the monomers and the cell volume.
The projection of real space onto a lattice will also limit the
dynamics to nearest-neighbor hops of the monomers. As a
result of the coarse graining, the only allowed bond lengths
between neighboring monomers can be 0 or 1, 0 for monomers
that are in the same cell, and 1 for monomers residing in
neighboring cells. This also means that any MC move should
only be accepted if it preserves this constraint.

In order to guarantee the constraints of excluded volume
and noncrossing of strands, without the loss of general-
ity, a minor restraint is introduced to the occupancy of the
cells [4]. Multiple occupancy on a lattice site is allowed
only for monomers that are directly connected to each other
by monomers on the same site, i.e., they form a polymer
strand of variable length (a subchain of chemically bonded
monomers), where the length of such a strand is limited by
the cell size. This also guarantees that monomers belonging to
different polymers can never occupy the same site. With this
constraint the implementation of excluded volume interaction
and noncrossability becomes operationally trivial while fully
maintaining a repton [56]-like dynamics along the primitive
chain [47].

When the elastic lattice polymer model is used to sim-
ulate ring polymers [46,49], the algorithm conserves the
microscopic topological state of the starting configuration.
In particular, melts of long, nonconcatenated rings exhibit
compact and characteristically crumpled conformations.

B. Generalization to randomly branching
double-folded ring polymers

When the algorithm is generalized to double-folded poly-
mers [4], lattice bonds represent tree segments which can
only be occupied by two oppositely oriented bonds between
ring monomers [Fig. 1(b)]. Tree nodes are located on lattice
sites. Their functionality depends on the number of emerging
tree segments, f = 1 (a leaf or branch tip), f = 2 (linear
chain section), and f � 3 (branch point). As in the elastic
lattice polymer model and in contrast to standard tree mod-
els [33,37,38] (which can be wrapped a posteriori with ring
polymers [50]), the degrees of freedom are the positions of
the ring monomers. The local redistribution of stored length
is responsible for the dynamics. In contrast to the elastic lat-
tice polymer model, the connectivity graph for the connected
lattice sites is a dynamically branching object. In particular,
new side branches are created when a monomer from inside an
accumulation of stored length moves to a neighboring lattice
side. Conversely, side branches vanish when the last monomer
reintegrates into the main branch and retracts the two re-
maining extended ring bonds representing the tree segment
[Fig. 1(d)]. Specifically, we impose the following rules:

Lattice: Ring monomers are placed on the sites of a peri-
odic FCC lattice. We choose the FCC lattice because it
is isotropic and it has the maximum number of nearest
neighbors.

Connectivity: Bonded monomers can occupy either the
same site (a repton or loop of stored length) or nearest
neighbor sites (an extended bond).

Order: Ring monomers remain ordered even if several
connected monomers occupy the same site [56].

Double-folding: Each extended bond of the polymer is
paired with exactly one extended bond pointing in the
opposite direction [Fig. 1(b)].

Ring monomers and tree nodes: The number of ring
monomers belonging to the same tree node is equal to
f + α, where f is the functionality of the lattice tree
node and α is the number of loops of stored length on
that node.

Excluded volume interaction: Different tree nodes are not
allowed to occupy the same lattice site.

Dynamics: We employ a simple Metropolis scheme [58]
which consists of trying to move a randomly selected
monomer to a randomly chosen site out of the twelve
possible nearest neighbors. The move is only accepted if
the new conformation respects the conformational rules
above.

A two-dimensional (hexagonal) representation of a double-
folded polymer chain conformation produced using the model
is shown in Fig. 1(d). The green (red) color indicates the
allowed (forbidden) moves according to the conformational
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TABLE I. System parameters for the double-folded ideal rings (Ideal), double-folded self-avoiding rings (S.A.T), and double-folded rings
in the melt state (Melt). N : Number of monomers per chain; np: Total number of chains per simulated system; Lbox: Size of the simulation

box. Note: An FCC lattice of size L contains L3

2 sites; Site occupation number: The average number of monomers in an occupied lattice site;
ρ: Lattice density which is the ratio of the number of occupied sites to the total number of sites; Nsample: Number of independent MC samples;
Ttot: simulation run time in Monte Carlo sweep [MCs]; CPU time: The CPU wall clock time for Nsample samples on a single core; Nind: The
number of independent configurations (see Sec. IV C); τmax: Configuration relaxation time measured after reaching equilibrium calculated
using, τmax = Ttot

2Nind
. Radius of gyration 〈R2

g〉, MSID 〈R2(N/2)〉, and average value of contour distance 〈LN 〉 are defined in the text. All times
are measured in Monte Carlo sweep [MCs], all distances are in units of lattice constants, and all measurements are performed after reaching
equilibrium.

Site Nsample Ttot CPU time Nind τmax

N np Lbox occupation ρ [×102] [×104] [days] [×104] [×104] 〈R2
g〉 〈R2(N/2)〉 〈L(N )〉

Ideal

64 1 8 2.7(7) 9.1(1) × 10−2 16 103 ∼0.4 ∼102 ∼0.8 2.13 ± 0.01 5.74 ± 0.13 4.38 ± 0.03
216 1 12 3.4(7) 7.2(6) × 10−2 16 104 ∼5 ∼38 ∼21 4.27 ± 0.03 11.13 ± 0.26 8.51 ± 0.06
512 1 16 3.9(8) 6.3(4) × 10−2 16 104 ∼16.5 ∼3.6 ∼2.2 × 102 7.13 ± 0.06 18.56 ± 0.44 13.59 ± 0.1
1000 1 20 4.3(2) 5.8(6) × 10−2 6.4 105 ∼74 ∼2.4 ∼1.3 × 103 10.52 ± 0.14 27.37 ± 1.02 19.18 ± 0.23

S.A.T

64 1 20 2.3(6) 6.7(8) × 10−3 16 103 ∼0.2 ∼81 ∼0.9 3.53 ± 0.02 10.25 ± 0.21 4.84 ± 0.04
216 1 32 2.3(5) 5.6(1) × 10−3 16 104 ∼4.5 ∼27 ∼29 11.76 ± 0.08 34.61 ± 0.72 10.96 ± 0.09
512 1 80 2.3(4) 8.5(5) × 10−4 16 104 ∼17.5 ∼2.6 ∼3 × 102 28.65 ± 0.20 85.01 ± 1.78 19.77 ± 0.17
1000 1 100 2.3(5) 8.5(2) × 10−4 6.4 105 ∼30.7 ∼1.8 ∼1.7 × 103 55.95 ± 0.62 166.42 ± 5.55 30.64 ± 0.35

Melt

64 12 8 3.1(5) 9.5(3) × 10−1 16 103 ∼4.5 ∼2 × 103 ∼0.4 2.08 ± 0.01 5.82 ± 0.03 3.63 ± 0.04
216 12 12 3.1(8) 9.4(4) × 10−1 8 104 ∼76 ∼3.4 × 102 ∼14.1 5.72 ± 0.01 15.99 ± 0.13 8.03 ± 0.06
512 12 16 3.1(8) 9.4(4) × 10−1 6.4 104 ∼165 ∼22 ∼1.6 × 102 11.33 ± 0.03 31.33 ± 0.30 13.69 ± 0.18
1000 12 20 3.1(8) 9.4(3) × 10−1 2.56 105 ∼749 ∼15 ∼9.7 × 102 18.89 ± 0.14 52.04 ± 1.15 20.46 ± 0.42

constraints. All allowed hopping moves for tightly folded
rings can be classified in terms of two different move types:

The Repton move: A unit of stored length hops one unit
along the tree without changing its structure [indicated
with the green letter (R) in Fig. 1(d)].

The Hairpin move: If there is at least one connected loop
of stored length (in a site) on each side of a monomer,
both loops can unfold and result in an extended bond
(creation). Naturally, the inverse move removes an ex-
tended bond pair and thus shortens or removes a side
branch from the tree structure (annihilation). In fact,
branched structures are introduced by the formation of
hairpins [green letter (H) in Fig. 1(d)].

An example of a rejected move is also shown in Fig. 1(d).
The red move (F) will lead to a forbidden conformation be-
cause it does not preserve the double-folded structure. For an
impression of the dynamics of the appearance and disappear-
ance of branches due to Hairpin moves, we refer the reader
to the opening sequences of the Supplemental Material, video
S4 [59].

C. Studied systems

The simulations were carried out for chain lengths varying
between 64 to 1000 for three systems: ideal double-folded
rings, self-avoiding double-folded rings, and rings in the melt
state. The self-avoiding case and the rings in the melt state
have excluded volume interactions. For the ideal case, there

is no restriction on the number of tree nodes on any site
of the lattice (no excluded volume interaction). In the melt
state a high lattice density, ρ = 0.95, was used. Since poly-
mer chains diffuse very slowly in compact systems, we have
performed long simulation runs to have a large number of
independent samples. For the self-avoiding double-folded ring
simulations the size of the box was set large enough to avoid
self-interaction of the chain as a result of the periodic bound-
ary condition. A summary of the simulation parameters and
data is given in Table I.

D. Initialization and equilibration

Initial configurations are produced through a growth pro-
cess. First, double-folded rings are seeded as trimers which are
located on a common lattice site. Then the process comprises
two operations:

(i) The diffusion of the monomers, in agreement with
the previously stated dynamic rules. If branching is allowed
during the growth process, highly branched compact chain
configurations appear on the lattice. However, if branching is
not allowed during growth, the Hairpin move is restricted to
the chain ends. As a result, a double-folded ring configuration
will be built which resembles a self-avoiding random walk in
space.

(ii) The occasional addition of new monomers. A new
monomer is introduced to a chain by selecting a random
monomer on the chain and inserting the new one between the
selected monomer and the next neighbor along the chain, on
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FIG. 2. Equilibration monitored using the mean-square radius
of gyration as a function of time. Comparison between initially
branched, compact double-folded chains (left column), and initially
double-folded chains with no branches (right column) for three
different systems: (a) ideal double-folded rings, (b) self-avoiding
double-folded rings, and (c) double-folded rings in the melt state.
The horizontal lines represent the average values after the chains
have reached equilibrium. For better visualization, the time direction
is reversed in the right column. In all three systems, at large times
both initial states (from left and right) reach the same equilibrium
values (reported in Table I).

the same site. In other words, we add a loop of stored length.
The insertion of a loop is attempted with low probability, 0.01,
to assure a good balance between growth and equilibration.
The addition of new monomers is halted once all chains have
the desired length. This process results in unknotted and non-
concatenated rings.

The radius of gyration is the structural property that has
been investigated to monitor the state of equilibration of the
polymer systems. The mean-square gyration radius 〈R2

g〉 is
the average squared distance of any point in the ring polymer
chain from its center of mass. The systems have reached equi-
librium when this quantity no longer changes. All reported
quantities are taken from the simulation regime where the
polymers are fully equilibrated.

Figure 2 shows the radius of gyration vs MC time (one MC
sweep is equivalent to one MC trial for every monomer in the
system) for different rings. In order to validate the equilibrium
values of radius of gyration, we ran the simulations from two
totally different initial conditions. The left column in Fig. 2
shows equilibration of compact initial configurations, which
swell as the simulation progresses with time. The right col-
umn shows equilibration of more open, initially unbranched
double-folded rings, where average ring size decreases as
branches appear. The horizontal lines represent the average
values after the chains have reached equilibrium (values are

FIG. 3. Equilibrated simulation snapshots of (randomly selected)
configurations of the double-folded rings with N = 216. Successive
segments are represented with a HSV cyclic color map. (a) A single
double-folded ideal ring; (b) a single double-folded self-avoiding
ring; (c) a single double-folded ring in the melt state. The gray tubes
show the longest paths of the trees. All the trees have the same bond
scale. The size of the ring in the melt is larger than the ideal tree
and smaller than the self-avoiding tree. (d) Sample configuration of
the melt with 12 double-folded rings. Each ring is represented with a
different color. The snapshots were produced using Blender 2.8 [60].
3D views of these configurations are available in the Supplemental
Materials, videos S1, S2, and S3 [59].

reported in Table I). In particular, Fig. 2 confirms that the
simulation results do not depend on the initial conformations
of the ring polymer chains.

IV. RESULTS AND DISCUSSIONS

After some first qualitative insights in Sec. IV A, we
present a quantitative analysis of the conformational statistics
and dynamics of our randomly branching, double-folded ring
polymers and compare our observations to available exact
results and predictions of the scaling theories presented in
Secs. IV B and IV C. We close by comparing the dynamics
of double-folded rings to the motion of linear chains in the
tube model [47] (Sec. IV D).

A. Qualitative insights

Figure 3 illustrates configurations of our lattice model for
double-folded ring polymers as they emerge from our sim-
ulations after the systems have reached equilibrium. Ring
monomers are shown as small spheres which are displaced
from their actual position by a small random offset. This rep-
resentation reveals (i) multiple occupancy of lattice sites and
(ii) Double-folding. Specifically, we show a sample configu-
ration of (a) an ideal double-folded ring, (b) a self-avoiding
double-folded ring, and (c) a double-folded ring in the melt
state with 216 monomers, as well as (d) a view of a corre-
sponding melt configuration (unfolded from the simulation
box) for 12 double-folded rings. The gray tubes show the
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longest paths along the trees. Three-dimensional (3D) views
of these configurations are available in the Supplemental Ma-
terial, videos S1, S2, and S3 [59]. For the ideal case there
is no restriction on the number of monomers on each site.
Rings in the melt state and, in particular, isolated self-avoiding
rings appear swollen relative to the ideal case. At least qual-
itatively, this is the expected [36] consequence of excluded
volume interactions and the partial screening in melts. In the
self-avoiding case, the structure is quite anisotropic and the
longest path is aligned along the longest axis. In the melt case,
the structure is more compact and spherically symmetric, and
the mass is almost equally distributed between the branches.

A sequence of snapshots of the time evolution of a (ran-
domly selected) self-avoiding double-folded ring with N =
216 monomers at logarithmic time intervals (indicated on
the top left) is available in the Supplemental Material, video
S4 [59]. The gray tube shows the longest path along the tree at
T = 0, where T is set to zero after reaching equilibrium. As
a result of the local mass transport (both in space and along
the tree), three distinct dynamical regimes can be observed.
(i) At short timescales (T � 102[MCs]), at the beginning of
the video, the relaxation is dominated by the small intra-
branch dynamics and the spontaneous formation and deletion
of short side-branches in the tree structure. (ii) At intermediate
timescales, longer side-branches appear and disappear but the
core trunk remains stable. (iii) Near the end of the video
(T � 106[MCs]), the entire tree diffuses in space.

Finally, the Supplemental Material video S5 [59] follows
the motion of the same ring over even longer times to illustrate
that its internal structure completely relaxes on timescales
over which the ring diffuses over a distance corresponding to
its own size.

B. Conformational statistics

To analyze the secondary and tertiary structure of our
double-folded ring polymers as discussed in Secs. II A
and II B, we have calculated the tree contour distance L(i, j)
and square spatial distance R2(i, j) between all pairs of ring
monomers i and j.

The tree contour distance L(i, j) is defined as the length
of the shortest path on the tree connecting i and j. L(i, j)
only depends on the tree connectivity and is completely in-
dependent of the spatial embedding of the double-folded ring
polymer (details in the Appendix). Conversely, the calculation
of the spatial distance, R2(i, j), is straightforward given the
monomer positions and completely independent of the sec-
ondary structure.

Nevertheless, L(i, j) and R2(i, j) are closely related, since
the configurational statistics of the shortest path between two
monomers on the tree is expected to follow a typical power-
law relation, 〈R2(L)〉 ∼ L2νpath , for linear chains [Eq. (5)].
For ideal chains, νpath = 1/2 so that 〈R2(Li j )〉 ∼ Li j . Ex-
cluded volume interactions cause a characteristic swelling
with νpath > 1/2. To allow for a direct comparison, the various
panels in Figs. 4–7 with our results for the secondary and
tertiary structure always show corresponding data for these
two quantities side by side.

Results for averaging L(n) and R2(n) for the three systems
under investigation over monomer pairs with identical ring
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FIG. 4. Conformational statistics of ideal double-folded rings for
four different chain lengths (described in the legend). Data are shown
for ring contour distances up to N/2. Column (a) are the average
values of the tree contour distances between all possible pairs of
monomers, 〈L(n)〉 ∼ nρ . Column (b) plots the squared internal dis-
tances as a function of n, 〈R(n)2〉 ∼ n2ν . The exact exponents for
the ideal case are ρ = 1/2 and ν = 1/4. In panels (a2) and (b2)
data are plotted as a function of neff , which effectively reduces finite
size effects. The straight dashed lines correspond to the expectation
scaling exponents. (a2) and (b2) insets show the local slopes of the
data in panels (a2) and (b2), respectively. These effective exponents
appear to converge to the theoretical exponents (dashed horizontal
lines). Error bars are the same size or smaller than the symbols.

contour distance, n = |i − j|, are shown in panels (a1) and
(b1) of Figs. 4–6. As expected, the results are ring size inde-
pendent at small scales and reach a plateau on approaching the
maximal ring contour distance of n = N/2.

Panels (a2) and (b2) in Figs. 4–6 show the same data
plotted as a function of an effective ring contour distance,
neff = n(1 − n/N ), introduced in Sec. II B. This represen-
tation reduces the finite ring size effects sufficiently for a
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FIG. 5. Conformational statistics of self-avoiding double-folded
rings. Column (a) plots the average value of the tree contour dis-
tances between all possible pairs of monomers. Flory theory predicts
〈L(n)〉 ∼ n2/3. Column (b) plots the squared internal distance as a
function of n. The exact scaling exponent is 〈R(n)2〉 ∼ n1. Notation
and symbols are as in Fig. 4.
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FIG. 6. Conformational statistics of double-folded annealed
trees in the melt state. Column (a) plots the average value of the
tree contour distances between all possible pairs of monomers. Flory
theory predicts, 〈L(n)〉 ∼ n5/9. Column (b) plots the squared internal
distance as a function of n. Flory theory predicts, 〈R(n)2〉 ∼ n2/3.
Notations and symbols are as in Fig. 4.

meaningful comparison with the expected power law relations
〈L(n)〉 ∼ nρ and 〈R2(n)〉 ∼ n2ν . The dashed lines have slopes
corresponding to the exact value or the predictions of Flory
theory for these exponents in the asymptotic limit of infinite
ring size. In addition, we have extracted effective exponents
by calculating the derivatives using the logarithm of neigh-

FIG. 7. Conformational statistics of double-folded rings. Left
column: average tree contour distance 〈L〉 as a function of the
chain length N . Straight lines correspond to the large-N behavior,
〈L(N )〉 ∼ Nρ . Right column: ring mean-square gyration radius 〈R2

g〉
as a function of the chain length. Straight lines correspond to the
large-N behavior, 〈R(N )2〉 ∼ N2ν . Insets show the local slopes of the
data. These effective exponents appear to converge to the theoretical
exponents (dashed horizontal lines). Error bars are the same size or
smaller than the symbols.

boring data points, ( � log〈L(neff )〉
� log neff

) and ( � log〈R2(neff )〉
� log neff

). Our results
are shown in the inset of panels (a2) and (b2) of Figs. 4–6.
The horizontal lines show again the expected exponents in the
asymptotic limit of infinite ring size.

As a complement, we have analyzed the average tree con-
tour distance 〈L(N )〉 and the mean-square gyration radius
〈R2

g(N )〉 as a function of the chain length (Fig. 7), where the
averages of the tree contour and spatial distances is calculated
over all monomer pairs irrespective of their distance along
the ring. A summary of these values for the studied systems
is provided in Table I. Again, we have calculated the local
exponents based on the slopes of the data points. The results
are shown in the inset of panels of Fig. 7.

Like in comparable simulations of lattice trees [33,34],
none of our systems has truly reached the asymptotic regime.
Nevertheless, the observed values and trends (which represent
crossovers between numerous regimes for linear or branched
structures without or with full or partially screened excluded
volume interactions [36]) are in good agreement with the
theoretical expectations.

C. Dynamics

Having obtained a brief characterization of conformational
and structural properties of the double-folded rings, we can
now turn our attention to their dynamics. Polymer dynamics
is usually analyzed by monitoring the mean-square displace-
ments (MSD) of individual monomers and of the chain centers
of mass (CM) with time (as mentioned in Sec. II D). Fig-
ures 8–10 show our results for

(i) The total monomer mean-square displacement,

g1(t ) = 〈|ri(t ) − ri(0)|2〉,
(ii) The monomer mean-square displacement relative to

the chain’s center of mass,

g2(t ) = 〈|ri(t ) − ri(0) − rCM (t ) + rCM (0)|2〉,
(iii) The mean-square displacement of the chain center of

mass,

g3(t ) = 〈|rCM (t ) − rCM (0)|2〉,
for single ideal and self-avoiding double-folded ring polymers
as well as for double-folded ring polymers in the melt state.

Panels (a) in Figs. 8–10 shows a comparison of g1(t ), g2(t ),
and g3(t ) for one chain length (N = 216). In all three systems
we see that g1(t ) is dominated by g2(t ) at early MC times and
by g3(t ) at large times. Up to τ0 ≈ 10 MC sweeps (MCs) the
monomer and CM motion follow a trivial diffusive dynamics.
The characteristic dynamics of double-folded rings discussed
in Sec. II D sets in beyond τ0 and extends up to a maximal time
τmax, where the internal monomer motion reaches a plateau,
g2(t ) = 2〈R2

g〉, while g3(t ) crosses over to free diffusion.
Panels (b) and (c) in Figs. 8–10 show data for the monomer

motion g2(t ) and g1(t ) for different chain lengths, N . In all
cases, the monomer MSD in the early and the tree regime
are independent of N before crossing over to a ring-size-
dependent free diffusion regime. In particular, the data in
the tree regime follow an effective power law close to the
prediction t

2ν
(ρ+2) [Eq. (17)], indicated by dashed lines. The
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FIG. 8. MSDs for ideal double-folded rings. Panel (a) shows g1,
g2, and g3 for the ring with 216 monomers. The horizontal line
corresponds to 2 × 〈R2

g〉. Panels (b), (c), and (d) plot g2(t ), g1(t ),
and N × g3(t ) vs time in the unit of MCs, respectively. In panel
(b) the horizontal lines correspond to 2 × 〈R2

g〉. In panels (c) and
(d) the dashed lines have slopes corresponding to the prediction of

the theory, g1(t ) ∼ t
2ν

(ρ+2) and g3(t ) ∼ t
2ν+1
(ρ+2) . (c, d) Insets show the

local slopes of the data. The effective exponents appear to converge
to the theoretical exponents (dashed horizontal lines). Panels (e) and
(f) show rescaled g1(t ) and g3(t ) with the mean-square gyration radii
vs the rescaled time with the diffusion relaxation times.

crossovers between the three regimes are nicely revealed by
the effective exponents, ( � log (g1(t ))

�(t ) ), shown in the insets of
panels (c). While there are finite ring size effects, they essen-
tially concern the width of the tree regime. The agreement
with the expected exponents in the tree regime is excellent.

Panels (d) in Figs. 8–10 show the rescaled dynamics of the
center of mass g3(t ), multiplied by the ring size N , to com-
pensate for the expected ring size dependence in the early and
in the tree regime, Eq. (18). In both regimes data for different
rings sizes collapse indeed on a universal scaling curve. In
the tree regime, the data follow an effective power law close
to the prediction t

2ν+1
(ρ+2) [Eq. (18)], indicated by dashed lines.

Again, the various regimes can be clearly identified when
considering the effective exponents, ( � log (g3(t ))

�(t ) ), shown in the
insets of panels (c). Interestingly, the effective exponent for
the dynamics of self-avoiding double-folded rings initially
drops close to the value expected in the ideal case before
increasing to a value in good agreement with the theoretical
prediction.

Panels (e) and (f) in Figs. 8–10 explore the crossover of the
monomer and the CM MSD from the tree to the free diffusion
regime. For this purpose we rescale g1(t ) and g3(t ) with the
mean-square gyration radii, 〈R2

g(N )〉, of the corresponding
rings. To rescale the time axis, we empirically defined a
“diffusion relaxation time” as the time when the mean-square

FIG. 9. MSDs for self-avoiding double-folded rings. Notation
and symbols are as in Fig. 8.

displacement of the center of mass has moved a distance equal
to the radius of gyration, g3(τmax) = 〈R2

g〉. The operation leads
to a perfect data collapse for all but the earliest times before
the rings enter the tree regime.

The scaling theory predicts that the maximal relaxation
time should vary as τmax ∼ N2+ρ with the ring size, Eq. (13).
Besides the “diffusion relaxation time” defined above, we
have also tested this relation for the correlation time of the
mean-square gyration radius, 〈R2

g(N )〉, which characterizes
the tertiary structure of our double-folded rings. We have

FIG. 10. MSDs for double-folded rings in the melt state. Nota-
tion and symbols are as in Fig. 8.
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tot

FIG. 11. Relaxation time in units of MCs vs N (chain length).
Diffusion relaxation time (triangles) is calculated where g3(τmax) and
〈R2

g〉 are equal. Configurational relaxation time (circles) is calculated
using τmax = Ttot

2Nind
, where Nind is number of independent samples.

The black solid lines indicate the theoretically predicted slopes,
τmax ∼ N2+ρ , while the dashed lines are the best fit. Insets show the
local slopes of the data. These effective exponents appear to converge
to the theoretical exponents (dashed horizontal lines).

inferred this configurational relaxation time via the equa-
tion τmax = Ttot

2Nind
[61] from the number, Nind, of independent

samples we have obtained for the observable as estimated
from a block averaging procedure [62]. Our results for the
three investigated classes of double-folded ring polymers are
plotted in Fig. 11. In all three cases, the configurational re-
laxation times are smaller than the diffusion relaxation times,
but both estimates of τmax scale in the same way. The corre-
sponding effective exponents shown in the inset are somewhat
larger than expected. While our values are compatible with an

approach to the asymptotically expected exponent, a quantita-
tive analysis probably requires data for larger systems.

D. Dynamics of double-folded rings vs linear chains

As summarized in Sec. IV C, the scaling theory [3,4,8] of
the dynamics of randomly branching double-folded ring poly-
mers focuses on the mass transport along the longest linear
path on the tree. Given the similarities to the tube model for
linear chains [e.g., Eq. (13) for the maximal relaxation time,
τmax(N ) ∼ Nρ+2, applies in both cases], one could be tempted
to think of the ring motion as a generalized form of reptation
along their longest paths.

To test this analogy, we have visualized the equilibrium
dynamics of the longest path of a randomly selected self-
avoiding double-folded ring (Supplemental Material, video
S6 [59]) and of a randomly selected double-folded ring in
the melt state (Supplemental Material, video S7 [59]). Note
that in these movies time progresses exponentially to cover
the large gap between the timescales relevant to motion on
the monomer and on the ring scale, respectively. Furthermore,
we show fading images of previous conformations to simplify
comparisons with the current conformation.

At early times, the behavior is very similar to contour
length fluctuations for linear chains in the tube model: the
bulk of the longest path remains unchanged, while the path
ends fluctuate. But after a while much more drastic changes
appear, where the longest path appears to jump in space.
For a linear chain such a jump of the primitive chain would
necessarily require a corresponding transport of mass. For our
rings the movie insets show that the jumps in the position
of the longest path are not accompanied by major changes
in the ring configurations. Instead, the jumps are due to the
continuous redistribution of mass between the side branches,
which at some point cause a substantially different path to
outgrow the original longest path.

There are qualitative differences between the two types
of ring systems. In the self-avoiding case, during relaxation,
short side branches relax first. This manifests itself at the ends
of the backbone whose center portion remains unchanged. At
later times, longer side branches relax and randomly one or
two side branches start to grow. Beyond the relaxation time
the backbone changes as a whole as a result of modified
branching. In the melt case, the structure is more compact
and spherically symmetric. The mass is almost equally dis-
tributed between the branches. Hence, a small change in the
side branches may immediately lead to a completely new path
for the longest backbone. This can be observed by comparing
videos S6 and S7 [59]. A quantitative study [35] pursued the
statistics of the branch weight distributions in the melt state,
but a study of the dynamics of the distribution of side branches
is still required.

Since it is not possible to follow the temporal evolution of
a particular path on an internally rearranging tree, it is easier
to focus on pairs of monomers (i∗, j∗), which at some time,
t = 0, are located on opposite ends of the longest path on the
primitive tree. Typically these monomers are also relatively
remote along the ring contour, their contour distances fol-
lowing a broad distribution of around |i∗ − j∗| = N/2. In the
movie insets we used bigger spheres to mark two such pairs of
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FIG. 12. Tree contour distances between monomers (i∗, j∗)
flanking the longest path on the tree at an arbitrarily chosen time
t = 0 after equilibration. Left-hand side column: Rescaled probabil-
ity distributions of the longest path length, Lmax = L(i∗, j∗, t = 0).
Middle column: Rescaled time evolution of 〈L(i∗, j∗, t )〉. Right-hand
side column: Rescaled probability distributions of the tree contour
distance, L(i∗, j∗, t = 10τmax), between (i∗, j∗) after all memory of
the initial state at t = 0 is lost. Top row: Self-avoiding double-folded
rings. Bottom row: Double-folded rings in the melt state.

monomers which flank the longest path at the beginning and
the end of the visualized sequences.

Figure 12 presents a quantitative analysis of the tree con-
tour distance L(i∗, j∗, t ) between these monomers rescaled
by the average tree contour distance 〈L(N )〉 reported in
Table I. The panels on the left-hand side shows the distribution
of the tree contour distances at t = 0, i.e., for L(i∗, j∗, t =
0) ≡ Lmax(t = 0). Results for different ring sizes superpose,
indicating that both the average and width of the distribution
scale with 〈L(N )〉 ∼ Nρ . In contrast, for linear chains contour

length fluctuations,
√

〈δL2
pp〉 ∼ √

N , become asymptotically

negligible compared to the average length, 〈Lpp〉 ∼ N , of the
primitive paths [31]. The central panels in Fig. 12 show the
decay of 〈L(i∗, j∗, t )〉 from a value of (2.44 ± 0.03 to 1.15 ±
0.01) × 〈L(N )〉 for self-avoiding rings and (2.77 ± 0.01 to
1.33 ± 0.01) × 〈L(N )〉 for rings in the melt over a timescale
of the order of the “diffusion relaxation time,” τmax. Again,
the suitably rescaled data for different ring sizes exhibit a rea-
sonable collapse. The true extent of the (tree) “contour length
fluctuations” is better represented by the distribution functions
of L(i∗, j∗, t = 10τmax) shown in the panels on the right-hand
side of Fig. 12. While the monomers (i∗, j∗) located at op-
posite ends of the longest path on the tree at t = 0 have a
finite chance to form secondary structure contacts [50] with
L(i∗, j∗, t ) ≡ 0 at later times, a corresponding deep retraction
of one end of a linear chain to the opposite end of the tube is
exponentially rare [31].

We conclude that randomly branching double-folded ring
polymers move quite differently from reptating linear chains.
In particular, the dynamics of rings of all sizes is dominated
by the analog of contour length fluctuations occurring simul-
taneously between all pairs of monomers of the rings.

V. SUMMARY AND CONCLUSION

Supercoiled DNA, crumpled interphase chromosomes,
and topologically constrained ring polymers often adopt
treelike, double-folded, randomly branching configurations.

To explore the statistical and dynamical properties of such
objects, we have performed Monte Carlo simulations of a suit-
able elastic lattice polymer model which accounts for double
folding [4,43], the local accumulation of contour length on
the primitive tree [4,40,44–46], as well as excluded volume
interactions [44–46]. In particular, we have studied single
ideal double-folded rings, single self-avoiding double-folded
rings, and double-folded rings in the melt state.

In our simulations, side branches of the primitive tree char-
acterizing the double-folded rings are spontaneously created
and deleted as a consequence of the local monomer motion.
Since the diffusive mass transport is local both in space and
on the connectivity graph of the tree, we expect our systems to
fall into the same universality class as the experimental target
systems.

The observed static properties are in good agreement
with exact results and predictions of Flory theory for ran-
domly branching polymers. For example, in the melt state
rings adopt compact configurations and exhibit territorial
behavior. In particular, the model reproduces results from
previous simulations of double-folded ring polymers [50],
which were wrapped a posteriori around randomly branching
polymers generated in corresponding simulations on the tree
level [33–35] in an attempt to devise a numerically efficient
multiscale approach to the simulation of nonconcatenated ring
polymer melts and interphase nuclei [11,12].

The present approach offers the advantage that the dynam-
ics of the ring degrees of freedom can be followed together
with the evolution of the tree structure. This is a key feature for
the simulation of copolymer [63] models of crumpled [14,15]
or supercoiled [17,19,20] interphase chromosomes. Here we
have used this information to show that the diffusion of the
monomers and the rings’ center of mass are in excellent
agreement with the predictions of a recent scaling theory [8].
Furthermore, we have explored a possible analogy between
the motion of randomly branching double-folded ring poly-
mers and reptating linear chains. While there exist formal
similarities on the scaling level, we conclude that the dynam-
ics of rings is rather dominated by the analog of contour length
fluctuations, which constantly modify the distances between
all monomers on the tree over a wide range.

ACKNOWLEDGMENTS

This work was only possible by generous grants of com-
puter time by the PSMN computer center of the ENS-Lyon.
We thank Angelo Rosa and Ivan Junier for valuable discus-
sions and Ali Farnudi for his technical support. The authors
would like to acknowledge the networking support by the
“European Topology Interdisciplinary Action” (EUTOPIA)
CA17139. R.E. acknowledges support by the National Sci-
ence Foundation under Grant No. NSF PHY-1748958.

APPENDIX: CALCULATING TREE CONTOUR
DISTANCES FOR TIGHTLY DOUBLE-FOLDED RINGS

1. Bridge bonds and tree contour distances

An example of a tree is illustrated in Fig. 13(a). The tree
connectivity can be mapped on a circle as in Fig. 13(b), where
consecutive monomers are represented with numbers. The
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FIG. 13. (a) An example of a tree with side branches. (b) Ring
connectivity of the example tree (a) mapped on a circle together with
bridge bonds (dashed lines) that are formed during the “burning”
process. (c) Illustration of the distance between monomers 9 and 4
following the bridge bonds along the way (green: clockwise, and
pink: counterclockwise).

tree contour distance between two monomers of a double-
folded ring can be calculated by following the ring contour
while ignoring all the double-folded side branches along the
way. Bridge bonds (represented with dashed lines) between
monomers on each tree site can be defined to mark the location
of possible side branches. The tree contour distance between
any pair of monomers can be calculated by counting the num-
ber of steps taken on the circle and using the bridge bonds
as shortcuts (shortcuts do not add to the number of steps).
Obviously, the choice of direction (clockwise or counterclock-
wise) should result in the same contour length. For example,
the tree contour distance between monomers 9 and 4 in
Fig. 13(c) is 2.

2. Bridge bonds from spatial colocalization

In systems with excluded volume interactions, the identi-
fication of the bridge bonds is straightforward as they simply
connect monomers which are colocalized in space (Fig. 13).
However, as illustrated in Fig. 14, this method fails in the ideal
case, where incorrectly identified extra bridges [red dashed
line in Fig. 14(b) lead to lattice animal-like connectivity
graphs containing falsely identified loops.

3. Bridge bonds from an analysis of the local connectivity

We used a “pinching” variant of the “burning” algo-
rithm [25,33,64] that takes advantage of the local connectivity
information. As the algorithm operates by iteratively remov-
ing (pinching off) branch tips, it avoids the false identification
of loops. The protocol to find the bridges layer by layer is as
follows:

(a) (b)

FIG. 14. (a) An example of the ideal double-folded ring. (b) Cor-
responding bridges. If all monomers on a site have bridges defined
between them, it leads to an extra wrong bridge (red dashed line).

FIG. 15. An example of branch tip detection in an ideal double-
folded ring. (a) and (c1): Examples of side branches in the ideal case.
Ambiguous branch tips and their corresponding bonds are shown
in blue. The tree structure is the same, but different interpretations
of branch tips are possible. (b) Bridge bonds corresponding to in-
terpretation (a). Removal of the first layer of tips in (c1) results in
the formation of bridge bonds (d1) and the tree structure (c2). The
removal of the second layer results in the completion of the bridge
bond detection displayed in (d2).

(A) Make a list of all the tree branch tips. A branch tip
is defined as a monomer with attached bonds pointing in
opposite directions, ignoring neighbor loops (with zero-length
bonds). For example, in Fig. 13(a) monomers 1, 9, and 6 (5 is
a loop) are branch tips.

(B) Randomly select a branch tip and remove it from the
ring. For example, if the branch tip 9 is randomly selected,
monomer 9 is removed and a bridge is defined between
monomers 8 and 10.

(C) Repeat steps (A) and (B) until the branch tip list is
exhausted.

(D) Steps (A)–(C) result in the removal of one “layer” of
side branches. Repeat these steps (remove layer by layer) until
all the branch tips are removed and all the bridge bonds are
found.

We verified that the pinching algorithm reproduces the
results from the spatial colocalization for double-folded rings
with excluded volume interactions.

4. Ambiguities in the tree structure for ideal double-folded rings

The tree connectivity is not uniquely defined for the ideal
double-folded rings. There is an intrinsic ambiguity in how
side branches and the underlying tree structure is defined. An
example is given in Figs. 15(a) and 15(c1), where branch tips
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under consideration and their attached bonds are colored blue.
They both have the same tree structure, but the number of
branch tips is open for interpretation:

(1) Figure 15(a): Branch tips are 1, 3 (pointing up), 5
(pointing up), and 7. During the burning of the first layer,
all the branch tips are removed, which results in the bridging
bonds shown in Fig. 15(b).

(2) Figure 15(c1): Branch tips are 1, 7, and 4 (pointing
down from the tree node {3, 5}). Figure 15(d1) shows the

bridges corresponding to the burning of the first layer. In
the next layer of burning, Fig. 15(c2), the bridge between
monomers 2 and 6 is formed, Fig. 15(d2).

(1) and (2) are random outcomes of step (B) that result in
different bridging bonds and therefore different tree contour
lengths, as shown in Figs. 15(b) and 15(d2). In practice,
we repeat the described procedure multiple times and
consider the shortest tree contour distances among different
interpretations.
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