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Metachronal waves in concentrations of swimming Turbatrix aceti nematodes
and an oscillator chain model for their coordinated motions

A. C. Quillen ,* A. Peshkov ,† Esteban Wright ,‡ and Sonia McGaffigan §

Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA

(Received 4 February 2021; accepted 14 May 2021; published 29 July 2021)

At high concentration, free swimming nematodes known as vinegar eels (Turbatrix aceti), collectively exhibit
metachronal waves near a boundary. We find that the frequency of the collective traveling wave is lower than
that of the freely swimming organisms. We explore models based on a chain of oscillators with nearest-neighbor
interactions that inhibit oscillator phase velocity. The phase of each oscillator represents the phase of the
motion of the eel’s head back and forth about its mean position. A strongly interacting directed chain model
mimicking steric repulsion between organisms robustly gives traveling wave states and can approximately match
the observed wavelength and oscillation frequency of the observed traveling wave. We predict body shapes
assuming that waves propagate down the eel body at a constant speed. The phase oscillator model that impedes
eel head overlaps also reduces close interactions throughout the eel bodies.
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I. INTRODUCTION

Concentrations of biological organisms can be considered
active materials as they are composed of self-driven units
and energy is continuously expended through locomotion [1].
Collective behavior of groups of organisms include flock-
ing or swimming in schools [2,3] and synchronization [4,5].
Synchronization processes in nature include glowing rhythms
of colonies of fireflies [4], crowd synchrony of pedestrians
walking on a bridge [6], and flagella beating in phase with
one another [7].

The head or tail of an individual snake, flagellum, cil-
ium or nematode moves back and forth with respect to a
mean position. This periodic motion can be described with
a phase of oscillation (e.g., Ref. [8]). In concentrations of
mobile oscillators, both synchronization and swarming can
occur together, and such systems can display a rich diver-
sity of collective states (e.g., the swarmalators studied by
O’Keeffe et al. [9]) including collectively organized and coor-
dinated motions known as traveling or metachronal waves. A
metachronal rhythm or metachronal wave refers to a locally
synchronized motion of individuals with a delay between
them, in contrast to globally synchronized patterns of oscil-
lation.

Metachronal waves require coordinated motions between
neighboring structures or organisms [10,11]. Swimming sper-
matozoa synchronize the beating of their cilia, and flagellates
can synchronize the motions of their flagella when they are in
close proximity [7,12–16]. When a constant phase difference
or time delay is maintained between neighboring oscillating
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structures, the collective motion has the appearance of a trav-
eling wave.

One approach to modeling metachronal wave forma-
tion in cilia or flagella is to model them as an array
of flexible filaments that oscillate or beat when alone.
Self-organized metachronal waves then arise due to hydrody-
namic [8,11,13,14,17–20] or steric [21] interactions between
neighboring filaments. Even though a filament can bend and
flex, its behavior can approximately be described with an
angle or phase which specifies the position of its moving
tip (e.g., Refs. [11,13,14]). Although each filament moves in
three dimensions, simplified models consisting of discrete lin-
ear chains of interacting oscillators can describe the collective
behavior [11,13,14].

Phase oscillator chain models, known as local Kuramoto
models, exhibit both long lived synchronous and traveling
wave states [22–27]. However, in many of these models, a
system with randomly chosen initial phases is more likely
to evolve into a synchronous state than a traveling wave
state [26,27]. Simple criteria are not available for predicting
whether an interacting phase oscillator model is likely to give
traveling wave states if initialized with random phases. How-
ever, physically motivated interacting phase oscillator models
for metachronal waves in cilia and flagella have succeeded in
robustly giving traveling wave states [13,14].

In this study we report on collective behavior in a system
of undulating free-swimming organisms, vinegar eels, species
Turbatrix aceti (T. aceti), which are a type of free-living
nematode. They are found living in beer mats, slime from
tree wounds and cultures of edible vinegars. Because they are
hardy, they are used in aquaculture by fish keepers and aquar-
ists as food for newly hatched fish or crustaceans. Vinegar eels
are tolerant of variation in acidity and they subsist on yeast.
The metachronal waves in T. aceti, reported by Peshkov [28],
Peshkov et al. [29], are similar to those seen in cilia. However,
unlike cilia which are affixed to a cell membrane, the vinegar
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eels are freely swimming organisms. At about 1 mm in length,
the vinegar eels are visible by naked eye and are much larger
than cilia (typically a few μm in length) or flagella on colonies
of microorganisms that display metachronal waves (e.g., with
flagella length ∼10 μm; [14]). Concentrated suspensions of
vinegar eels are a novel biological system in which we can
study ensemble coordination and synchronization. Henceforth
we refer to the vinegar eels colloquially as “eels” even though
they are nematodes.

Ensembles of active particles can exhibit a phase transition
from gaseous to collective behavior at higher number density
due to particle interactions (e.g., for unipolar self-propelled
particles [30]). Metachronal waves are only present in high
concentrations of vinegar eels [29] so interactions between
them are necessary for the coordinated wave motion. Col-
lective coordinated motion is likely to be mediated by the
interactions between the organisms. In our study we compare
the motion of the vinegar eels participating in metachronal
waves to those that are freely swimming to probe the nature
of these interactions.

While the well studied nematode Caenorhabditis elegans
(C. elegans) naturally grows in soil, C. elegans is also an
undulatory swimmer in water (e.g., Ref. [31]). C. elegans
nematodes congregate near surfaces and boundaries (they ex-
hibit bordertaxis) [31]. In close proximity, a pair of swimming
C. elegans nematodes will synchronize their gait [32]. Collec-
tive behavior of C. elegans includes the formation of a network
on a surface [33] and synchronization of clusters of tens of
nematodes [32]. We have observed similarities between the re-
ported behavior of C. elegans and our vinegar eel nematodes.
These similarities include undulatory swimming, bordertaxis,
and synchronization in the gait of clusters of organisms. We
have not found descriptions of metachronal waves in con-
centrations of C. elegans or other nematodes in the literature
nor have we seen metachronal waves in concentrations of C.
elegans in our laboratory [29].

We briefly describe our experimental methods in Sec. II.
Measurements of individual vinegar eels at low concentration
are discussed in Sec. III. We describe the behavior of high con-
centrations of vinegar eels in Sec. IV. Models of metachronal
waves in cilia and flagella have described these systems as
a chain of interacting phase oscillators, where each phase
describes the motion of a cilium or flagellum tip [13,14]. In
Sec. V we adopt a similar approach and model our ensemble
of vinegar eels with a chain of interacting oscillators, but each
phase describes the motion of an eel’s head. A summary and
discussion follows in Sec. VI.

II. EXPERIMENTAL METHODS

We obtained our T. aceti nematode and yeast culture from
an aquarium supply store, and we grow it at room temperature
in a 1:1 mixture of water and food grade apple cider vinegar.
A few slices of apple were added to the mixture as a food
source for the yeast. After a few ml of the purchased culture is
added to the vinegar and apple mixture, it takes a few weeks
before large numbers of vinegar eels are visible by eye in the
mixture. The vinegar eels congregate at the surface and crawl
up the container walls.

To study the motion of the vinegar eels, we used a Krontech
Chronos 1.4 high-speed video camera at 1057 frames per
second (fps) giving image frames with 1024 × 1280 pixels. To
connect the video camera to a conventional stereo compound
microscope under bright field illumination, we used a 0.5×
reduction lens adapter that matches the C-mount of our cam-
era. The other end of the adapter fits in the 23.2-mm-diameter
eyepiece holder of our microscope. Videos were taken using
the ×4 or ×10 microscope objectives [34].

At each magnification, we made short videos of a calibra-
tion slide with a small ruler on it. Frames from these videos
were used to measure the pixel scale, giving 315 mm/pixel
and 838 mm/pixel at ×4 and ×10 magnification, respectively.
The field of view is 1.22 mm × 1.53 mm at ×4 magnification
and 3.25 mm × 4.06 mm at ×10 magnification.

We present two videos: The first video, denoted Video
A [34], filmed at ×10 magnification, is of the vinegar eels at
low concentration; the second video, denoted Video B [34], is
at higher concentration and was filmed at ×4 magnification.
To achieve high vinegar eel concentration, we placed about
10 ml of the vinegar eel culture in a test tube and then used
a centrifuge (a few minutes at a few thousand rpm or about
1000 g) to concentrate the eels at the bottom. A pipette was
then used to extract fluid from the bottom of the tube.

Each video views a drop of about 100 μl of dilute vinegar
containing vinegar eels that was deposited on a dry glass slide.
The drop was not covered with a coverslip, so its surface is
curved due to surface tension. The slides wet so the drop is
not spherical. The outer edge of the drop where it touches
the slide remains fixed due to surface tension. In both videos,
the drop was about a cm in diameter. In Video B [34], we
touched the edge of the drop with a metal pin a few times to
pull and extend the drop radially outward. This increased the
drop surface area on the slide and decreased its depth. This
system is nearly two dimensional as the vinegar eels rarely
swim above or below one another. Additional experiments of
drops containing T. aceti are discussed by Peshkov et al. [29].

III. OBSERVATIONS OF LONE EELS
AT LOW CONCENTRATION

In Video A [34], the vinegar eels are at low concentration
and we can find intervals when an individual eel is not strongly
influenced by nearby eels or borders. We focus on an adult
∼1-mm-long vinegar eel, shown in Fig. 1, because it can
be directly compared to prior work studying 1 mm long C.
elegans kinematics (e.g., Refs. [31,35,36]) and because eels
of this length actively participate in the metachronal wave.

A median image was subtracted from all frames in Video A
to remove smooth variations in lighting. After subtracting the
median image, we rotated the video frames so that the lone
vinegar eel swims to the left. To find the eel’s oscillation or
gait period we summed five equally spaced (in time) video
frames. We adjusted the time interval between the frames until
the eel body shape was similar in each of the five frames,
indicating that they are at about the same phase of undulation.
This time interval gives us an estimate for the eel undulation
period Tu. The sum of five images is shown in Fig. 1(a) with
the eel head on the left.
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FIG. 1. Characteristics of an adult mm long freely swimming
vinegar eel. (a) The gray-scale image shows a sum of five frames
from high-speed Video A [34] showing the same freely swimming
eel. The five frames are equally spaced in time with interval Tu =
170.3 ms that is approximately one oscillation or undulation pe-
riod. The oscillation frequency is written on the lower left in Hz;
fu = 1/Tu. The swim speed, vswim, eel length, L and diameter w are
written on the top of the frame. The images have been rotated so
that the organism is swimming in the horizontal direction and to the
left. (b) Body positions are shown with colored dots at nine equally
spaced times during a single oscillation period. The images used to
measure the body position have been shifted to take into account the
mean swim speed. The body positions are plotted on top of the first
video frame in the sequence. (c) Using the first time shown in (b), the
y position of the center of the eel body as a function of x is plotted
with red dots enclosed in black circles. The red line shows the sine
function y = Au cos(kux − φ0) fit to these points. The wavelength and
amplitude of this function are shown on the lower left. The colored
lines show y = Au cos(kux − φ0 − 2π j/9) for integers j ∈ 1...8 cor-
responding to the phases of oscillation shown in panel (b). The eel
body is approximately sinusoidal in shape over much of its body and
during most of its gait.

We estimated the eel’s mean swim speed, vswim by shifting
the images so that the eel bodies in the five video frames
appear to be at the same position. The required shift to align
the eels after one oscillation period divided by the oscillation
period Tu gives the mean swim speed, vswim.

We used the mean swim speed to shift the video images
so that positions are viewed in the reference frame moving
with this average speed. At nine different phases of oscilla-
tion during a single oscillation period, we measured eel body
centerlines by fitting Gaussian functions to equally spaced
vertical slices in the image. The mean of the Gaussian gives
the eel’s centerline y value as a function of horizontal distance
x. The body centerlines at these nine different phases of oscil-
lation are shown with different colored dots in Fig. 1(b). The
body centerlines are plotted on top of the first video frame in
the sequence which is shown with the underlying grayscale

image. In this figure, the origin is near the head’s mean po-
sition. The positive x axis opposite to the swim direction and
the y axis is perpendicular to it.

By integrating distances between the points along the eel’s
centerline, we computed the length L of the eel. We measured
the eel’s body diameter w by measuring its apparent width
across its middle. In Fig. 1(b) the horizontal extent of the eel
hx along the x axis is smaller than the eel length because the
eel body is not straight.

To estimate a beat amplitude Au and a wave vector ku, we fit
a sine wave to the body centerline at one phase of oscillation,

y(x) = Au cos(kux − φ0). (1)

Figure 1(c) shows the fit sine function with a red line. The sine
describes the y coordinate of the eel’s centerline as a function
of x and φ0 is a phase. The wavelength of the body shape
λu = 2π/ku. The amplitude Au describes the size of deviations
from the mean of the centerline. The speed that waves travel
down the body vu is estimated from vu = λu/Tu.

Measurements of the freely swimming vinegar eel are sum-
marized in Table I. Uncertainties listed in this table give the
range of values that are consistent with the eel’s motion during
a 1 s long segment of video.

The centerline positions in Fig. 1(b) show that larger am-
plitude motions, or larger deviations from a pure sine shape
occur at the head and tail of the vinegar eel. Over much of the
body the eel’s shape is well described with a sine function and
the eel’s body is nearly sinusoidal in shape during most of its
oscillation. The spacing and offsets between centerline curves
at different phases of oscillation in Figs. 1(b) and 1(c) imply
the advance of the sine shape occurs at a nearly constant wave
speed.

Our vinegar eels culture contains nematodes of different
sizes, ranging from about 0.3 to 2 mm in length [see Fig. 2(a)].
We measured the frequency of oscillation for different length
eels and found that this frequency is not strongly dependent
on eel length. We have noted that the ratio of length to wave-
length L/λu is larger for the larger and longer eels than the
smaller ones. In the longer eels about 1.5 wavelengths are
present whereas only 1 wavelength is present on the shorter
ones.

The key findings of this section are the measurement of
the frequency of undulation for freely swimming vinegar eels
( fu ∼ 6 Hz) and that the shape and motion of much of the
vinegar eel’s body can be described with a sine function.

Comparison between C. elegans and T. aceti

Since the C. elegans nematode is well studied, we compare
its kinematics to that of the vinegar eel nematode, T. aceti.
The frequency of undulation we measured in the vinegar eels
∼6 Hz is faster than the ∼2 Hz measured in similar length
(1 mm long) C. elegans [31,35]. The length to diameter ratio
for our 1 mm eel is about L/w ∼ 45 whereas C. elegans is not
as slender with L/w ∼ 12 [35]. More than 1 wavelength fits
within the eel body in T. aceti, particularly in the longer eels.
In contrast about a single wavelength fits on the C. elegans
body while it is swimming [35]. The speed that waves travel
down the body, vu ∼ 3 mm/s for the eel, is somewhat higher
than than of C. elegans (2.1 mm/s, [35]). The swim speeds
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TABLE I. Properties of a freely swimming vinegar eela.

Quantity Symbol Units Value

Length L mm 0.96 ± 0.03
Diameter w mm 0.021 ± 0.001
Length/diameter L/w — 45
Wavelength λu mm 0.50 ± 0.02
Amplitude Au mm 0.045 ± 0.005
Swim speed vswim mm/s 0.38 ± 0.03
Amplitude/phys. length Au/hx — 0.055
Amplitude times wave-vector Auku — 0.56
Oscillation period Tu ms 170 ± 6
Oscillation frequency fu = 1/Tu Hz 5.9 ± 0.2
Undulation wave speed along body vu = λu/Tu mm/s 3.0

aThe length hx is the linear distance between head and tail measured along the direction of motion. The length L is that of the eel, integrated
along its body or measured if it were extended to its maximum length. Because the eel is not straight while it is swimming hx < L. The wave
speed along the body is that of undulation. Uncertainties describe the range of values that would be consistent with the motion during a 1 s
long segment of video. The vinegar eel is shown in Fig. 1.

are similar; 0.4 mm/s for the 1 mm long vinegar eel and
0.36 mm/s in C. elegans.

In the vinegar eels, the amplitude of motion is larger at
the head and tail, than in the middle and is largest at the tail.
This behavior is similar to swimming C. elegans [31] [see their
Fig. 1(a)] though Sznitman et al. [35] measured the largest
body curvature variations near the head.

For vinegar eels at low concentration, we did not find a
significant difference between the undulation frequency of
eels that are swimming near or along the edge of the drop
and of those that are swimming in the center of a drop. In
this respect our vinegar eels are similar to C. elegans. For C.
elegans exhibiting bordertaxis and swimming near a surface,
the frequency of oscillation is similar to that of the freely
swimming organism [31].

IV. OBSERVATIONS OF METACHRONAL
WAVES AT HIGH CONCENTRATIONS

At high concentration and a few minutes after the drop
is placed on the slide, the eels collect near the edge of the
drop, where the air/fluid boundary touches the slide, and just
within the outer rim of the drop. Collective motion in the form
of a traveling wave becomes progressively stronger and can
be seen without magnification by eye as the vinegar eels are
about 1 mm long (see Fig. 2).

In Figs. 2(a) and 3 we show frames from taken from Video
B [34]. The frames in Fig. 3 have been rotated to orient the
drop edge horizontally and at the bottom of each panel. To aid
in comparing the frames at different times, we geometrically
distorted each frame with a near identity quadratic coordinate
transformation so as to make the boundary horizontal. The
transformation used is (x, y) → (x, y − 1

2Rc
(x − xc)2) with xc

the x coordinate of the center of the image and Rc is a radius
of curvature. Due to surface tension the actual drop edge is
curved, with a radius of curvature of about Rc ≈ 7 mm.

Using frames from the rotated and distorted video we cre-
ated a time series of one dimensional arrays by integrating
intensity along the vertical axis of the image. The vertical
distance integrated is 1 mm and covers the frames in the
series shown in Fig. 3. This integration gives an intensity array

ρ(x, t ) as a function of time t with x axis parallel to the drop
edge. We use ρ(x, t ) to estimate the metachronal travel speed.
We compute a correlation function, shown in Fig. 4,

C(�x,�t ) =
∫

dx ρ(x, t )ρ(x + �x, t + �t )∫
dx ρ(x, t )2

, (2)

where �x is a horizontal shift and �t is a time delay. The
ridges in Fig. 4 are regions of higher intensity that propagate
as a wave and their slope, shown with a red segment, is the
metachronal wave speed, vMW. We estimate the metachronal
wave speed by shearing the correlation function image until
the ridges are vertical. The uncertainty in vMW is estimated
from the range of shear values that give vertical ridges upon
visual inspection of the sheared correlation array. We estimate
the metachronal wavelength λMW with a Fourier transform of
the orientation angles array shown in Fig. 6 (which is dis-
cussed in more detail below). The size of the error is based on
the estimated covariance of a Gaussian fit to the Fourier trans-
form. We checked that this wavelength was consistent with
that measured from the distance between peaks in the corre-
lation function shown in Fig. 4. The wavelength and wave
speed also give a metachronal wave oscillation frequency
fMW = vMW/λMW. The measurements of the metachronal
wave, vMW, λMW, and fMW, are listed in Table II.

Head positions for four eels were tracked by clicking on
their head positions in 200 frames spanning 2 s from Video
B [34] and their trajectories are shown in red in Fig. 5. The
eels do not swim forward very quickly. The four eels were
chosen because their heads were easiest to identify during the
2 s video clip. The amplitude of back and forth motion for
the eel heads is about AMW ∼ 0.07 mm. This amplitude is
an estimate for the amplitude of motion for eels engaged in
the metachronal wave and it exceeds the amplitude of motion
Au ∼ 0.045 mm in the 1 mm long freely swimming eel.

By counting eel widths, we estimate that NMW = 13 to
15 eels per metachronal wavelength λMW are involved in the
traveling wave. However only about 8 eels per mm have heads
visible near the edge of the drop. Some of the eel heads
are more distant from the edge of the drop and are confined
between other eel bodies. For deeper water/vinegar drops,

014412-4



METACHRONAL WAVES IN CONCENTRATIONS … PHYSICAL REVIEW E 104, 014412 (2021)

FIG. 2. (a) A raw video frame from Video B [34]. This video is
of a dilute vinegar drop containing a high concentration of vinegar
eels seen through a conventional microscope at ×4 magnification.
The edge of the drop on the slide is marked with yellow arrows.
The concentration of eels is higher near the edge of the drop. There
are eels of different lengths and ages in the solution, however the
smaller eels are less likely to participate in the metachronal wave.
(b) A photograph taken from above of a drop on a slide containing
a high concentration of vinegar eels. Detritus in the culture has been
pushed to the center of the drop. The feathery white ridges on the
edge of the drop are the metachronal wave. (c) An illustration of
the drop of concentrated vinegar eel solution on a slide. The white
feathery features represent the traveling wave in the vinegar eels near
the edge of the drop.

the number of eels per unit length in the metachronal wave
is sensitive to wetting angle [29].

The metachronal wave frequency fMW ∼ 4 ± 0.2 Hz is
significantly lower than the undulation frequency of individual
freely swimming eels, fu ≈ 6 Hz. Studies of metachronal
wave formation in cilia and flagellate bacteria have found that
as the filaments or flagella enter a traveling wave state, their
frequency of oscillation increases because hydrodynamic drag
on the filaments is reduced when they are collectively beating
in a wave pattern [13,14]. However, here we find that the
metachronal wave frequency is lower than that of the freely

FIG. 3. Each panel show the same subregion of a series of frames
from Video B [34]. The edge of the drop is near the bottom of each
panel. The time of each frame from the beginning of the sequence is
shown in yellow on the top right of each panel. The x and y axes are
in mm.

FIG. 4. Correlation function computed using Eq. (2) from image
intensity as a function of spatial shift �x and time delay �t . The
metachronal wave speed depends on the slope of the ridges. The
estimated metachronal wave speed of vMW = 3.7 mm/s is shown
with the red segment.
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TABLE II. Metachronal wave measurements.

Quantity Symbol Value

Metachronal wave velocity vMW 3.7 ± 0.2 mm/s
Metachronal wave frequency fMW 4.0 ± 0.2 Hz
Wavelength of metachronal wave λMW 0.89 ± 0.03 mm
Number of eels per wavelength NMW 13–16
Ratio of frequencies fMW/ fu ∼0.68
Amplitude of motion AMW ∼0.07 mm

swimming eels. Since eels swimming along the edge of the
drop do not exhibit a lower undulation frequency, the reduced
frequency must be due to interactions between organisms and
we infer that interactions between neighboring eels reduce,
rather than increase, their oscillation frequency.

A. Body orientations

Figure 3 suggests that when engaged in the metachronal
wave, portions of the eel’s bodies spend more time at some
orientation angles than others. Figure 5 shows that during
some phases of the wave, the eel heads move away from their
neighbors. There are larger gaps between eels at some phases
of the wave. These observations suggest there are deviations
from sinusoidal motion. In this section we measure body
orientations from the video frames to quantitatively examine
this possibility.

To measure the local orientation of the eel bodies we
compute local histograms of oriented gradients (HOG). These
histograms are commonly used in object recognition soft-
ware [37]. Figure 6 was made from one of the panels shown
in Fig. 3. In each 12 × 12 pixel square cell in the image,
we computed histograms of oriented gradients with the hog
routine that is part of the image processing python package
scikit-image. We use unsigned gradients so orientation
angles lie between [−π/2, π/2]. At each cell an average
direction was computed using the histograms and these are
plotted as blue segments on top of the original video frame
in Fig. 6(a). In Fig. 6(b), the same blue segments are plotted
on top of a color image with color showing the angles them-
selves. The color bar on the right relates orientation angle to

FIG. 5. Head positions for four eels were tracked over 2 s of
video and their trajectories are shown in red on the image. The black
dots show the location of the eel heads at the same time as the video
frame. The eels do not advance forward very quickly or at all while
they are engaged in the metachronal wave. The amplitude of back
and forth motion is about AMW ∼ 0.07 mm, and exceeds that of the
freely swimming eel.

color, with white corresponding to a horizontal orientation. In
nonempty regions, we estimate an uncertainty less than ±20◦
in the orientational angles based on inspection of Fig. 6(a).

To examine statistical variations in the body orientations
we computed distributions from the orientation angles (like
those shown in Fig. 6) but using 200 video frames from Video
B [34] spanning a duration of 2 s. A large number of video
frames were used to average over the different phases of the
wave. Orientation angle distributions are shown in Fig. 7(b).

Three rectangular regions are drawn in Fig. 7(a) on one of
the image frames and each region is plotted with the same
color and thickness line as used in Fig. 7(b). In Fig. 7(b)
we show distributions of orientation angles measured in these
three rectangular regions. The three region centers have dif-
ferent distances from the edge of the drop, 0.47, 0.29, and
0.13 mm. The higher color opacity lines in Fig. 7(b) are
distributions computed with weights so that regions of high
eel intensity contribute more to the histogram. The lighter
and lower opacity lines are distributions computed without
weighting. The difference between the higher and lower opac-
ity lines shows that the orientation angle distributions are not
sensitive to local variations in image intensity. The red rect-
angular region (plotted with wider lines) is more distant from
the edge of the drop than the blue region. The red histogram is
wider than the blue one, indicating that there is a wider range
of body orientation angles more distant from the drop edge.

The distributions shown in Fig. 7(b) have a trough and are
asymmetric or lopsided, with one peak higher than the other.
This asymmetry is not expected as a sine wave has distribu-
tion of orientations (computed from its slope) that would be
symmetrical about a mean value. Models for the orientation
angle distribution are discussed further in Sec. V D.

In summary, we find that for vinegar eels engaged in a
metachronal wave, the distribution of body orientation angles
has two peaks of different heights and depends on distance to
the drop edge. The asymmetry in the orientation angle distri-
bution and inspection of eel heads near the drop edge implies
that eel body shapes and motions are not perfectly sinusoidal.
This contrasts with our study of the freely swimming eels in
Sec. III where we found that the shape and motion of freely
swimming eels is nearly sinusoidal.

V. OSCILLATOR MODELS FOR TRAVELING WAVES

Experimental observations have shown that motility of
swimming nematodes, such as C. elegans, is due to the
propagation of bending waves along the nematode’s body
length [38]; (for a summary of nematode locomotion neurobi-
ology, see Ref. [39]). The bending waves consist of alternating
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FIG. 6. Body orientation angles. In panels (a) and (b) the blue segments are oriented with the means of locally computed histograms of
oriented gradients. The histograms of oriented gradients were computed from one of the images in Fig. 3 from Video B [34]. The same image
is shown in gray-scale in panel (a). The color image in panel (b) displays the orientation angles, with color bar on the right in degrees.

phases of coordinated dorsal and ventral muscle contractions
and extensions [40]. During locomotion, motor neurons excite
muscles on either (ventral/dorsal) side of the body while
inhibiting muscles on the opposite side.

FIG. 7. Distributions of orientation angles in the metachronal
wave. (a) Three rectangular regions are shown on top of one of
the image frames. The color and line width showing each region is
the same as in panel (b). (b) Normalized distributions of orientation
angles in the three rectangular image regions. The histograms were
computed using orientations like those shown in Fig. 6, but using
200 video frames from Video B [34] spanning a duration of 2 s. The
higher opacity lines are histograms computed with intensity weights
with regions of higher eel density contributing more to the histogram.
The lighter lines are histograms computed without weighting. The
distribution is narrower near the edge of the drop. The gray bars
have orientation equivalent to their x coordinates on the plot and are
plotted at multiples of 30◦. The difference in the two peak heights
in each distribution suggest that there are deviations from sinusoidal
shapes and motions.

The gait of C. elegans adapts to the mechanical load im-
posed by the environment [41]. Swimming involves higher
frequency and longer wavelength undulations than crawling
on agar, though both behaviors may be part of a continuous
spectrum of neural control [42,43]. Oscillation frequencies
also decrease for C. elegans swimming in higher viscosity
aqueous media [35]. Proprioception is when sensory receptors
in muscles or other tissues are sensitive to the motion or
position of the body. In models for nematode locomotion, the
sensitivity to environment involves proprioceptive integration
or feedback on the neuronal control model [36,39,42,44].

Experiments of restrained C. elegans [36] show that the
bending of the posterior regions requires anterior bending
(see Fig. 3 by Wen et al. [36]). If the nematode is held
fixed at its middle, then the body can undulate between head
and constraint, but past the constraint to the tail, there will
be no undulation. These experiments suggest that the body
itself lacks central pattern generating circuits and motivates
locomotion models that rely on an oscillator in the head [36].

To create a model for collective motion in the vinegar eels,
we assume that the waves that propagate down the nematode’s
body are initiated at the organism’s head. We use the phase
of the head’s back and forth motion with respect to its mean
position to describe the state of each organism and we model
our ensemble of eels as a chain of phase oscillators. In the
absence of interactions, each oscillator has intrinsic frequency
equal to the oscillation frequency of a freely swimming eel.
Because the mean positions (averaged over the oscillation
period) of the eel’s heads drift very slowly (see Fig. 5), we
neglect drift in the mean or averaged (over a period) oscillator
positions. Here the oscillator phase is associated with back
and forth motion of an eel head because the head is assumed to
be the source of the body wave. This differs from the models
by Niedermayer et al. [13], Brumley et al. [14] where the
phase describes motions of a cilium or flagellum tip.

When the vinegar eels are engaged in metachronal waves,
the organisms are often touching each other. Chelakkot
et al. [21] simulated steric interactions between active and
elastic filaments in arrays and found that short-ranged steric
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inter-filament interactions can account for formation of collec-
tive patterns such as metachronal waves. Because undulation
frequency of C. elegans is slower when under mechanical
load imposed by the environment, we assume that steric in-
teractions in our vinegar eels reduce the phase velocity of
oscillation.

To construct a model for metachronal waves, we consider
the head of a single organism to be an oscillator and we
consider ensembles of N oscillators. The ith oscillator can be
described with a phase θi and a frequency of oscillation or a
phase velocity dθi

dt = θ̇i. Here i is an integer index and θi is a
function of time t .

Collective phenomena involving synchronization of os-
cillators has been described with different nomenclature.
Following Refs. [13,45], a synchronized state of an ensemble
of N oscillators is one where all oscillators have identical
phases, θi(t ) = θ j (t ) for all i, j ∈ (0, 1, ...N − 1). A phase-
locked or frequency synchronized state [22–24] is one where
all oscillators have identical phase velocities θ̇i(t ) = θ̇ j (t )
for all i, j ∈ (0, 1, ...N − 1). An entrained state has identical
mean phase velocities ω̃i = ω̃ j for all i, j ∈ (0, 1, ...N − 1).
The time average of the phase velocity can be computed with
an integral over time, ω̃i = limt→∞ 1

t

∫ t
0 θ̇ (t )dt , or by integrat-

ing over an oscillation period if oscillator motions become
periodic.

For a chain of oscillators, the index i specifies the order in
the chain. One type of traveling wave is a nonsynchronous
phase-locked state characterized by a constant phase delay
or offset between consecutive oscillators in a chain or loop
of oscillators. In other words θi+1 = θi + χ for consecutive
oscillators, where χ is the phase delay and θ̇i �= 0 for all
i. If individual oscillators undergo similar periodic motions,
then another type of traveling wave is a nonsynchronous but
entrained state characterized by a time delay between the
motions of consecutive oscillators. In other words θi(t + τ ) =
θi+1(t ) with time delay τ . In this case the phase velocities
would be periodic and need not be constant. Both types of
traveling waves involve periodic oscillator motions and are
known in the biological literature as metachronal waves.

A. Local Kuramoto models

The Kuramoto model [45–47] consists of N oscillators, that
mutually interact via a sinusoidal interaction term,

dθi

dt
= ωi +

N∑
j=1

Ki j sin(θ j − θi ), (3)

where Ki j are nonnegative coefficients giving the strength of
the interaction between a pair of oscillators. In the absence
of interaction, the ith oscillator would have a constant phase
velocity ωi which is called its intrinsic frequency.

With only nearest-neighbor interactions a well studied
model, sometimes called a local Kuramoto model, is de-
scribed by

dθi

dt
= ωi + K[sin(θi+1 − θi ) + sin(θi−1 − θi )] (4)

[22–27]. At low values of positive interaction parameter K ,
the oscillators are not affected by their neighbors. At higher

K , the oscillators cluster in phase velocity, and the number
of clusters decreases until they fuse into a single cluster that
spans the system. At and above a critical value of K = Ks

the entire system must enter a global phase-locked state [48].
Above the critical value K > Ks, there can be multiple stable
phase-locked attractors, each with its own value of global
rotation rate � = 1

N

∑
i ωi [26,49].

What fraction of possible initial conditions would converge
onto a phase-locked solution that is not synchronous? The set
of initial conditions that converge onto a particular solution
are called its basin of attraction. The basins of attraction
for traveling wave solutions (or nonsynchronous phase-locked
states) are smaller than that of the synchronous state [26,27].
Using random and uniformly generated initial phases in 0 to
2π for each oscillator, the system is more likely to enter a
synchronous rather than a traveling wave state.

Because well studied local Kuramoto models like that of
Eq. (4) are more likely to enter a synchronous than a traveling
wave state, they do not capture the behavior illustrated by our
vinegar eels, or other systems that exhibit metachronal waves
such as chains of cilia [13] or flagella on the surface of Volvox
carteri alga colonies [14]. Relevant models should exhibit a
larger basin of attraction for traveling wave states than for the
synchronous state.

In models for metachronal waves in cilia or flagel-
lates [13,14,18] the end of a filament moves in a plane and
on a trajectory of radius R from a central position with phase
θ in polar coordinates. Active forces are induced via tangen-
tial forces exerted on the filament. Interactions between the
oscillators are based on hydrodynamic interactions between
pairs of filaments and are computed using Stokes equation
which is valid at low Reynolds number [8,13,14,18]. Motion
is over-damped so the equations of motion are a balance
between driving and hydrodynamic forces. The filament ve-
locities are computed as a function of their positions and it
is not necessary to compute accelerations. The equations of
motion describe motions of the phase, radius and orientation
angle of the end of the filament’s trajectory. However, if the
distance between filaments is large compared to the radius
of motion, the dynamical system can be approximated with
nearest-neighbor interactions and neglecting variations in the
radius or plane of motion [13]. This gives a local oscillator
chain model dependent only on phases.

B. An oscillator model based on heads that overlap

We desire a model that has a wide basin of attraction
for traveling wave states, similar to those by Niedermayer
et al. [13], Brumley et al. [14]. The oscillator chain model
by Niedermayer et al. [13] included sine and cosine terms
of the sums and differences of pairs of phases and that by
Brumley et al. [14] included both radial and phase motions.
We can similarly assume that motion is over-damped and
can be described by equations for phase and phase veloc-
ity and lacking phase accelerations. Since steric interactions
are likely to be important, we can adopt a model with only
nearest-neighbor interactions, as did Niedermayer et al. [13].
However, opposite to the hydrodynamic interaction models,
the interactions between our eels are likely to be strong, and
they should reduce the oscillator phase velocity rather than
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FIG. 8. (a) Two eels undulate with amplitude A but without mov-
ing their mean centerlines. The two mean centerlines are shown with
dotted lines and are separated by distance d . The eel heads are shown
with large black dots. We assume that the undulation on the body
is initiated by oscillators in the eel’s heads. The oscillators have
phases θi and θi−1. When �left = d + A cos θi − A cos θi−1 < 0, the
eel heads overlap and steric interaction would slow their motion.
(b) Three consecutive eels are tilted by angle φtilt with respect to
the horizontal direction. The oscillator in the ith eel’s head is more
strongly influenced by the motions of the organism to its left (with
index i − 1) than the one to its right (with index i + 1). At lower tilt
angle φtilt , the interactions are increasingly lopsided.

increase it. We observe that eel heads near the edge of the
drop (see Figs. 3 and 5) were not near other eel bodies during
portions of the traveling wave. If undulation is generated at the
eel head, then interactions on it are only strong during about
half of the head’s oscillation cycle.

Consider two eels oriented horizontally as shown Fig. 8(a)
with x the horizontal axis and y the vertical one. The eels
undulate with amplitude A and without varying the head’s x
position or the orientation of its mean centerline, which is
shown with dotted lines. The y position of the ith head,

yi = A cos θi − id, (5)

where d is the distance between the neighboring eel’s mean
centerlines. The phase of oscillation is given by the angle θi.
The distance between the two heads with index i and i − 1 is

�left = d + A cos θi − A cos θi−1. (6)

The eels with index i and i − 1 overlap near their heads if the
left-sided overlap function

oleft (θi−1, θi ) = �left

A
= cos θi − cos θi−1 + β < 0, (7)

where the dimensionless overlap parameter

β ≡ d

A
. (8)

We assume that a strong steric interaction on the ith eel’s
head would reduce its phase velocity when oleft (θi−1, θi ) < 0.

Otherwise, the eel head’s phase velocity would remain at its
intrinsic phase velocity. Because the eels tend to be closer
together than the amplitude of undulation when they are in-
volved in a metachronal wave, we expect β to be smaller than
1. The amplitude A of body motions for eels engaged in the
metachronal wave need not be the same as that of the freely
swimming eel, Au.

Consider three eels oriented at an angle as shown in
Fig. 8(b). The oscillator in the ith eel’s head is more strongly
influenced by the motions of the organism to its left (with
index i − 1) and less so by the one to its right (with index
i + 1). When the eels are tilted with respect to the edge of the
drop, we expect directed interactions where the phase of the
eel’s head is primarily influenced by its nearest neighbor on
one side.

A modification to the local Kuramoto model with directed
or one-sided nearest-neighbor interactions,

dθi

dt
ω−1

0 = 1 − K f (θi−1, θi ). (9)

Here positive and dimensionless parameter K describes the
strength of the interaction. The nearest-neighbor interaction
function 0 < f (θi−1, θi ) � 1, reduces the phase velocity and
mimics the role of one-sided steric interactions. The intrinsic
angular phase velocity ω0 is the same for each oscillator. We
work with time in units of ω−1

0 which is equivalent to setting
ω0 = 1.

One choice for the interaction function should give 1 if the
overlap function oleft [defined in Eq. (7)] is negative and there
is an overlap and gives 0 otherwise. This choice neglects eel
body width. We have checked with numerical integrations that
a numerical model based on a Heaviside step function can
robustly give traveling wave solutions. However, numerical
integration of a discontinuous function with a conventional
numerical integrator can give results that are dependent on
step size or sensitive to round-off or discretization errors. To
mitigate this problem we use a smooth function to approx-
imate the step function, f (θi−1, θi ) = 1

2 [1 − tanh oleft (θi−1,θi )
hol

]
where dimensionless parameter hol sets the abruptness of the
transition of the function from 0 to 1. In the limit of small hol

we recover the Heaviside function. An oscillator model that
uses this smooth function has equation of motion

dθi

dt
ω−1

0 = 1 − K

2

[
tanh

(
cos θi−1 − cos θi − β

hol

)
+ 1

]
.

(10)

C. Numerical integrations of a directed overlap
phase oscillator chain model

The directed overlap phase oscillator model given by
Eq. (10) depends on three positive parameters, the interaction
strength K , an overlap parameter β and the parameter setting
the smoothness of the interaction function hol . The model is
also sensitive to the number of oscillators in the chain or loop
N , the boundary condition and the choice of initial conditions.
We integrate this model using a first order explicit Euler
method. The initial phases for each oscillator are randomly
generated using a uniform distribution spanning [0, 2π ].

In local Kuramoto models, stable solutions that are present
in a loop may not be present if one link is dissolved and
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the loop becomes a chain [26,50]. To ensure that traveling
waves are robustly generated in our model, we purposely
do not chose a periodic boundary condition. The bound-
ary at the end of the chain or for θN−1 does not affect the
dynamics because of the direction of the interactions. For
the left boundary (with phase θ0) we set the phase veloc-
ity dθ0

dt = (1 − K )ω0. We find that a slow left boundary is
less likely to excite perturbations that propagate through the
system.

A numerical integration with N = 200 oscillators, intrin-
sic frequency ω0 = 1, interaction parameter K = 0.5, overlap
parameter β = 0.25, and smoothness parameter hol = 0.05 is
shown in Fig. 9. The time step used is dt = 0.05 and we have
checked that a smaller step size does not significantly change
the integration output. In Fig. 9 a the panels show phase angle
θ j , phase velocity dθ j/dt and phase shift χ j = θ j+1 − θ j as a
function of index j for an integration at two times t = 1000
and t = 1001. In Fig. 9(b) we show the same quantities but
with color arrays as a function of both index and time. Despite
the absence of a diffusive-like interaction term [similar to that
in Eq. (4)], the model has attracting entrained or traveling
wave solutions. A comparison between the two outputs in the
top panel shows that phases at different times can be related
with a time delay. At the beginning of the integration clusters
of entrained or nearly phase-locked groups form and later
merge to give a fully entrained or traveling wave state. This
type of behavior was previously seen in the oscillator models
developed for hydrodynamic interactions between cilia and
flagella [13,14].

When initial conditions are random, there are initially
groups of neighboring oscillators with large phase differences
and these large differences can remain on the same group
of oscillators for many oscillation periods. These are nearly
horizontal streaks seen in the bottom panel showing phase
difference χ in Fig. 9(b). Had we added a diffusive-like term
to our model, small wavelength perturbations would be more
rapidly damped, but such a term would also affect the velocity
and wavelength of traveling wave states.

We ran the integration to a maximum time t = 1001 with
ω0 = 1 corresponding to 1001/(2π ) ≈ 160 oscillation peri-
ods (2π/ω0). For an oscillation frequency of fu ∼ 6 Hz (as
we observed for our vinegar eels) this duration corresponds
to 27 s. The metachronal waves take a few minutes appear
after the drop is placed on the slide. The time it takes for
all entrained clusters to merge in the numerical model is
shorter than the few minutes it takes for traveling waves to
form on a large portion of the drop edge in our concentrated
eel experiments. However, our model is of a fixed chain of
oscillators so it does not take into account the time it takes for
the vinegar eels to collect on the boundary or sources of noise
in the system.

At the end of the numerical integration shown in Fig. 9,
the average phase velocity ω̃ = 0.77ω0 (computed from all
oscillators at that time), the average wavelength is Nλ = 12
oscillators. The phase delay for the entrained state τ = 2π

ω̃Nλ
=

0.68. The number of oscillators for a change of 2π in phase,
Nλ, is comparable to that we estimated for the metachronal
wave in the vinegar eels (see Table II). The average phase ve-
locity ratio ω̃/ω0 is near but somewhat higher than the ratio of
metachronal wave to freely swimming undulation frequency

FIG. 9. A directed oscillator chain model numerical integration.
Equation (10) is integrated with N = 200 oscillators in a chain with a
nonperiodic boundary condition and randomly chosen initial phases.
The interaction parameter K = 0.5, intrinsic frequency ω0 = 1, over-
lap parameter β = 0.25, smoothness parameter hol = 0.05 and time
step dt = 0.05. The system was integrated to time t = 1001. At
the end of this integration the average phase velocity ω̃ = 0.77ω0

and the average wavelength is Nλ = 12 oscillators. (a) From top
to bottom panels, the phase angles θ j , phase velocity dθ j/dt and
phase difference χ j = θ j+1 − θ j are plotted as a function of index
j at two different times. The outputs at t = 1000 and t = 10001
are plotted with red and blue lines. Comparison between these two
outputs shows that they are similar but shifted by a time delay. The
system is an entrained state which can also be described as a traveling
wave state. (b) From top to bottom panels, the images show phase
angle θ j , phase velocity dθ j/dt and phase difference χ j with color
shown in the color bars on the right. The horizontal axes is time and
the vertical axes are the oscillator index j. The fine diagonal features
at large times are the traveling waves. The horizontal features are
discontinuities that eventually disappear as coherent regions merge.

fMW/ fu ∼ 0.67 that we estimated for the vinegar eels (listed
in Table II and discussed in Sec. IV).

If all phases are initially set to the same value, then the
dynamical system described by Eq. (10) remains in a syn-
chronous state. However, if some noise is introduced into the
system (in the form of small stochastic perturbations on each
oscillator) then the system is likely to enter the traveling wave
state even with flat initial conditions. The basin of attraction
for the traveling wave state is significantly larger than that of
the synchronous state.

014412-10



METACHRONAL WAVES IN CONCENTRATIONS … PHYSICAL REVIEW E 104, 014412 (2021)

FIG. 10. Wavelengths Nλ and mean phase velocity ω̃ computed
for numerical integrations at t = 1000 of the directed oscillator chain
model given in Eq. (10). The integrations have N = 200 oscillators,
the time step is dt = 0.05 the smoothness parameter is hol = 0.1, the
boundary is not periodic and initial phases were randomly chosen.
If the entire chain of oscillators did not reach a traveling wave state
at t = 1000, then a black dot is plotted otherwise the dot has color
giving the wavelength Nλ (top panel) and mean phase velocity ω̃

(bottom panel). The x axis is the interaction strength parameter K
and the y axes are the overlap parameter β.

With a fixed value of smoothness parameter hol , we inte-
grated Eq. (10) for different values of interaction parameter
K and overlap parameter β. These integrations have ran-
dom initial conditions and nonperiodic boundary, as described
above, intrinsic frequency ω0 = 1 and smoothness parameter
hol = 0.1. At t = 1000 we inspected plots like those in Fig. 9
to see if the system was in an entrained state. If so, then
we measured the mean wavelength Nλ and the mean phase
velocity ω̃. In Fig. 10 points are plotted as a function of β and
K and with color set by their wavelength Nλ (top panel) or
mean phase velocity ω̃ (bottom panel). Systems that exhibited
discontinuities at the end of the simulation (other than at the
left boundary) are plotted in black. A fairly wide range of
interaction and overlap parameters robustly gives entrained or
traveling wave states.

At larger overlap parameter, β, the oscillators spend less
time overlapped and this tends to give a shorter wavelength
and higher mean phase velocity ω̃ in the entrained state. If
eels are more distant from each other or have lower amplitude
oscillations, then β is larger. At large overlap parameters
β � 0.4 (on the top of each panel in Fig. 10) the system is
less likely to be in a traveling wave state at t = 1000. This
is due to clusters of oscillators that begin with large phase
differences between neighbors that do not dissipate. High eel
concentration would reduce the overlap parameter β, so the
model does account for the sensitivity of the metachronal
wave to eel concentration on the boundary.

Figure 10 shows that for K < 0.4 (on the left side of
the figure) entrained states are not present at the end of the
integration. This is due to groups of neighboring oscillators
with initially large phase differences. If integrated longer,
then these irregularities or discontinuities might eventually
disappear. The interaction parameter K influences the time it
takes for the short wavelength structure to dissipate. In a more
realistic model, noise and diffusive interactions would also
affect the range of parameters giving an entrained or traveling
wave state. The odd black points at β ≈ 0.25, K = 0.7 are
due to discontinuities at the left boundary that continuously
propagate through the system. We are not sure why our left
boundary condition caused this problem only in this region of
parameter space.

What properties of a phase oscillator model are required
for a large basin of attraction to an entrained or traveling wave
state? The model by Brumley et al. [14] is two-dimensional
as it depends on oscillator radius as well as phase so it is more
complex than a model that consists only of a chain of phases.
With only phases, both our model and that by Niedermayer
et al. [13] are not potential models, and interactions between
pairs of oscillators are not applied equally and oppositely to
each oscillator in a pair, the way conventional physical forces
are applied. These three examples (our model, and those by
Niedermayer et al. [13], Brumley et al. [14]) of models de-
veloped for traveling waves in biological systems might yield
clues for more general classification of the basins of attraction
for phase oscillator models with local interactions.

For most of our integration parameters we saw only a
single possible entrained state. Is it possible to predict the
phase delay τ , or wavelength, Nλ, of this entrained state? The
integration shown in Fig. 9(a) of the model given by Eq. (10)
shows that the phase at a single output time has two regions,
One region has a low phase velocity and the other region
has a higher phase velocity. In the fast and slow regions,
the phase velocity is constant and phase differences between
neighboring oscillators are maintained. In Appendix A, we
estimate the phase delay τ and wavelength Nλ of the entrained
state from the phase shifts that occur during the transitions
between the fast and slow regions.

D. Distributions of orientation angles

How do we relate the oscillator chain model to the ori-
entation distributions displayed in Fig. 7(b) for the vinegar
eels engaged in a metachronal wave? The undulation velocity
we measured in the freely swimming eel vu ∼ 3.0 mm/s is
similar to the metachronal wave velocity vMW ∼ 3.7 mm/s
so we could use either one to make an estimate for how
motions of the head propagate to the rest of the body. The
free eel undulation frequency of fu = 5.9 Hz gives intrinsic
phase velocity ω0 = 2π fu = 37 s−1. It is useful to compute
the dimensionless ratio

πA,MW ≡ AMWω0

vMW
≈ 0.70 (11)

using parameters listed in Tables I and II that we measured for
the freely swimming eel and metachronal wave.

The phase θ in our oscillator model represents the phase of
back and forth oscillation in an eel’s head. We constructed
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our interaction function assuming that the eel head moves
away from its mean centerline with coordinate perpendicular
to the mean centerline y = A cos θ . We assume that the head’s
motion excites a constant velocity traveling wave along the
eel body y(x, t ) with distance y from the mean centerline a
function of distance x along the mean centerline. The head’s
motion gives boundary condition

y(x = 0, t ) = A cos [θ (t )], (12)

where the function θ (t ) gives the phase of the head oscillation
as a function of time. With constant undulation wave velocity
v,

y(x, t ) = A cos
[
θ
(

t − x

v

)]
(13)

is consistent with the boundary condition at x = 0 [Eq. (12)].
The velocity that waves propagate down the eel body v may
not be the same as vu, the wave velocity for the freely swim-
ming eel.

The slope of the body

dy(x, t )

dx
= A sin

[
θ
(

t − x

v

)]
θ ′

(
t − x

v

)
v−1. (14)

Here θ ′ is the derivative of the function θ (t ). The distribu-
tion of the slopes should be the same as the distribution of
A
v

dθ
dt sin θ where the phases θ and phase velocities θ̇ are those

at different times and positions for the heads in the oscillator
array after the integration achieves an entrained state. The
slope of the body is dy

dx = tan φ where φ is the body orientation
angle. From our model phases and phase velocities we can
compute the distribution of body orientation angles φ assum-
ing a constant wave velocity v with

φ = arctan

[
πA

(
dθ

dt

1

ω0

)
sin θ

]
+ φtilt, (15)

with

πA ≡ Aω0

v
. (16)

We have purposely written Eq. (15) in terms of dimensionless
parameters so as to facilitate comparison of our model with
the vinegar eel collective motions. Here the tilt angle φtilt , il-
lustrated in Fig. 8, lets us adjust the angle of the eel centerlines
with respect to the drop edge.

We generate model orientation distributions for the oscil-
lator chain model with parameters and integration shown in
Fig. 9. In Fig. 11 we use the arrays from 20 different times
(spaced at 0.5 duration intervals) to compute the distributions
of phase angle θ , phase velocity dθ

dt , and orientation angle
φ. The orientation angles are computed with Eq. (15) from
the phases and phase velocities. The distributions have been
normalized so that they integrate to 1. For comparison, we
similarly generate and show distributions for a constant phase
velocity model that has dθ

dt = ω0. This model has a flat dis-
tribution of phases and can be considered purely sinusoidal.
In this special case, the orientation angle distribution function
consistent with Eqs. (15) and (16) is

p(φ)sinusoidal = 1

π

1 + tan2(φ − φtilt )√
π2

A − tan2(φ − φtilt )
. (17)

FIG. 11. Distributions for the directed chain integrated oscillator
chain model shown in Fig. 9 are plotted in blue. These are compared
to distributions for a constant phase velocity model which is shown in
orange and referred to as “sinusoidal.” (a) The distribution of phase
angles for the integrated oscillator chain model and the sinusoidal
model. (b) The distribution of phase velocities for the integrated
oscillator chain model. The sinusoidal model has dθ/dt ω−1

0 = 1.
(c) The distribution of orientation angles for both oscillator chain
and sinusoidal models computed using Eq. (15), φtilt = 0 and πA =
Aω0/v = 1. The red dotted line shows the distribution function [in
Eq. (17)] for the sinusoidal model. (d) We show smoothed distribu-
tions of orientation angles computed using Eq. (15), φtilt = 20◦ and
πA = 0.7 for both oscillator chain and sinusoidal models. The sinu-
soidal and oscillator chain model distributions have been smoothed
with a Gaussian filter with a standard deviation of σ = 12◦. With a
thick green line, we show the distribution of orientations measured
from the vinegar eels in Video B [34]. This distribution is the same
as plotted in green in Fig. 7(b). The directed chain oscillator model
displays an asymmetry in the associated orientation angle distribu-
tions (i.e., peaks of different heights) that is present in the observed
distribution.

The phase velocity distribution for the oscillator chain
model shown in Fig. 11(b) shows two peaks, a low one for
when there are interactions between neighboring oscillators
and a high one that is at the intrinsic phase velocity. This is
what we would expect from inspection of the phase velocities
in Fig. 9. Figure 11(c) shows orientation angles φ computed
with no tilt, φtilt = 0, and ratio πA = Aω0/v = 1. Orientation
angle distributions for both oscillator chain model and con-
stant phase velocity model exhibit two peaks and a trough. In
Fig. 11(c), the constant phase velocity model distribution, in
orange, is consistent with the distribution function of Eq. (17)
that is shown with a dotted red line. The peaks of the ori-
entation angle distribution for the oscillator chain model have
different heights due to the uneven phase velocity distribution,
whereas the distribution is symmetrical about φ = 0 for the
sinusoidal (constant phase velocity) model.

We can compare the modeled distribution of body orien-
tations to those measured in our videos of the eels engaged
in the metachronal wave, shown in Fig. 7(b), and discussed
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FIG. 12. (a) Eel body positions that are computed with a series of outputs at different times of the phase oscillator model shown in Fig. 9
and using Eq. (B7). Overlaps are reduced not only at the eel heads but throughout their body. (b) A panel from Video B [34] similar to those
shown in Fig. 3. The morphology of the model wave in (a) resembles that seen in the vinegar eels. (c) Eel body positions were estimated via
Eq. (B7) but with a constant time delay and constant phase velocity model. Other parameters were the same. This model causes eel bodies to
overlap. A comparison between panels (a) and (c) suggests that there must be variations in the phase velocities to reduce steric interactions.

in Sec. IV A. Figure 11(d) shows orientation angle distri-
butions computed with φtilt = 20◦ and ratio πA = 0.7 which
is that of Eq. (11). To facilitate comparison between distri-
butions we have smoothed the model distributions using a
Gaussian filter with standard deviation of 12◦. In Fig. 11(c),
we replot one of the orientation angle distributions that was
shown in Fig. 7(b) and is measured from Video B [34] of a
metachronal wave. The model orientation distributions shows
two peaks, and when corrected by the same factor (setting
πA = πA,MW) and smoothed, they have a width and two peaks
similar to that observed for the metachronal wave. Unlike
the observed distribution, the sinusoidal model’s orientation
angle distribution is symmetrical about φtilt and its two peaks
are the same height. In contrast, the oscillator chain model
distribution is asymmetric or lopsided and its two peaks have
different heights. Because there are variations in oscillator
phase velocity in the oscillator chain model, the associated
orientation angle distribution is lopsided. The oscillator chain
model offers an explanation for the asymmetry that is present
in the observed orientation angle distribution.

To compare the oscillator chain model to the observed
orientation angle distribution we smoothed the model. Noise-
like variations in the observed orientation angle distribution
can be due to eels that are not aligned with their neighbors
and variations in shading that affect the accuracy of the HOG
algorithm. The oscillator chain model’s distribution is more
lopsided than the observed distribution which implies that
variations in the phase velocity are not as extreme as predicted
in Fig. 11(b). A more complex oscillator chain model would
be needed to give a better fit to the observed orientation angle
distribution.

E. Body shapes

In Eq. (15) we used model phases to compute the distribu-
tion of body orientation angles φ assuming a constant wave
velocity v. With the same assumption we can compute the

position and shape of the entire body using a time series of
model outputs. Our procedure for doing this is described in
Appendix B.

In Fig. 12(a) we show computed eel body shapes that
are derived from the integrated phase oscillator model output
shown in Fig. 9 [integrating Eq. (10)] and computed along the
body lengths using Eq. (B7). To generate the body positions
we used amplitude A = 0.07 mm, (based on that measured
from eel head motions for eels engaged in the metachronal
wave), and intrinsic phase velocity ω0 = 2π fu with fu =
5.9 Hz based on freely swimming eels. We adopted tilt angle
φtilt = 20◦ (the same as we used to generate orientation dis-
tributions in Fig. 11). To match the metachronal wavelength
we used a horizontal distance between eel mean centerlines
of D = 0.11 mm, (as defined in Fig. 8). Lastly we use a
wave speed v = 4.1 mm/s. The ratio πA = Aω0/v = 0.63 is
similar to given in Eq. (11) and was used to create the model
orientation distributions in Fig. 11(d). The eel body shapes
using these parameters are shown in Fig. 12(a) and they illus-
trate similar morphology to the vinegar eels themselves when
engaged in the metachronal wave. Fig. 12(b) shows a panel
like those of Fig. 3 from Video B [34] for comparison.

Figure 12(a) shows that the periodic variations in phase
delay and phase velocity of an entrained state from our os-
cillator chain model [Eq. (10)] reduce overlap between eels,
not just near the eel heads but throughout their bodies. The eel
bodies are nearly equidistant from each other everywhere. In
Fig. 12(c) we show body positions generated with a constant
phase velocity (ω0) and constant phase delay (with the same
wavelength Nλ) model. The constant phase delay and phase
velocity model fails badly. Variations in phase delay between
neighboring eels and in their phase velocity during different
parts of the oscillation are probably needed to prevent strong
steric interactions between the eels.

We chose the wave speed v along the body to best
match the observed morphology, however it exceeds both the
metachronal wave speed of about vMC ∼ 3.7 mm/s and the
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undulation wave speed on the 1-mm-long freely swimming
eel of vu ∼ 3.0 mm/s. We might expect v = vMC/ cos φtilt =
3.9 mm/s using vMC = 3.7 mm/s and φtilt = 20◦. Our cho-
sen value for v exceeds this. Our assumption for computing
orientation angle φ in Eq. (15) and body shape ignores interac-
tions between organisms that should affect the speed of wave
propagation down the eel bodies. A more complex model that
takes into account proprioception feedback throughout the
eels body lengths might give a smoother and more symmetric
orientation angle distribution [reducing the discrepancy be-
tween that modeled and measured in Fig. 11(d)] and a closer
match to the wave morphology [improving the comparison
between Figs. 12(a) and 12(b)]. We observe that the amplitude
of motion in the metachronal wave AMW > Au exceeds the
amplitude of undulation when freely swimming, AMW > Au

and the speed of waves traveling down the body exceeds that
when freely undulating v > vu. A feedback motor control
model, perhaps based on local body curvature, might predict
or explain these characteristics.

There is a discrepancy between the overlap parameter β =
d/A = 0.25 of the numerical oscillator model we adopted
(shown in Fig. 9 and used to create Figs. 11 and 12) and
that derived from the additional parameters we used to make
Fig. 12(a) for the eel bodies. The distance between eel cen-
terlines d is related to the horizontal distance between mean
centerlines D with d = D sin φtilt (see Fig. 8). For the model
shown in Fig. 12(a), we used D = 0.11 mm, A = 0.07 mm,
and φtilt = 20◦ giving d = 0.038 mm. We can estimate an
overlap parameter for the tilted system β ∼ D sin φtilt/A =
0.54 which exceeds our oscillator model overlap.

This discrepancy might be reduced if we included the eel
body width and the tilt angle φtilt in our overlap criterion
function. A more complex model that takes into account feed-
back throughout the eels body lengths might also resolve this
discrepancy.

VI. SUMMARY AND DISCUSSION

We presented high-speed videos of swimming vinegar eel
nematodes (T. aceti) at low and high concentration. In a drop
containing a high concentration of the vinegar eels, the eels
concentrate at the edge of a drop and engage in collective
wave-like motion known as a metachronal wave. We found
that freely swimming organisms have oscillation frequency
of about 6 Hz. However, at high concentration the nematodes
cluster on a boundary and exhibit traveling waves with a lower
frequency of about 4 Hz. For a freely swimming vinegar eel,
the body shape is nearly sinusoidal over much of its body
length. In contrast, the distribution of body orientation angles
for organisms engaged in the metachronal wave has two peaks
of different heights, implying that the motion is not purely
sinusoidal. The bodies spend more time at higher orientation
angles w.r.t. to their mean body orientation angle (averaged
over a cycle).

We constructed a model for the collective behavior based
on a chain of phase oscillators. Because we do not see large
drifts in the mean eel head positions, averaged over an oscil-
lation cycle, we neglect the head’s forward motion. Because
experiments of a similar nematode, C. elegans, support a
model where the undulation is initiated at the head [36], we

use the phase of the head’s back and forth motion to describe
it as an oscillator. Because the metachronal wave frequency
is lower than the undulation frequency of a freely swimming
eel, we adopt interactions that reduce the oscillator phase
velocity. Our oscillator model uses strong but directed or one-
sided nearest neighbor to mimic steric interactions between
organisms. The oscillator model [Eq. (10)] robustly exhibits
entrained or traveling wave solutions and can have traveling
waves with wavelength (in terms of numbers of organisms or
oscillators) and mean phase velocity (in units of the intrinsic
or freely swimming undulation frequency) similar to that of
the vinegar eels when engaged in a metachronal wave.

To estimate the distribution of body orientation angles
and body shapes from our oscillator model, we assume that
the undulation waves propagating down the body from the
eel head have a constant wave velocity. This gives a two
humped distribution of body orientations with peaks of differ-
ent heights, similar to that observed for vinegar eels engaged
in the metachronal wave. The body shapes are similar to those
engaged in the wave and the eel bodies do not overlap over
their entire length. The model which was designed to impede
eel head overlaps also reduces close interactions throughout
the eel bodies.

Our model neglects interactions between organisms that
should affect the amplitude and speed of wave propagation
down the eel bodies. Our model also neglects the ability of
the eels to change direction and congregate. Improved models
could take into account the positions and phases of all points
in the eel’s bodies and allow them to swim, reorient and
congregate.

Few known simple phase oscillator models exhibit a large
basin of attraction to an entrained or traveling wave state. Per-
haps our model [given in Eq. (10)] and that by Niedermayer
et al. [13] can serve as examples that might give insight for
more general classification of coupled phase oscillator mod-
els that would be helpful for predicting wavelike collective
behavior.

Vinegar eels are visible by eye and are large compared
to other biological systems that exhibit metachronal waves,
such as carpets of cilia [12,15,51] or flagella on the surface
of Volvox carteri alga colonies [14]. Their large size facil-
itates study, however it also places them in an interesting
intermediate hydrodynamic regime, with swimming Reynolds
number Re = vswimL/ν ∼ 0.4 (where ν ∼ 1 mm2s−1 is the
kinematic viscosity of water), so the nature of hydrodynamic
interactions between them should differ from that of microor-
ganisms which are at much lower Reynolds number (e.g.,
Refs. [16,52]). Their proximity when involved in collective
behavior suggests that steric interactions may be important.
Studies of the similar nematode C. elegans locomotion [36]
imply that feedback in motor control affects their gait. It is
exciting to have a relatively large system in which collective
motion can be studied, however, this system also presents new
challenges for understanding its behavior.

In on-going studies we will describe experiments of con-
centrations of C. elegans, explore collectively formed dense
coherent filaments in T. aceti that we have observed advance
on a vinegar/oil interface and explore the role of concentra-
tion, drop shape and wetting angle in affecting metachronal
wave formation in T. aceti [29]. Similarities between T.
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aceti and C. elegans suggest that it may be possible to use
techniques developed for C. elegans to perform genetic mod-
ifications on the T. aceti nematode. In future, genetically
modified strains may help us better understand the molecular
underpinnings of the collective motion. Future studies could
question whether there is an evolutionary advantage to the
collective behavior which may help populations of nematodes
penetrate crowded environments to reach food or drive flows
that transport oxygen and nutrients.
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APPENDIX A: COMPRESSION AND RAREFACTION
IN ENTRAINED STATES

The integration shown in Fig. 9 of the model given by
Eq. (10) shows that each oscillator has a periodic trajectory
but with two regions. One region has a low phase delay and
phase velocity and the other region has a higher phase delay
and phase velocity. We can also show this behavior by plotting
phase angle θ against time for a series of oscillators. This type
of plot is often used to study shock compression or rarefaction.
On this plot, the inverse of the slope gives the phase velocity
and the horizontal distance between consecutive lines gives
the phase delay. We show such a plot in Fig. 13 for an inte-
gration with the same parameters as in Fig. 9. We plot phase
θ vs time for 11 consecutive oscillators after integrating to
t = 1000 and for a duration of �t = 10. The region of lower
phase velocity lies between the thick gray vertical lines which
are at θ = 0.25π and 0.82π .

We make the assumption that an entrained state has two
regions, like those seen at the end of the integrations shown
in Fig. 9 and in Fig. 13. For our model in Eq. (10), which we
repeat here for clarity,

dθi

dt
ω−1

0 = 1 − K

2

[
tanh

(
cos θi−1 − cos θi − β

hol

)
+ 1

]
.

(A1)
The high value of the phase velocity is the intrinsic phase
velocity ω0 and the low value is ω0(1 − K ). An entrained state
has a phase delay τ, where

θ j (t + τ ) = θ j+1(t ). (A2)

FIG. 13. We plot phase θ vs time for 11 consecutive oscillators
for the directed chain oscillator model with the same parameters
as shown in Fig. 9. Each oscillator is plotted with a different color
and the oscillator indices are given in the key. The figure shows
the periodic compression and rarefaction of phase in the entrained
state. The region of lower phase velocity, between θ ≈ 0.25π and
0.82π , is marked with the vertical thick light gray lines. The inverse
of the local slope of one of the curves gives the phase velocity and
the horizontal distance between neighboring curves gives the phase
delay between consecutive oscillators.

We expand the left side to first order in τ and write θ j+1 in
terms of the phase delay χ j = θ j+1 − θ j , giving

θ̇ j (t )τ ≈ χ j . (A3)

We denote the phase delay for the slower state as χs and that
of the faster state as χ f . Eq. (A3) gives

χs ≈ ω0(1 − K )τ,

χ f ≈ ω0τ. (A4)

In the fast and slow regions, the phase velocity is constant
and phase differences between oscillators are maintained. The
properties of the entrained states must be set by the transition
regions. We consider two oscillators, one in the slow region
and the other that is exiting the slow region. We can estimate
the change in phase delay between the two regions from the
time �t f s it takes a single oscillator to exit the slow region

χ f − χs ≈ �t f s ω̃, (A5)

where

ω̃ ≈ (1 − K/2)ω0 (A6)

is the average phase velocity. We use Eq. (A5) to estimate the
phase delay τ .

For small phase delay χ j−1 = θ j − θ j−1 Eq. (A1) can be
written to first order in phase shift χ j−1 as

dθ j

dt
ω−1

0 ≈ 1 − K

2

[
tanh

(
sin θ j χ j−1 − β

hol

)
+ 1

]
. (A7)

The time �t f s it takes oscillator j to pass through the tran-
sition from slow to fast regions we estimate from the time
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it takes | sin θ jχ j−1|/hol to change by about 2 (corresponding
the region of high slope for the tanh function). This transition
time is approximately

�t f s ∼ 2hol

∣∣∣∣cos θ j
dθ j

dt
χ j−1

∣∣∣∣
−1

. (A8)

We assume that the transition boundaries are where
| cos θ | ∼ 1 and take an average of the fast and slow values for
dθ
dt and χ [using Eqs. (A4) and (A6)] to estimate the duration
of the transition from a fast to slow region or vice versa,

�t f s ∼ 8hol

(χ f + χs)(2 − K )ω0
. (A9)

Using Eqs. (A5) and (A4) we estimate the delay τ,

τ ∼ 2

ω0

√
hol

K (2 − K )
, (A10)

and the wavelength,

Nλ ∼ 2π

ω̃τ
∼ 2π

√
K

(2 − K )hol
. (A11)

For hol = 0.05 and K = 0.5 this gives Nλ ∼ 16 which is a
reasonable value but exceeds the value of 12 we see in the
integration shown in Fig. 13. We verified that Nλ decreases
with increasing hol , though it does not decrease as quickly
as predicted by Eq. (A11). A better prediction would take
into account the phases of the transitions and the differ-
ence between compression and rarefaction transitions. The
comparison between estimated and numerically measured
wavelengths suggests that techniques used to study nonlinear
differential equations may be useful for predicting the proper-
ties of entrained states.

APPENDIX B: PREDICTING BODY POSITIONS AND
SHAPES FROM A PHASE OSCILLATOR MODEL

In this section we show how we compute eel body shapes
and positions from an oscillator chair model. We assume the
eel head positions are described by a chain of oscillators as
illustrated in Fig. 8. We assume that waves propagate down
the body with a constant speed v.

We adopt an Cartesian coordinate system X = (X,Y ) on
the plane to describe positions of points on the body of a chain
of eels, as shown in Fig. 8(b). We assume the mean centerline
position of the ith eel’s head has coordinates Xi,hc and the
eel’s mean centerline is tilted by angle φtilt with respect to
the horizontal direction. We assume that the mean centerline
head positions are fixed and are equally spaced on the X axis

Xi,hc =
(

iD
0

)
, (B1)

where D is the horizontal distance between the mean cen-
terlines. We assume the wave travels down the body with
velocity v, as given in Eq. (13) which we repeat here:

yi(x, t ) = A cos
[
θi

(
t − x

v

)]
. (B2)

The ith eel’s head position is at y(x = 0, t ). Here x is the
distance along the mean centerline and yi is the distance
perpendicular to it. We rotate the centerlines by φtilt so that
in the (X,Y ) coordinate system the head of the ith eel is at

Xi,h(t ) =
(

cos φtilt − sin φtilt

sin φtilt cos φtilt

)(
0

A cos(θi(t ))

)

+ Xi,hc. (B3)

We can use the coordinate along the mean centerline x to
specify body positions

Xi(x, t ) =
(

cos φtilt − sin φtilt

sin φtilt cos φtilt

)(
x

A cos
[
θi

(
t − x

v

)])

+ Xi,hc. (B4)

With x = 0, this is consistent with Eq. (B3) for the ith eel’s
head.

Using Eq. (B2), at t = 0, the y position of the ith eel is
determined by its head position at an earlier time,

yi(x, t = 0) = A cos
[
θi

(
− x

v

)]
, (B5)

where the earlier time is

t ′ = − x

v
. (B6)

Using a phase oscillator model we can generate arrays of
phases θi at a series of times. The arrays at different output
times t ′ then can be used to predict the X positions at t = 0
along the eel’s bodies,

Xi(t
′) =

(
cos φtilt − sin φtilt

sin φtilt cos φtilt

)( −vt ′
A cos [θi(t ′)]

)

+
(

iD
0

)
, (B7)

where we have used Eqs. (B1), (B4), and (B6).
From a series of phase arrays computed at different out-

put times for the phase oscillator model of Eq. (10) we can
generate eel body positions using Eq. (B7). To do this we
require values for the velocity of waves along the eel body
v, the amplitude A, the horizontal distance between the mean
positions of organism heads D and the body tilt angle φtilt .
Also, the outputs of the integration must be put in units of
time using the intrinsic oscillator phase velocity ω0.
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