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Vesicle budding induced by binding of curvature-inducing proteins
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Vesicle budding induced by protein binding that generates an isotropic spontaneous curvature is studied using
a mean-field theory. Many spherical buds are formed via protein binding. As the binding chemical potential
increases, the proteins first bind to the buds and then to the remainder of the vesicle. For a high spontaneous
curvature and/or high bending rigidity of the bound membrane, it is found that a first-order transition occurs
between a small number of large buds and a large number of small buds. These two states coexist around the
transition point. The proposed scheme is simple and easily applicable to many interaction types, so we investigate
the effects of interprotein interactions, the protein-insertion-induced changes in area, the variation of the saddle-
splay modulus, and the area-difference-elasticity energy. The differences in the preferred curvatures for curvature
sensing and generation are also clarified.
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I. INTRODUCTION

In living cells, biomembranes have various shapes de-
pending on their functions. Spherical vesicles, which are
involved in endocytosis, exocytosis, and vesicle transports, are
formed through membrane budding. Many types of proteins
are known to be involved in such budding [1–6]. For exam-
ple, clathrins assemble on a membrane and form a spherical
bud with ≈100-nm diameter; the clathrin-coated bud is then
pinched off by dynamin and other proteins [5–9].

To understand the bud-formation mechanism, many exper-
iments have been conducted in vitro using giant liposomes.
Buds can be induced by the area difference elasticity (ADE)
in single-phase liposomes [10–14], and by the separation
of liquid-ordered and liquid-disordered phases in three-
component liposomes [15–17]. Moreover, budding induced
by polymer anchoring [18] and binding of proteins such
as clathrin [19] and annexins [20] has been observed. A
contrasting mechanism involves bin-amphiphysin-rvs (BAR)
superfamily proteins, which bend the membrane in one di-
rection along its axis than in the other direction; thus, their
binding generates cylindrical membrane tubes rather than
spherical buds [1–3,21,22]. These curvature-inducing proteins
also sense the local membrane curvature and exhibit preferred
binding to membranes with their preferred curvatures. To
investigate this curvature sensing, a liposome with a narrow
membrane tube pulled by optical tweezers and a micropipette
[23–26] and different sizes of liposomes [27] have been em-
ployed for various types of proteins.

Vesicle shape transformation has been numerically in-
vestigated using various types of coarse-grained membrane
models. Budding has been simulated using dynamically tri-
angulated membranes [28–32], meshless membranes [33],
dissipative particle dynamics [34,35], phase-field models

*noguchi@issp.u-tokyo.ac.jp

[36], and so on. Spontaneous tubule formation has been
simulated by taking the membrane anisotropic spontaneous
curvature into account [33,37–39]. However, in contrast with
experiments, the simulated vesicle size is limited by the com-
putational costs. In simulations, the vesicle-to-bud size ratio
is typically less than 10, which is far less than that in the ex-
periments on budding induced by protein binding, i.e., ≈100.

In previous theoretical analyses of the budding [40–43], a
single bud in a flat membrane was typically considered; that
is, the remaining vesicle area was regarded as a membrane
reservoir. However, to understand the global vesicle shape in
thermal equilibrium, the entire vesicle must be considered.

This study examines changes in vesicle shape in response
to increased binding chemical potential using a mean-field
theory. The entire vesicle is treated explicitly using a sim-
plified geometry. Hence, the binding dependence on the
membrane properties and various interactions between mem-
brane and proteins and between proteins are clarified.

Protein binding to an arbitrarily shaped vesicle is described
in Sec. II. The budding of a vesicle with a constant membrane
area is examined in Sec. III, with the effects of the saddle-
splay-modulus difference and interprotein interactions being
presented in Secs. III B 2 and III B 3, respectively. The effects
of the area changes due to the protein insertion and the ADE
energy are examined in Secs. IV and V, respectively. Finally,
the discussion and summary are presented in Secs. VI and VII,
respectively.

II. LOCAL PROTEIN BINDING

Binding of proteins or other molecules to a membrane
is considered because this binding modifies the membrane
bending rigidity and spontaneous curvature. First, the case
where the membrane area is unchanged by the binding is con-
sidered; that is, the proteins adsorb on the membrane surface,
or the hydrophobic segments of the protein inserted into the
membrane are so small that the area change is negligible. The
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free energy F of a vesicle consists of the bending energy Fcv,
binding energy, interprotein interaction energy, and mixing
entropy:

F = Fcv +
∫

dA
{

− μ

ap
φ + bφ2 (1)

+ kBT

ap
[φ ln (φ) + (1 − φ) ln (1 − φ)]

}
,

Fcv = 4πκ̄d(1 − g) +
∫

dA
{

2κdH2(1 − φ)

+ 2κp(H − H0)2φ + (κ̄p − κ̄d )C1C2φ
}
, (2)

where A is the membrane area, φ is the local protein density
(φ = 1 at the maximum coverage), μ is the chemical potential
of the protein binding, kBT is the thermal energy, C1 and C2

are the principal curvatures, and H is the mean curvature of
each position [H = (C1 + C2)/2]. Here, subscript p indicates
the bound-membrane quantities and ap is the area covered
by one protein (the maximum number of the bound proteins
is A/ap). The remaining terms are defined in the discussion
below.

The membrane is in a fluid phase and Fcv is the
second-order expansion to the curvature [44,45]. The bare
(protein-unbound) membrane has bending rigidity κd with
zero spontaneous curvature. The bound proteins are consid-
ered to be laterally isotropic (i.e., they have no preferred
bending direction); hence, the bound membrane has a bending
rigidity κp and finite spontaneous mean curvature H0, which is
the half of the spontaneous curvature C0 because H0 = C0/2.
Here, H0 is used instead of C0 because 1/H0 is the radius of
the spherical membrane to minimize the bending energy of
the protein-bound membrane [the second term in the integral
of Eq. (2) for Fcv]. The first term of Eq. (2) represents the
integral over the Gaussian curvature C1C2 with the saddle-
splay modulus κ̄d (also called the Gaussian modulus) [46]
of the bare membrane, where g is the genus of the vesicle.
This type of bending energy for protein binding has been used
in Refs. [32,47], as well as for a cylindrical membrane with
protein rods of anisotropic spontaneous curvature [48].

In this study, κd = 20kBT and κ̄d/κd = −1 are used be-
cause they are typical values of lipid membranes. Since κ̄p for
the bound membrane is unknown, two cases are considered:
κ̄p = −κp and κ̄p = κ̄d. In the former case, the proteins have
the same ratio to the bending rigidity as for the bare mem-
brane. In the latter, the proteins do not change the saddle-splay
modulus of the membrane. The former condition is considered
in this work, unless otherwise specified (the latter condition is
examined in Sec. III B 2).

The first term in the integral of Eq. (1) represents the
protein binding energy. Under higher μ, more proteins bind
to the membrane. The last two terms of Eq. (1) represent
the pairwise interprotein interactions and the mixing entropy
of the bound proteins, respectively. Proteins have repulsive
or attractive interactions at b > 0 and b < 0, respectively. In
addition to the direct interprotein interactions, the proteins
interact with each other via membrane interactions (bending
deformation, height mismatch, and Casimir-like interactions)
[47,49–52]. Here, we consider only weak curvature-

FIG. 1. Schematic of the membrane. (a) Binding and unbinding
of proteins to the membrane. (b) Budded vesicle. The buds and
the large remaining vesicle have spherical shapes with radii of Rbud

and RL, respectively. (c) Prolate vesicle approximated by cylin-
der combined with two hemispheres with radius Rpro and cylinder
length Lpro.

independent interactions so that proteins are uniformly
distributed in each component. Note that membrane-mediated
interactions between soft objects such as proteins can be much
weaker than hard objects [53].

The interprotein interaction via the spontaneous curvature
is also considered in this work. If proteins have large hy-
drophobic domains above the membrane, as depicted on the
right side of Fig. 1(a), a repulsive interaction yields a positive
spontaneous curvature [23]. Opposite (negative) curvature can
be induced by an attractive interaction. In this study, linear
dependence on the protein density is considered as a leading-
order approximation; i.e., H0 is replaced by H ′

0 = H0 + H1φ

in Eq. (2). The effect of this condition on a constant-area
vesicle is discussed in Sec. III B 3. For the other conditions,
only constant spontaneous curvature (H1 = 0) is considered,
for simplicity.

In thermal equilibrium, the protein density φ is locally
determined for the given curvatures. When the interprotein
interactions are negligible (b = 0 and H1 = 0), φ is obtained
from ∂F/∂φ|H = 0 for a spherical membrane (H = C1 = C2)
as a sigmoid function:

φ = 1

1 + exp
[ ap

kBT (2κdifH2 − 4κpH0H + σp)
] , (3)

where κdif = κp − κd + (κ̄p − κ̄d )/2 and σp = −μ/ap +
2κpH2

0 . For κdif = 0 and H = 0, this expression corresponds
to Eq. (5) in Ref. [54] and Eq. (4) in Ref. [47], respectively.
For a membrane with arbitrary curvature, the first
energy term in the parentheses in Eq. (3) is replaced
by 2(κp − κd )H2 + (κ̄p − κ̄d )C1C2. When interprotein
interactions exist, φ is obtained by iteratively solving Eq. (3),
while adding 2bφ − 8κp(H − H0)H1φ + 6κpH2

1 φ2 within the
parentheses. For a flat membrane (H = 0) with φ = 0.5 (i.e.,
the proteins bind to half of the membrane area),

μ =
[(

2H2
0 + 4H0H1 + 3

2
H2

1

)
κp + b

]
ap. (4)

Figure 2 shows that the protein binding depends on the
local membrane curvature. For a high curvature of H0 or high
rigidity of κp, the density φ changes steeply from 0 to 1
with a small increase in H [see Figs. 2(a) and 2(c)]. Here, φ

exhibits a maximum at H = (κp/κdif )H0 (given by dφ/dH =
0). This curvature dependence is called curvature sensing. In
contrast, the free-energy minimum given by dF/dH = 0 is
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FIG. 2. Protein density φ as a function of the local mean cur-
vature H for a spherical membrane (H = C1 = C2). The binding
chemical potential μ is varied for κp/κd = 3 at (a) H2

0 ap = 0.04 and
(b) H 2

0 ap = 0.01. (c) The bending rigidity κp of the bound membrane
is varied for μ = 0 and H2

0 ap = 0.01.

H = [κpφ/(κdifφ + κd )]H0, because the membrane must bend
together. Therefore, the curvature generated by the protein
binding is lower than the preferred curvature for the curvature
sensing, even for φ = 1. For a cylindrical membrane, the pre-
ferred curvatures for the curvature sensing and generation are
H = [κp/(κp − κd )]H0 and H = {κpφ/[(κp − κd )φ + κd]}H0,
respectively.

To close this section, two variants of the bending energy
for protein binding are discussed. When proteins adhere to the
membrane surface, as depicted on the left of Fig. 1(a), and the
membrane composition beneath the proteins is unchanged by
the binding, the bending energy can be expressed as

Fcv = 4πκ̄d(1 − g) +
∫

dA
{

2κdH2

+ [
2κpa(H − H0a )2 + κ̄paC1C2

]
φ
}
. (5)

This bending energy is identical to Eq. (2) with κp = κpa + κd,
κ̄p = κ̄pa + κ̄d, H0 = [κpa/(κpa + κd )]H0a, and σp = −μ/ap +
2κpaH2

0a. κpa is the bending rigidity of protein itself, while κp is
the rigidity including the membrane beneath the protein. For
a spherical membrane, the preferred curvatures for the curva-
ture sensing and generation are H = [κpa/(κpa + κ̄pa/2)]H0a

and H = {κpaφ/[(κpa + κ̄pa/2)φ + κd]}H0a, respectively. This
type of Fcv with κ̄pa = 0 was used in Refs. [25,26,43].

In some previous studies [24,54–57], the binding-induced
modification of the bending rigidity was not accounted for,

and the following bending energy was used:

Fcv =
∫

dA
{
2κd(H − φH0)2}. (6)

This corresponds to the condition of κp = κd, κ̄p = κ̄d, b =
2κdH2

0 , and σp = −μ/ap in the present model. The preferred
curvatures for the curvature sensing and generation are H =
∞ and H = φH0, respectively. In their model, neighboring
proteins interact via the bending energy through b = 2κdH2

0 .
Thus, this term has often been neglected [58,59]. Since the
linear and quadratic terms of φ represent membrane-protein
and interprotein interactions, respectively, they should be sep-
arately treated. As discussed above, the present model is
generic and involves these two bending-energy models as the
specific parameter sets.

III. BUDDED VESICLE WITH CONSTANT AREA

A. Free energy

We investigate budding of a vesicle induced by protein
binding in thermal equilibrium. The vesicle has a spherical
topology (g = 0) with no pores. For this theoretical analysis,
the vesicle is assumed to form nbud buds, each with radius
Rbud. The remainder of the vesicle is assumed to form a
spherical shape with a radius of RL, as depicted in Fig. 1(b),
with RL > Rbud. The proteins have a positive spontaneous cur-
vature (H0 > 0) such that they bind to the buds more than the
remaining vesicle. In the absence of the proteins, the vesicle
forms a prolate shape, which is approximated as shown in
Fig. 1(c).

In this section, we consider that the membrane maintains
a constant surface area, i.e., the protein binding does not
change the membrane area [corresponding to the left pro-
tein in Fig. 1(a)]. The protein densities at the large spherical
component of the vesicle and at the buds are φL and φbud,
respectively. The proteins are assumed to be homogeneously
distributed in each region. The total membrane area A = 4πR2

0
is kept constant; thus, the total bud area is given by

Abud

4π
= nbudRbud

2 = R2
0(1 − r2), (7)

where r = RL/R0. The volume V of the vesicle is fixed:

V = 4π

3

(
R3

L + nbudRbud
3). (8)

Using Eqs. (7) and (8), the bud curvature can be expressed as

R0

Rbud
= 1 − r2

V ∗ − r3
, (9)

where V ∗ = V/(4πR3
0/3) is the reduced volume. The free

energy F of the vesicle is given by

F = FL + Fbud, (10)

FL

4π
= κ̄d + 2(κdifφL + κd ) − 4κpH0R0rφL

+ R2
0r2

(
σpφL + bφ2

L

) + kBT R2
0r2

ap
[φL ln(φL)

+ (1 − φL) ln(1 − φL)], (11)
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Fbud

4π
= nbud

{
2[(κp − κd )φbud

+ (κ̄p − κ̄d )(φbud − sneckφL) + κd]

− 4κpH0Rbudφbud + Rbud
2
(
σpφbud + bφ2

bud

)

+ kBT Rbud
2

ap
[φbud ln (φbud )

+ (1 − φbud ) ln (1 − φbud )]
}

(12)

= (1 − r2)
{

2[(κp − κd )φbud

+ (κ̄p − κ̄d )(φbud − sneckφL) + κd]

[
1 − r2

V ∗ − r3

]2

− 4κpH0R0φbud
1 − r2

V ∗ − r3
+ R2

0

(
σpφbud + bφ2

bud

)

+ kBT R2
0

ap
[φbud ln (φbud )

+ (1 − φbud ) ln (1 − φbud )]
}
, (13)

where FL and Fbud are the free energies for the large spherical
region and buds, respectively. In Eq. (13), nbud is treated as a
real number. This is a reasonable assumption for nbud � 1.
For nbud < 10, we treated nbud as an integer, so that r is
geometrically determined for each nbud, and Fbud is calculated
using Eq. (12).

The neck region connecting a bud and the main spherical
component (or connecting buds) has a saddle shape, with
H � 0. Since these necks have low curvature and small area,
the influence of the integral of the mean curvature is neg-
ligible. However, it is necessary to examine the Gaussian
curvature. The second term of Eq. (12) represents the inte-
gral of the Gaussian curvature of the bud and neck regions,
where sneckφL is the protein density of the neck region. At
sneck = 1, the necks have the same protein density as the
main spherical component. This is reasonable because both
regions have H � 0. However, the necks have high princi-
pal curvatures (≈ ± 0.1 nm−1), which likely prevent large
proteins from binding to them; that is, sneck = 0. In general,
sneck ∈ [0, 1]. Here, sneck = 0 is used, unless otherwise spec-
ified. The neck exerts a very small influence, as discussed in
Sec. III B 2.

The free energy F is a function of three variables: r, φL,
and φbud. In the case of no interprotein interactions (b = 0 and
H1 = 0), F is expressed as a function of one variable, i.e., r,
using Eq. (3). Hence, the free-energy minimum is numerically
determined by dF/dr = ∂F/∂r = 0 [note that ∂F/∂φ = 0
for φ satisfying Eq. (3)]. When the interprotein interactions
exist, Eq. (3) is iteratively solved. In this study, the iterations
were repeated until the difference in φ was less than 10−8.
Typically, fewer than 10 iterations were performed at b 	= 0
and H1R0 � 100.

The surface tension σd and the osmotic pressure � can
be imposed as a Lagrange multiplier to maintain the area
and volume, respectively: F̆ = FL + Fbud + σdA − �V . Then,
σd and � are determined from ∂F̆/∂RL|Rbud,nbud = 0 and

∂F̆/∂Rbud|RL,nbud = 0:

� = 1

RL − Rbud

{
4κpH0

RLφbud − RbudφL

RLRbud

+ 2σp(φL − φbud ) + 2b
(
φL

2 − φbud
2
)

+ 2kBT

ap

[
φL ln (φL) − (1 − φL) ln (1 − φL)

−φbud ln (φbud ) + (1 − φbud ) ln (1 − φbud )
]}

, (14)

σd = �RL

2
+ 2κpH0φL

RL
− σpφL − bφL

2

− kBT

ap
[φL ln (φL) + (1 − φL) ln (1 − φL)] (15)

= �Rbud

2
+ 2κpH0φbud

Rbud
− σpφbud − bφbud

2

− kBT

ap
[φbud ln (φbud ) + (1 − φbud ) ln (1 − φbud )].

(16)

The first terms of Eqs. (15) and (16) represent the Laplace
tension.

A prolate vesicle is modeled with a simple geometry us-
ing a combination of one cylinder and two hemispheres,
as shown in Fig. 1(c). The surface area and volume of the
vesicle are A = 4πR2

pro + 2πRproLpro and V = (4π/3)R3
pro +

πR2
proLpro, respectively; thus, the reduced volume is V ∗ =

(1 + 3Lpro/4Rpro)/(1 + Lpro/2Rpro)3/2. The free energy is
given by

Fpro

4π
= κ̄d + 2(κdifφsp + κd ) − 4κpH0Rproφsp

+ R2
pro

(
σpφsp + bφ2

sp

)

+ kBT R2
pro

ap
[φsp ln (φsp) + (1 − φsp) ln (1 − φsp)]

+ Lpro

2

{ 1

2Rpro
[(κp − κd )φcy + κd )] − 2κpH0φcy

+ Rpro
(
σpφcy + bφ2

cy

)

+ kBT Rpro

ap
[φcy ln (φcy) + (1 − φcy) ln (1 − φcy)]

}
, (17)

where φcy and φsp are the protein densities in the cylindrical
and spherical regions, respectively. The expression well ap-
proximates the energy of the prolate vesicle. We determine
the thermal equilibrium state (i.e., the lowest free energy F )
by comparing F of budded vesicles and prolate.

In this study, we consider the vesicle at V ∗ > 1/
√

2 ≈
0.707, in which a vesicle with one bud can exist (Rbud = RL at
V ∗ = 1/

√
2). In this range, the prolate vesicle is the most sta-

ble state in the absence of the protein. We use ap = 100 nm2

and R0 = 10 μm for the area of proteins and the radius of gi-
ant liposomes, unless otherwise specified, i.e., ap/R2

0 = 10−6.
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FIG. 3. Chemical potential μ dependence of the protein densities
in the vesicle and buds, φL and φbud, respectively, for (a) H0R0 = 200,
(b) H0R0 = 150, and (c) H0R0 = 100 at κp/κd = 3, V ∗ = 0.9, and
b = H1 = 0. The solid lines represent thermal equilibrium states. The
dashed lines represent the metastable and free-energy-barrier states.

B. Results

1. No interprotein interactions

First, we describe protein binding in the absence of the
interprotein interactions (b = 0 and H1 = 0). As μ increases,
φbud increases, and, subsequently, φL increases, as shown in
Fig. 3. At low H0, φbud continuously changes from 0 to 1 [see
Fig. 3(c)]. In contrast, at high H0, φbud exhibits a first-order
transition. As the double minima of the free energy are shown
in Fig. 4(a), metastable states exist around the transition point
[see also the van der Waals loop depicted by the dashed
lines in Figs. 3(a) and 3(b)]. On the other hand, φL always
exhibits a continuous change. Accompanied by the discrete
change in φbud, nbud and Rbud also discretely change, as shown
in Figs. 4(b) and 5. Hence, around the transition point, the
vesicles of small φbud for buds with large Rbud coexist with
those having large φbud with small Rbud. At large μ, Rbud

reaches the radius of curvature for the curvature generation
Rmin at φbud = 1. Therefore, with increasing H0, the radius
decreases as Rbud ∼ 1/H0, and the bud number increases as
nbud ∼ H2

0 . The free-energy barrier between a small number
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FIG. 4. Free-energy profiles for (a) the protein density in
the buds φbud and (b) the bud curvature Rmin/Rbud at H0R0 =
150, κp/κd = 3, V ∗ = 0.9, and b = H1 = 0, where Rmin = (κdif +
κd )/κpH0 is the radius of the minimum bud curvature energy at
φbud = 1. From top to bottom, μ/kBT = −1.7, −1.5, and −1.3. The
inset in panel (b) shows an enlarged plot at small Rmin/Rbud, in which
circles represent F at integer nbud. The free-energy minimum is ob-
tained at Rmin/Rbud = 0.0279 (nbud = 3), Rmin/Rbud = 0.891 (nbud =
2737), and Rmin/Rbud = 0.919 (nbud = 2908) for μ/kBT = −1.7,
−1.5, and −1.3, respectively.

of buds and many buds can be very high: �F � 105kd and
5 × 105kd for H0R0 = 150 and 200, respectively, at κp/κd =
3 and V ∗ = 0.9 (see Fig. 4 for H0R0 = 150). Although a
free-energy barrier can exist for the single-bud formation de-
pending on conditions [40–43,60], this is much greater than
the single-bud barrier, since more than 1000 buds are formed.
Thus, the metastable states presented in this study can remain
even on much longer timescales than the single-bud-formation
period.

After the buds are almost covered by the proteins, the
surface tension σd increases linearly. Furthermore, osmotic
pressure � increases first linearly and then saturates [see
Figs. 5(c) and 5(d)]. The vesicle ruptures when σd overcomes
the lysis tension. This threshold is typically 1–25 mN/m,
depending on the membrane composition and conditions
[61–63]. Since σd = 107kBT/R2

0 corresponds to 0.4 mN/m,
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FIG. 5. Chemical potential μ dependence of (a) the bud number
nbud, (b) the bud curvature Rmin/Rbud, (c) the surface tension σd, and
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3, V ∗ = 0.9, and b = H1 = 0. The curvature radius of the minimum
bud curvature energy is Rmin = (κdif + κd )/κpH0 at φbud = 1.

the lipid membranes are not yet ruptured in the range shown
in Fig. 5(c). However, protein binding (for transmembrane
proteins in particular) may reduce the lysis tension and induce
rupturing at a lower tension.

The dependencies on H0 and κp/κd are clearly captured
by the phase diagrams shown in Fig. 6. With increasing H0,
the middle points φbud = 0.5 and φL = 0.5 shift to smaller
and larger values, respectively. At H0R0 � 120, the first-
order transition appears for κp/κd = 3 [see Fig. 6(a)]. With
further increases in H0, the coexistence region widens. At
a greater value of κp/κd, protein binding occurs at lower
and higher values of μ for the buds and remaining region,
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FIG. 6. Phase diagrams at V ∗ = 0.9 and b = H1 = 0. (a) H0 vs μ

for κp/κd = 3. κp/κd vs μ for (b) H0R0 = 200 and (c) H0R0 = 100.
Two states with small and large bud numbers coexist in the region
between the two solid lines. The upper and lower dashed lines repre-
sent the states with φL = 0.5 and φbud = 0.5, respectively. The solid
gray lines are given by Eq. (4) and well overlay the data for φL = 0.5.

respectively, and the first-order transition starts at lower H0

[see Figs. 6(b) and 6(c)]. For H0R0 � 1, the large spherical
component of the vesicle can be approximated as a flat mem-
brane; thus, μ for φL = 0.5 is well represented by Eq. (4) for
H = 0 (see the overlay of dashed lines and solid gray lines
in Fig. 6). More precisely, the effect of the nonzero curvature
is estimated as −4κpH0ap/R0 from the second energy term in
Eq. (3); thus, the deviation is proportional to κp and H0 and is
less than 0.1 in Fig. 6. Moreover, the sigmoidal shapes of φL

shown in Fig. 3 are well represented by

φL = 1

1 + exp
(−μ−μhalf

kBT

) . (18)

The deviation from Eq. (18) is less than 10−5 for the data
shown in Fig. 3. In contrast, the shape of φbud can be largely
modified.

Figure 7 shows the dependence on the reduced volume
V ∗. For smaller V ∗, nbud increases to hold the excess area,
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FIG. 7. Dependence on reduced volume V ∗ at κp/κd = 3 and
b = H1 = 0. (a) Number nbud of the buds for V ∗ = 0.75, 0.85, and
0.95 at H0R0 = 150. Inset shows magnified graph for small nbud.
(b) Chemical potential μ for the transition points for H0R0 = 100,
150, and 200. The solid lines represent the transition from the prolate
to budded vesicle, having a single bud for H0R0 = 100 and 150, and
many buds for H0R0 = 200. The dashed lines represent the shape
transition from low φbud with small nbud to high φbud with large nbud

at H0R0 = 150.

although no other notable differences are obtained for the
vesicles with many buds. The chemical potential μ necessary
for the transition to form many buds remains unchanged [see
the dashed line in Fig. 7(b)]. In contrast, μ required for the
transition between the prolate to a single bud increases with
increasing V ∗ [see the lower two solid lines in Fig. 7(b) and
the inset of Fig. 7(a)]. For H0R0 = 200, the prolate vesicle
transforms into many buds without forming a small number
of buds, so that μ for the transition is independent of V ∗ [see
the upper solid line in Fig. 7(b)].

Figure 8 shows the dependence of φbud on the area ratio
ap/R2

0. The maximum number of bound proteins is 4πR2
0/ap.

For smaller ap (or a larger vesicle), buds develop more gently
with increasing μ, since more proteins bind to the vesicle and
generate greater mixing entropy. In contrast, φL is shifted to
2κpH2

0 ap, and the sigmoid function of μ is maintained (data
not shown).

Finally, we examine the validity of the chosen vesicle
shapes. First, the formation of a spherical bud on a prolate
vesicle is considered. We calculated the free energy of a pro-
late vesicle with a single bud for the conditions used in Fig. 7
and confirmed the energy is always higher than the spherical
vesicle with a single bud or many buds. Next, two sizes of the
buds are allowed at H0R0 = 150 (the other condition is the
same in Figs. 3–5). At the first-order transition point, the large

0

0.5

1

-4 0

φ b
ud

μ/kBT

2 1

0.5

FIG. 8. Dependence of φbud on the area ratio ap/R2
0 at H0R0 =

150, κp/κd = 3, V ∗ = 0.9, and b = H1 = 0. From top to bottom,
ap/R2

0 = 2 × 10−6, 10−6, and 5 × 10−7. The dashed lines represent
metastable and free-energy-barrier states.

buds of Rmin/Rbud = 0.0365 and nbud = 5 and the small buds
of Rmin/Rbud = 0.891 and nbud = 2733 coexist. This large
size of buds with a number of 2, 3, or 4 and many small
buds are prepared as initial states, and then we performed the
energy minimization for −1.8 � μ/kBT � −1.2. These two
bud radii relax into the same value (the small or large sizes
depending on the relaxation method and condition). Thus, the
assumption that the buds have the same radius is reasonable.

2. Gaussian curvature

In this section, we examine the effects of the quantities
related to the integral of the Gaussian curvature. First, the
effects of the modulation of the saddle-splay modulus κ̄ are
discussed. When the protein does not modify κ̄ (κ̄p = κ̄d),
the coexistence region is reduced at μ < 0 and begins at
higher H0, as shown in Fig. 9. Note that the phase diagrams
shown in Fig. 6 can represent the data for κ̄p = κ̄d through
rescaling with κ ′

p = (κp + κd )/2, H ′
0 = (κp/κ

′
p)H0, and
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FIG. 9. Effects of κ̄p on the phase diagram for at κp/κd = 5, V ∗ =
0.9, and b = H1 = 0. Data for κ̄p = κ̄d and κ̄p = −κp are shown.
Two states with a small and large number of buds coexist in the
region between the two solid lines. The middle and lower dashed
lines represent the states with φbud = 0.5 at κ̄p = κ̄d and κ̄p = −κp,
respectively. The upper dashed lines for φL = 0.5 and the upper
boundary of the coexistence region overlay for two cases (κ̄p = κ̄d

and κ̄p = −κp).
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FIG. 10. Effects of the relative coverage ratio sneck of the neck
region at κp/κd = 3, V ∗ = 0.9, and b = H1 = 0. (a), (b) Enlarged
graphs of the boundaries of the coexistence region for sneck = 0 and
1 at H0R0 = 150. The dashed lines (sneck = 0) correspond to the data
shown in Fig. 3(b). Differences in (c) φbud and (d) φbud for sneck =
0 and 1 at H0R0 = 100, 150, and 200. The dashed lines in panels
(c) and (d) represent free-energy-barrier states. Here, Eq. (13) is used
even for nbud < 10.

μ′ = μ + 2κpH2
0 ap(κp/κ

′
p − 1). Thus, the phase behavior is

qualitatively unchanged by the choice of the κ̄ dependence.
Next, the dependence on protein binding in the bud-neck

region is considered. When the necks have the same pro-
tein density as the large spherical component (sneck = 1),
the boundary of the coexistence region slightly shifts to the
right, as shown in Figs. 10(a)–10(c), and φL slightly decreases
around the inflection point (φL = 0.5), as shown in Fig. 10(d).
Therefore, the effects of sneck are so small as to be negligible.

3. Effects of interprotein interactions

Next, we consider the interprotein interactions. When b is
negative or positive, protein binding is more or less promoted
at large φ, such that the coexistence region widens or shrinks,
respectively [see Figs. 11(a) and 12]. Note that the membrane
can be separated into regions with large and small φ within the
buds or the main spherical component at b < −2kBT/ap, in
which FL and Fbud can have double minima. However, because

-4 0 4 8
φ

μ/kBT

(b) φbud φL

H1R0 =100

0
0 1000.5

1

0

φ

(a) φbud φL

-1

2

2

-1b ap/kBT =

0.5

1

0

FIG. 11. Dependence on protein pairwise interactions at κp/κd =
3 and V ∗ = 0.9. (a) bap/kBT = −1 and 2 at H0R0 = 200 and H1 =
0. (b) H1R0 = 0 and 100 at H0R0 = 50 and b = 0. The solid lines
represent thermal equilibrium states. The two left and two right lines
correspond to φbud and φL, respectively. The dashed lines represent
metastable and free-energy-barrier states.
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FIG. 12. Phase diagrams of b vs μ for (a) H0R0 = 200 and
(b) H0R0 = 120 at V ∗ = 0.9, κp/κd = 3, and H1 = 0. Two states with
a small and large number of buds coexist in the region between the
two solid lines. The dashed lines represent the states with φbud = 0.5
or φL = 0.5. The solid gray lines are given by Eq. (4) and well
overlay the data for φL = 0.5.

014410-8



VESICLE BUDDING INDUCED BY BINDING OF … PHYSICAL REVIEW E 104, 014410 (2021)

-2

0

2

0 50 100

μ/
k B

T

H1R0

(b)

φbud = 0.5

φL = 0.5

coexist

0

2

μ/
k B

T

(a)

φbud = 0.5

φL = 0.5

coexist

FIG. 13. Phase diagram of H1 vs μ for (a) bap/kBT = 1 and
(b) b = 0 at H0R0 = 50, κp/κd = 3, and V ∗ = 0.9. Two states with
a small and large number of buds coexist in the region between the
two solid lines. The upper and lower dashed lines represent the states
with φL = 0.5 and φbud = 0.5, respectively. The solid gray lines are
given by Eq. (4) and well overlay the data for φL = 0.5.

a homogeneous distribution is assumed for each component,
such a phase-separation condition is not considered in this
study.

For a nonzero value of H1, the spontaneous curvature in-
creases from H0 to H0 + H1 as φ increases from 0 to 1; thus,
the coexistence region can appear with increasing H1 [see
Figs. 11(b) and 13].

The chemical potential μ for φL = 0.5 continues to satisfy
Eq. (4), as shown in Figs. 12 and 13. However, the sigmoidal
shape of φL is modified, because b and H1 have greater influ-
ence at larger φ (see Fig. 11). Therefore, when a significant
deviation of φL from the sigmoid function of Eq. (18) is
observed, the interprotein interactions should be considered.

IV. AREA CHANGE DUE TO PROTEIN INSERTION

In this section, the changes in the membrane area induced
by protein binding are considered. When the proteins have
a transmembrane domain, as depicted on the right side of
Fig. 1(a), the membrane area is increased by the protein
insertion. Here, the area ratio of the transmembrane domain
α ∈ [0, 0.6] is considered. Generally, lipid molecules are re-
quired to stabilize the membrane proteins, such that lipids
remain between the proteins even under the most densely
packed conditions. Although the vesicle area is changed by
this behavior, the lipid membrane area remains at the initial
value of Alp = 4πR2

0. Thus,

R2
0 = R2

L(1 − αφL) + Abud

4π
(1 − αφbud ). (19)

The vesicle volume is also fixed. Hence, Eqs. (7) and (9) are
modified as

Abud

4π
= R2

0[1 − r2(1 − αφL)]

1 − αφbud
, (20)

R0

Rbud
= 1 − r2(1 − αφL)

(1 − αφbud )(V ∗
int − r3)

, (21)

where V ∗
int is the reduced volume of the initial vesicle (no

protein binding).
The free energy is given by

FL

4π
= κ̄d + 2(κdifφL + κd ) − 4κpH0R0rφL

+ R2
0r2

(
σpφL + bφ2

L

)

+ (1 − αφL)kBT R2
0r2

(1 − α)ap
[φL ln (φL)

+ (1 − φL) ln (1 − φL)], (22)

Fbud

4π
= nbud

{
2(κdifφbud + κd ) − 4κpH0Rbudφbud

+ Rbud
2(σpφbud + bφ2

bud

)

+ (1 − αφbud )kBT Rbud
2

(1 − α)ap
[φbud ln (φbud )

+(1 − φbud ) ln (1 − φbud )]
}

(23)

= 2(κdifφbud + κd )
[1 − r2(1 − αφL)]

3

(1 − αφbud )3(V ∗ − r3)2

− 4κpH0R0φbud
[1 − r2(1 − αφL)]

2

(1 − αφbud )2(V ∗ − r3)

+ R2
0[1 − r2(1 − αφL)]

1 − αφbud

(
σpφbud + bφ2

bud

)
(24)

+ [1 − r2(1 − αφL)]kBT R2
0

(1 − α)ap
[φbud ln (φbud )

+ (1 − φbud ) ln (1 − φbud )].

The coefficients of the entropy terms are modified by the
factors (1 − αφL)/(1 − α) and (1 − αφbud )/(1 − α) to count
the number of binding sites under the area change.

Figures 14 and 15 show the dependencies of various prop-
erties on α. With increasing α, the coexistence region shrinks
[see Figs. 14(a) and 15]. Furthermore, V ∗ decreases with in-
creasing φL at α > 0, since the surface area is increased by the
protein insertion [see Fig. 14(c)]. Accordingly, the sigmoidal
shape of φL is slightly modified [see Fig. 14(b)].

V. EFFECTS OF AREA-DIFFERENCE ELASTICITY

In this section, the effects of the area-difference elastic-
ity (ADE) energy on the vesicle budding are considered.
In lipid membranes, the flip-flop (traverse motion between
monolayers) of lipids is very slow; the relaxation time of
the phospholipids is several hours to days [64]. In contrast,
amphiphilic molecules with small hydrophilic head groups
such as cholesterols and diacylglycerols exhibit much faster
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FIG. 14. Dependence of (a) φbud, (b) φbud, and (c) V ∗ on protein-
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volume V ∗

int = 0.9, and b = H1 = 0. The green, red, and blue lines
represent the data for α = 0, 0.2, and 0.4, respectively. The dashed
lines in panel (a) represent metastable states.

flip-flop (less than a minute) [65–67]. In living cells, proteins
transport lipids in addition; flippases or floppases pump spe-
cific lipids in one direction (flip or flop, respectively) using
ATP hydrolysis, yielding an asymmetric lipid distribution,
whereas scramblases translocate lipids in both directions and
relax the bilayer into a thermal-equilibrium lipid distribu-
tion [65]. Thus, the number of lipids in each monolayer can
be fixed on timescales of typical in vitro experiments, al-
though it can relax with the addition of cholesterols [68,69],
ultralong-chain fatty acids [70], and scramblases. Hence, the
area difference �A0 = (Nout − Nin )a0 preferred by lipids can
be different from the area difference �A of the vesicle, where
Nout and Nin are the numbers of lipids in the outer and in-
ner monolayers, respectively, and a0 is the area per lipid.
In the ADE model [10,11,71], the energy of this mismatch
�A − �A0 is taken into account by a harmonic potential:

Fade = πkade

2Ah2
(�A − �A0)2 = kade

2
(m − m0)2, (25)
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FIG. 15. Phase diagram of α vs μ for (a) H0R0 = 150 and
(b) H0R0 = 100 at κp/κd = 3, V ∗ = 0.9, and b = H1 = 0. Two states
with a small and large number of buds coexist in the region between
the two solid lines. The upper and lower dashed lines represent the
states with φL = 0.5 and φbud = 0.5, respectively.

with the averaged curvature m = (1/2R0)
∮

(C1 + C2)dA. For
typical lipid membranes, kade � κ has been reported [13]
(q = πkade/κ in the notation in Ref. [13]).

The area differences of the budded and prolate vesicles are
given by

mves

4π
= r + nbud

Rbud

R0
, (26)

mpro

4π
= Rpro

R0
+ Lpro

4R0
, (27)

respectively. Here, the case of no flip-flop and m0 = mpro is
considered; that is, the initial prolate vesicle has no ADE
penalty. This corresponds to an experimental condition on a
timescale spanning minutes to a few hours, in the absence of
sterols and proteins promoting flip-flop or forming membrane
pores.

Figures 16 and 17 show the effects of the ADE energy.
Here, μ becomes slightly larger to overcome the ADE en-
ergy, but the amount is less than kBT . The influence on φL

is negligibly small (data not shown). Thus, the effects can
only be detected if the other parameters are well determined.
Otherwise, the ADE energy can be neglected.

In the above analysis, it is assumed that the bound pro-
teins do not change the preferred area difference m0 between
the two monolayers. However, some proteins may modify
m0 through the domain insertion into the membrane. When
protein binding significantly increases m0, the buds form at
smaller μ and the phase boundaries shown in Fig. 17 are likely
shifted downward.
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FIG. 16. Effects of the ADE energy on φbud at H0R0 = 150,
κp/κd = 3, V ∗

int = 0.9, and b = H1 = 0, The red and blue colors
represent the data with and without the ADE energy, respectively.

VI. DISCUSSION

In this section, we discuss the experimental conditions for
vesicle budding. Note that μ can be controlled by the buffer
protein concentration ρ. For a dilute solution, it is given by
μ = μ0 + kBT ln(ρ). Through screening of electrostatic in-
teractions, μ also depends on the ion concentration.

Some proteins have large hydrophilic domains that can
generate a repulsive interaction between them (b > 0), and
protein-density-dependent spontaneous curvature (H1 > 0).
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FIG. 17. Effects of the ADE energy on phase diagrams at V ∗ =
0.9 and b = H1 = 0. (a) Phase diagram of H0R0 vs μ for κp/κd = 3.
(b) Phase diagram of κp/κd vs μ for H0R0 = 150. Two states with a
small and large number of buds coexist in the region between the two
solid lines. The dashed lines represent the states with φbud = 0.5. The
upper (red) and lower (blue) lines represent the data with and without
the ADE energy, respectively.

The dependence of the spontaneous curvature on the length of
the disordered hydrophilic domains has been investigated ex-
perimentally [27,72]. The induced spontaneous curvature can
be analytically represented using the conformational entropy
of the chains [73–75] and the excluded volume [57]. Although
a linear dependence on the protein density was considered in
this work, it can easily be extended to include a nonlinear
dependence for a specific protein.

Many proteins have hydrophobic segments to insert the
membrane. G-protein-coupled receptors and ion channels
have wide transmembrane domains, some of which have been
reported to sense and generate membrane curvature [26,76].
For these proteins, the area change α due to protein binding
should be considered. However, when the area change is small
(α � 1), it can be neglected, because the α dependence is not
sensitive. For example, the diameters of αHL are 10 nm and
1.2 nm at the head and transmembrane regions, respectively
(α � 0.01) [77]. Thus, the αHL binding can be approximated
as α = 0. The area change due to shallow insertion of domains
such as amphipathic α helix is also likely negligible. Some
transmembrane proteins require the help of other proteins for
membrane insertion. In the experiments of such proteins, the
total number of proteins is rather fixed in the membrane. To
investigate them, the present model can be modified to control
the total number of proteins instead of the chemical potential.

Protein assembly can be induced by the interprotein attrac-
tion, as seen in the clathrin binding [9,19,43,60]. To model
this behavior, the line tension of the phase boundary should
be incorporated into the model, and a constant protein density
is used in the assembled domains. Moreover, the bound pro-
teins may exhibit a conformational change or form a complex
of several proteins through membrane-protein interactions,
as depicted on the right side of Fig. 1(a). When different
binding conformations coexist in significant amounts on the
membrane in thermal equilibrium, multiple bound states can
be considered. The present model is easily extended to this
scenario, although many more parameters (the free-energy
parameters for each state) must be determined.

Under some experimental conditions, the buds may be
pinched off and form separated vesicles. Moreover, the mem-
brane rupture may be caused by the high surface tension
induced by protein binding. These dynamics can be taken into
account by setting a threshold of the surface tension or the
bud radius, which depends on the membrane composition and
proteins.

VII. SUMMARY

We have studied vesicle budding using mean-field the-
ory. First, we presented a formula for protein binding with
an arbitrary curvature and clarified the preferred curvatures
for curvature sensing and generation. The generation curva-
ture is lower than the sensing curvature because the proteins
are required to bend the membrane. Then, we presented
the free energy of the budded vesicle, in which the pro-
tein binding can modify the spontaneous curvature, bending
rigidity, saddle-splay modulus of the membrane. Moreover,
interprotein interactions are included as direct interac-
tion and protein-density-dependent spontaneous curvature.
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Furthermore, the changes in the membrane area due to the
protein insertion and ADE energy are taken into account.

With increasing binding chemical potential μ, a prolate
vesicle transforms into a budded vesicle. Subsequently, the
number of buds increases and the bud radius is saturated to
that for the curvature generation. The surface tension σd in-
creases linearly to μ after bud formation. Furthermore, when
high spontaneous curvature H0 and/or large bending rigidity
κp are induced by the protein binding, a first-order shape
transition occurs between a vesicle with a small number of
large buds and that with a large number of small buds. These
two states coexist in a wider μ range for higher H0 or larger
κp. The attractive interaction between bound proteins and
the spontaneous-curvature increase due to the protein contact
promote budding and generate a wider coexistence region. In
contrast, the area increase due to protein insertion reduces
the coexistence region. When the preferred area difference
between two monolayers is fixed at the initial prolate, the
budding requires a slightly larger μ owing to the ADE energy.

In this study, we approximated that the budded vesicle
consists of spheres. With the help of this simple geome-
try, the free-energy minimum could be determined so easily
that additional terms could be considered. Hence, the effects
of protein-membrane and interprotein interactions were ex-
amined. However, the proposed model can be extended to
more complicated geometries. Under low σd, a flat membrane

can exhibit a separated-corrugated (SC) phase, in which the
bound proteins form hexagonally ordered bowl-shaped do-
mains, even in the absence of direct interprotein attractive
interactions [47]. Hence, this SC phase may appear on a
vesicle before budding or on a vesicle with a few buds. These
bowl-shaped domains should be modeled into a simplified
geometry to account for the SC phase.

Moreover, the present strategy can be used to examine
other types of interactions, as discussed in Sec. VI and
extended to include other geometries. For example, BAR
superfamily proteins can induce cylindrical membrane tubes
from liposomes [1–3,21,22]. Recently, the formation of a ne-
matic order coupled with the bending energy was investigated
for a membrane with fixed shapes using a mean-field theory
[78]. The stable shape of these membrane tubes that protrude
from a vesicle is an interesting problem for further study. As
discussed above, the model presented herein is a useful tool
for investigating many problems related to vesicle deforma-
tion and can be further extended in various directions.
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(Cambridge, MA, US) 143, 875 (2010).

[6] H. T. McMahon and E. Boucrot, Nat. Rev. Mol. Cell Biol. 12,
517 (2011).

[7] S. L. Schmid and V. A. Frolov, Annu. Rev. Cell Dev. Biol. 27,
79 (2011).

[8] M. Kaksonen and A. Roux, Nat. Rev. Mol. Cell Biol. 19, 313
(2018).

[9] O. Avinoam, M. Schorb, C. J. Beese, J. A. G. Briggs, and M.
Kaksonen, Science 348, 1369 (2015).

[10] U. Seifert, Adv. Phys. 46, 13 (1997).
[11] S. Svetina, ChemPhysChem 10, 2769 (2009).
[12] H. Hotani, F. Nomura, and Y. Suzuki, Curr. Opin. Colloid

Interface Sci. 4, 358 (1999).
[13] A. Sakashita, N. Urakami, P. Ziherl, and M. Imai, Soft Matter

8, 8569 (2012).
[14] G. Holló, Y. Miele, F. Rossi, and I. Lagzi, Phys. Chem. Chem.

Phys. 23, 4262 (2021).
[15] T. Baumgart, S. T. Hess, and W. W. Webb, Nature (London)

425, 821 (2003).
[16] K. Bacia, P. Schwille, and T. Kurzchalia, Proc. Natl. Acad. Sci.

USA 102, 3272 (2005).

[17] M. Yanagisawa, M. Imai, and T. Taniguchi, Phys. Rev. Lett.
100, 148102 (2008).

[18] I. Tsafrir, D. Sagi, T. Arzi, M.-A. Guedeau-Boudeville, V.
Frette, D. Kandel, and J. Stavans, Phys. Rev. Lett. 86, 1138
(2001).

[19] M. Saleem, S. Morlot, A. Hohendahl, J. Manzi, M. Lenz, and
A. Roux, Nat. Commun. 6, 6249 (2015).

[20] T. L. Boye, J. C. Jeppesen, K. Maeda, W. Pezeshkian, V.
Solovyeva, J. Nylandsted, and A. C. Simonsen, Sci. Rep. 8,
10309 (2018).

[21] T. Itoh and P. De Camilli, Biochim. Biophys. Acta, Mol. Cell
Biol. Lipids 1761, 897 (2006).

[22] C. Mim and V. M. Unger, Trends Biochem. Sci. 37, 526 (2012).
[23] T. Baumgart, B. R. Capraro, C. Zhu, and S. L. Das, Annu. Rev.

Phys. Chem. 62, 483 (2011).
[24] B. Sorre, A. Callan-Jones, J. Manzi, B. Goud, J. Prost, P.

Bassereau, and A. Roux, Proc. Natl. Acad. Sci. USA 109, 173
(2012).

[25] C. Prévost, H. Zhao, J. Manzi, E. Lemichez, P. Lappalainen, A.
Callan-Jones, and P. Bassereau, Nat. Commun. 6, 8529 (2015).

[26] K. R. Rosholm, N. Leijnse, A. Mantsiou, V. Tkach, S. L.
Pedersen, V. F. Wirth, L. B. Oddershede, K. J. Jensen, K. L.
Martinez, N. S. Hatzakis, P. M. Bendix, A. Callan-Jones, and
D. Stamou, Nat. Chem. Biol. 13, 724 (2017).

[27] W. F. Zeno, W. T. Snead, A. S. Thatte, and J. C. Stachowiak,
Soft Matter 15, 8706 (2019).

[28] P. B. Sunil Kumar, G. Gompper, and R. Lipowsky, Phys. Rev.
Lett. 86, 3911 (2001).

[29] T. Kohyama, D. M. Kroll, and G. Gompper, Phys. Rev. E 68,
061905 (2003).

014410-12

https://doi.org/10.1038/nature04396
https://doi.org/10.1152/physrev.00040.2013
https://doi.org/10.1038/nrm3968
https://doi.org/10.1038/nrm3588
https://doi.org/10.1016/j.cell.2010.11.030
https://doi.org/10.1038/nrm3151
https://doi.org/10.1146/annurev-cellbio-100109-104016
https://doi.org/10.1038/nrm.2017.132
https://doi.org/10.1126/science.aaa9555
https://doi.org/10.1080/00018739700101488
https://doi.org/10.1002/cphc.200900577
https://doi.org/10.1016/S1359-0294(99)90021-3
https://doi.org/10.1039/c2sm25759a
https://doi.org/10.1039/D0CP05952H
https://doi.org/10.1038/nature02013
https://doi.org/10.1073/pnas.0408215102
https://doi.org/10.1103/PhysRevLett.100.148102
https://doi.org/10.1103/PhysRevLett.86.1138
https://doi.org/10.1038/ncomms7249
https://doi.org/10.1038/s41598-018-28481-z
https://doi.org/10.1016/j.bbalip.2006.06.015
https://doi.org/10.1016/j.tibs.2012.09.001
https://doi.org/10.1146/annurev.physchem.012809.103450
https://doi.org/10.1073/pnas.1103594108
https://doi.org/10.1038/ncomms9529
https://doi.org/10.1038/nchembio.2372
https://doi.org/10.1039/C9SM01495K
https://doi.org/10.1103/PhysRevLett.86.3911
https://doi.org/10.1103/PhysRevE.68.061905


VESICLE BUDDING INDUCED BY BINDING OF … PHYSICAL REVIEW E 104, 014410 (2021)

[30] H. Noguchi, A. Sakashita, and M. Imai, Soft Matter 11, 193
(2015).

[31] W. Pezeshkian and J. H. Ipsen, Soft Matter 15, 9974 (2019).
[32] N. Tamemoto and H. Noguchi, Sci. Rep. 10, 19582 (2020).
[33] H. Noguchi, Soft Matter 13, 7771 (2017).
[34] L. Bagatolli and P. B. S. Kumar, Soft Matter 5, 3234 (2009).
[35] K. M. Nakagawa and H. Noguchi, Soft Matter 14, 1397 (2018).
[36] J. S. Lowengrub, A. Rätz, and A. Voigt, Phys. Rev. E 79, 031926

(2009).
[37] H. Noguchi, Sci. Rep. 6, 20935 (2016).
[38] H. Noguchi, Sci. Rep. 9, 11721 (2019).
[39] N. Ramakrishnan, R. P. Bradley, R. W. Tourdot, and R.

Radhakrishnan, J. Phys.: Condens. Matter 30, 273001 (2018).
[40] R. Lipowsky, J. Phys. II 2, 1825 (1992).
[41] P. Sens, Phys. Rev. Lett. 93, 108103 (2004).
[42] L. Foret, Eur. Phys. J. E: Soft Matter Biol. Phys. 37, 42 (2014).
[43] F. Frey and U. S. Schwarz, Soft Matter 16, 10723 (2020).
[44] P. B. Canham, J. Theor. Biol. 26, 61 (1970).
[45] W. Helfrich, Z. Naturforsch. 28c, 693 (1973).
[46] S. A. Safran, Statistical Thermodynamics of Surfaces, Inter-

faces, and Membranes (Addison-Wesley, Reading,1994).
[47] Q. Goutaland, F. van Wijland, J.-B. Fournier, and H. Noguchi,

Soft Matter 17, 5560 (2021).
[48] H. Noguchi, J. Chem. Phys. 143, 243109 (2015).
[49] B. J. Reynwar, G. Ilya, V. A. Harmandaris, M. M. Müller, K.

Kremer, and M. Deserno, Nature (London) 447, 461 (2007).
[50] T. Auth and G. Gompper, Phys. Rev. E 80, 031901 (2009).
[51] H. Aranda-Espinoza, A. Berman, N. Dan, P. Pincus, and S.

Safran, Biophys. J. 71, 648 (1996).
[52] J.-B. Fournier, Eur. Phys. J. B 11, 261 (1999).
[53] H. Noguchi and J.-B. Fournier, Soft Matter 13, 4099 (2017).
[54] T. V. Sachin Krishnan, S. L. Das, and P. B. Sunil Kumar, Soft

Matter 15, 2071 (2019).
[55] Z. Shi and T. Baumgart, Nat. Commun. 6, 5974 (2015).
[56] N. S. Gov, Philos. Trans. R. Soc., B 373, 20170115 (2018).
[57] C. Tozzi, N. Walani, and M. Arroyo, New J. Phys. 21, 093004

(2019).

[58] S. Ramaswamy, J. Toner, and J. Prost, Phys. Rev. Lett. 84, 3494
(2000).

[59] R. Shlomovitz and N. S. Gov, Phys. Biol. 6, 046017 (2009).
[60] J. E. Hassinger, G. Oster, D. G. Drubin, and P. Rangamani, Proc.

Natl. Acad. Sci. USA 114, E1118 (2017).
[61] E. A. Evans and F. Ludwig, J. Phys.: Condens. Matter 12, A315

(2000).
[62] E. A. Evans, V. Heinrich, F. Ludwig, and W. Rawicz, Biophys.

J. 85, 2342 (2003).
[63] H. V. Ly and M. L. Longo, Biophys. J. 87, 1013 (2004).
[64] R. D. Kornberg and H. M. McConnell, Biochemistry 10, 1111

(1971).
[65] F.-X. Contreras, L. Sánchez-Magraner, A. Alonso, and F. M.

Goñi, FEBS Lett. 584, 1779 (2009).
[66] J. A. Hamilton, Curr. Opin. Lipidol. 14, 263 (2003).
[67] T. L. Steck, J. Ye, and Y. Lange, Biophys. J. 83, 2118 (2002).
[68] R. J. Bruckner, S. S. Mansy, A. Ricardo, L.

Mahadevan, and J. W. Szostak, Biophys. J. 97, 3113
(2009).

[69] M. S. Miettinen and R. Lipowsky, Nano Lett. 19, 5011 (2019).
[70] K. Kawaguchi, K. M. Nakagawa, S. Nakagawa, H. Shindou, H.

Nagao, and H. Noguchi, J. Chem. Phys. 153, 165101 (2020).
[71] S. Svetina and B. Žekš, Eur. Biophys. J. 17, 101 (1989).
[72] D. J. Busch, J. R. Houser, C. C. Hayden, M. B. Sherman, E. M.

Lafer, and J. C. Stachowiak, Nat. Commun. 6, 7875 (2015).
[73] C. Hiergeist and R. Lipowsky, J. Phys. II 6, 1465 (1996).
[74] T. Bickel and C. M. Marques, J. Nanosci. Nanotechnol. 6, 2386

(2006).
[75] H. Wu, H. Shiba, and H. Noguchi, Soft Matter 9, 9907 (2013).
[76] S. Aimon, A. Callan-Jones, A. Berthaud, M. Pinot, G. E.

Toombes, and P. Bassereau, Dev. Cell 28, 212 (2014).
[77] Z. I. Andreeva, V. F. Nesterenko, M. G. Fomkina, V. I.

Ternovsky, N. E. Suzina, A. Y. Bakulina, A. S. Solonin, and
E. V. Sineva, Biochim. Biophys. Acta, Biomembr. 1768, 253
(2007).

[78] C. Tozzi, N. Walani, A.-L. L. Roux, P. Roca-Cusachs, and M.
Arroyo, Soft Matter 17, 3367 (2021).

014410-13

https://doi.org/10.1039/C4SM01890G
https://doi.org/10.1039/C9SM01762C
https://doi.org/10.1038/s41598-020-76695-x
https://doi.org/10.1039/C7SM01375B
https://doi.org/10.1039/b901866b
https://doi.org/10.1039/C7SM02326J
https://doi.org/10.1103/PhysRevE.79.031926
https://doi.org/10.1038/srep20935
https://doi.org/10.1038/s41598-019-48102-7
https://doi.org/10.1088/1361-648X/aac702
https://doi.org/10.1051/jp2:1992238
https://doi.org/10.1103/PhysRevLett.93.108103
https://doi.org/10.1140/epje/i2014-14042-1
https://doi.org/10.1039/D0SM01375G
https://doi.org/10.1016/S0022-5193(70)80032-7
https://doi.org/10.1515/znc-1973-11-1209
https://doi.org/10.1039/D1SM00027F
https://doi.org/10.1063/1.4931896
https://doi.org/10.1038/nature05840
https://doi.org/10.1103/PhysRevE.80.031901
https://doi.org/10.1016/S0006-3495(96)79265-2
https://doi.org/10.1007/BF03219168
https://doi.org/10.1039/C7SM00305F
https://doi.org/10.1039/C8SM02623H
https://doi.org/10.1038/ncomms6974
https://doi.org/10.1098/rstb.2017.0115
https://doi.org/10.1088/1367-2630/ab3ad6
https://doi.org/10.1103/PhysRevLett.84.3494
https://doi.org/10.1088/1478-3975/6/4/046017
https://doi.org/10.1073/pnas.1617705114
https://doi.org/10.1088/0953-8984/12/8A/341
https://doi.org/10.1016/S0006-3495(03)74658-X
https://doi.org/10.1529/biophysj.103.034280
https://doi.org/10.1021/bi00783a003
https://doi.org/10.1016/j.febslet.2009.12.049
https://doi.org/10.1097/00041433-200306000-00006
https://doi.org/10.1016/S0006-3495(02)73972-6
https://doi.org/10.1016/j.bpj.2009.09.025
https://doi.org/10.1021/acs.nanolett.9b01239
https://doi.org/10.1063/5.0026030
https://doi.org/10.1007/BF00257107
https://doi.org/10.1038/ncomms8875
https://doi.org/10.1051/jp2:1996142
https://doi.org/10.1166/jnn.2006.523
https://doi.org/10.1039/c3sm51680f
https://doi.org/10.1016/j.devcel.2013.12.012
https://doi.org/10.1016/j.bbamem.2006.11.004
https://doi.org/10.1039/D0SM01733G

