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The high fidelity of DNA polymerase (DNAP) is critical for the faithful replication of DNA. There are several
quantitative approaches to measure DNAP fidelity. Directly counting the error frequency in the replication
products gives the true fidelity but it turns out very hard to implement in practice. Two biochemical kinetic
approaches, the steady-state assay and the transient-state assay, were then suggested and widely adopted. In
these assays, the error frequency is indirectly estimated by using kinetic theories combined with the measured
apparent kinetic rates. However, whether it is equivalent to the true fidelity has never been clarified theoretically,
and in particular there are different strategies using these assays to quantify the proofreading efficiency of DNAP
but often lead to inconsistent results. In this paper, we make a comprehensive examination on the theoretical
foundation of the two kinetic assays, based on the theory of DNAP fidelity recently proposed by us. Our studies
show that while the conventional kinetic assays are generally valid to quantify the discrimination efficiency of
DNAP, they are valid to quantify the proofreading efficiency of DNAP only when the kinetic parameters satisfy
some constraints which will be given explicitly in this paper. These results may inspire more carefully-designed
experiments to quantify DNAP fidelity.
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I. INTRODUCTION

The high fidelity of DNA polymerase (DNAP) is critical
for faithful replication of genomic DNA. Quantitative studies
on DNAP fidelity began in the 1960s and became an important
issue in biochemistry and molecular biology. Intuitively, the
DNAP fidelity can be roughly understood as the reciprocal
of the overall mismatch (error) frequency when a given DNA
template is replicated with both the matched dNTPs (de-
noted as dRTP or R) and the mismatched dNTPs (denoted as
dWTP or W ). For instance, by using artificial simple template
and conducting the replication reaction with both dRTP and
dWTP, one can measure the ratio of the incorporated dRTPs to
dWTPs in the final products so as to quantify the overall error
frequency [1,2]. Beyond such overall fidelity, the site-specific
fidelity was defined as the reciprocal of the error frequency
at individual template sites. In principle, the error frequency
at any template site can be directly counted if a sufficient
amount of full-length replication products can be collected
and sequenced (this will be denoted as true fidelity F in this
paper), e.g., by using deep sequencing techniques [3,4]. How-
ever, this type of sequencing-based approach always requires
a huge workload and was rarely adopted in fidelity assay. It is
also hard to specify the sequence-context influences on the fi-
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delity. A much simpler strategy is to only investigate the error
frequency at the assigned template site by single-nucleotide
incorporation assays. Such assays are conducted for exo−-
DNAP (exonuclease-deficient DNAP), in which dRTP and
dWTP compete for the same assigned template site and the
amount of the final products containing the incorporated dRTP
or dWTP are then determined by gel analysis to give the error
frequency, e.g., Refs. [5,6]. By designing various template
sequences, one can further dissect the sequence-context de-
pendence of the site-specific error frequency. Although the
direct measurements seem simple and intuitive, they are ac-
tually very challenging since mismatches occur with too low
probability to be detected even when heavily biased dNTP
pools are used. Besides, the single-nucleotide incorporation
assays do not apply to exo+-DNAP (exonuclease-efficient
DNAP) because the coexistence of the polymerase activity
and the exonuclease activity makes the reaction products
very complicated and hard to interpret. Hence two alternative
kinetic approaches were proposed, inspired by the kinetic
proofreading theory of biosynthetic processes proposed by
Hopfield [7] and Ninio [8].

The steady-state assay was developed by A. Fersht for
exo−-DNAP, which is based on the Michaelis-Menten kinetics
of the incorporation of a single dRTP or dWTP at the same
assigned template site [9,10]. The two incorporation reactions
are conducted separately under steady-state conditions to ob-
tain the so-called specificity constant (the quasi-first-order
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rate constant) (kcat/Km)R or (kcat/Km)W , respectively, kcat is
the maximal steady-state turnover rate of dNTP incorporation
and Km is the Michaelis constant. The site-specific fidelity
is then characterized as the ratio between the two incorpo-
ration velocities, i.e., (kcat/Km)R[dRTP]/(kcat/Km)W [dWTP]
(denoted as steady-state fidelity fss). However, this is only an
operational definition of DNAP fidelity which is not necessar-
ily equal to the true fidelity (see discussions in Sec. III B). As
far as we know, there was only one experiment work which
did the comparison between fss and F and indicated their
possible equivalence for exo−-Klenow fragment (KF−) [6],
but no theoretical works have ever been published to examine
the equivalence in general.

Besides the steady-state method, the transient-state ki-
netic analysis was also proposed to obtain the specificity
constant [11,12]. Under the pre-steady-state condition or
the single-turnover condition, one can obtain the parameter
kpol/Kd (a substitute for kcat/Km) for the single-nucleotide
incorporation reactions with exo−-DNAP, and define the
site-specific fidelity as (kpol/Kd )R[dRTP]/(kpol/Kd )W [dWTP]
(denoted as transient-state fidelity fts). But again the relation
between fts and F is not yet clarified. Although the experi-
ment has indicated the possible equivalence of fts to F for
KF− [6], a general theoretical examination is still needed.

Further, these methods fail to unambiguously measure the
site-specific fidelity of exo+-DNAP. For exo+-DNAP, the to-
tal fidelity is assumed to consist of two multiplier factors.
The first is the initial discrimination fini contributed solely
by the polymerase domain, which is often characterized by
fss or fts. The second factor is the additional proofreading
efficiency fpro contributed by the exonuclease domain, which
is defined by the ratio of the elongation probability of the
terminal R (Pel,R) to that of the terminal W (Pel,W). Here the
elongation probability is defined as Pel = kel/(kel + kex), kel

is the rate of elongation to the next site, and kex is the rate
of excising the primer terminal nucleotide (e.g., Eqs. (A1)–
(A6) in Ref. [13]). Pel,R is usually assumed close to 100%,
so fpro equals approximately to 1 + kex,W /kel,W . Although
these expressions seem reasonable, there are some problems
that were not clarified. First, the mathematical definition of
fpro is subjective though intuitive, so a rigorous theoretical
foundation is needed. Second, the apparent rate parameters
kel and kex are not well defined since both the elongation and
the excision are multistep processes. kel and kex are unknown
functions of the involved rate constants but there is not a
unique way to define them. They could be theoretically de-
fined under steady-state assumptions (Eq. (6) in Ref. [14]) or
operationally defined by experiment assays (e.g., steady-state
assays [15,16] or transient-state assays [17]), but different
ways often lead to different estimates of fpro (see Sec. III).
Additionally, kel should be properly understood as the ultimate
elongation rate in the sense that the elongated terminal (the
added nucleotide) is no longer excised. This condition is not
met if the exo+-DNAP can proofread the buried mismatches
(e.g., the penultimate or antepenultimate mismatches, etc.). In
these cases, kel is affected not only by the next template site
but also by further sites. Such far-neighbor effects were not
seriously considered in previous studies. For these reasons,
the widely cited initial discrimination fini ≈ 104∼5 and the
proofreading efficiency fpro ≈ 102∼3 [18] are questionable.

FIG. 1. The minimal reaction scheme of DNA replication. E : the
enzyme DNAP. Di: the primer-template duplex with primer terminal
at the template site i.

Recently two equivalent rigorous theories were proposed
to investigate the true fidelity of either exo−-DNAP or exo+-
DNAP, i.e., the iterated function systems by Gaspard [19]
and the first-passage (FP) method by us [20]. In particular,
we can numerically rigorously compute the true fidelity (F )
of exo+-DNAP by the FP method and can also derive the
approximate analytical expressions (F ) of the true fidelity.
With these firmly established results, we can address all the
above questions systematically. In the following sections, we
will first give a brief review of the FP method and the major
conclusions already obtained for the minimal kinetic model of
DNA replication. Then we will generalize these conclusions
to more realistic kinetic models for exo−-DNAP and exo+-
DNAP and carefully examine the relations between fss, fts,
and F .

II. METHODS

A. Basics of the FP method

The first-passage (FP) method was proposed to study the
replication of the entire template by exo+-DNAP [20].

Here the minimal reaction scheme Fig. 1 is taken as an ex-
ample to illustrate the basic logic of this method. ki is the rate
of incorporating dNTP to the primer at the template site i − 1
(the dNTP-concentration dependence of ki is not explicitly
shown here), ri is the rate of excising the primer terminal at the
template site i. Intuitively, ki and ri depend on the identity (A,
G, T, or C) and the state (matched or mismatched) not only of
the base pair at site i but also of the one or more preceding base
pairs. If there is only the nearest-neighbor (first-order) effect,

then ki and ri can be written as k
Xi−1Xi

αi−1αi
and rXi−1Xi

αi−1αi
, Xi−1 (or Xi)

represents the nucleotide at site i − 1 (or i) on the template,
αi−1 represents the nucleotide at site i − 1 on the primer, αi

represents the next nucleotide to be incorporated to the primer

terminal at site i (for k
Xi−1Xi

αi−1αi
) or the terminal nucleotide of

the primer at site i to be excised (for rXi−1Xi
αi−1αi

). X and α can
be any of the four types of nucleotides. Similarly, there are

k
Xi−2Xi−1Xi

αi−2αi−1αi
, etc., for the second-order neighbor effects, and so

on for farther-neighbor (higher-order) effects.
To calculate the true fidelity F , we consider the replication

of any given template X1X2...XL of length L. The primer grows
from the starting unit α1 and reaches the last site L to generate
the final product of the sequence α1α2...αL. Except the first
unit α1 and the last unit αL, any incorporated dNTP can
be excised during this replication. In other words, this is a
first-passage process from the reflecting boundary at the first
site to the absorbing boundary at the last site. Since there are
four types of dNTP competing for the incorporation reaction
at each site, 4L kinds of final products with different sequences
should be generated. By solving the corresponding equations
numerically, one can obtain the probability distribution of the

014408-2



KINETIC ASSAYS OF DNA POLYMERASE FIDELITY: … PHYSICAL REVIEW E 104, 014408 (2021)

final product PX1...XL
α1...αL

(t → ∞) from which the true fidelity F
can be precisely counted. One can also derive approximate
analytical expressions for the true fidelity under some condi-
tions of the kinetic parameters. A brief introduction of these
calculations is given in Appendix A (see also Supplemental
Material (SM) Sec. I A [21]). It is worth noting that the FP
method does not need any extra assumptions like the steady-
state or the quasiequilibrium assumptions. Below we list the
major results in terms of ki and ri.

B. The fidelity calculated by the FP method

From the experimental observations for real DNAPs, we
have reasonably assumed that ki and ri may satisfy the so-
called biologically relevant conditions [20,24], as restated
below for exo+-DNAP which has first-order neighbor effects:

(a) k
XiXi+1

RiRi+1
� k

XiXi+1

RiWi+1
, which means that the addition of R

is always much faster than that of W .

(b) k
XiXi+1

WiWi+1
≈ 0s−1. In biochemical experiments, kWW has

never been successfully measured, while kRR, kRW and kW R

have finite values. So kWW � 0 s−1 is always assumed in
literatures.

(c) k
XiXi+1

RiRi+1
� rXi−1Xi

Ri−1Ri
, rXi−1Xi

Wi−1Ri
, which means that the succes-

sive additions of R always dominate the replication process to
guarantee the high replication velocity.

More detailed explanations of these conditions are given
in SM Sec. I A [21]. Under such conditions the approximate
analytical expression of the overall fidelity at site i is given as

F ov
i ≈

⎡⎢⎣ ∑
Wi,m �=Ri
m=1,2,3

k
Xi−1Xi

Ri−1Wi,m

k
Xi−1Xi

Ri−1Ri

k
XiXi+1

Wi,mRi+1

k
XiXi+1

Wi,mRi+1
+ rXi−1Xi

Ri−1Wi,m

⎤⎥⎦
−1

, (1)

where R represents the matched nucleotide, and Wi,m rep-
resents one of the three types of mismatched nucleotides.
This formula provides a quite good approximation of F : the
relative deviation from the precise numerical result is less than
10% in a wide range of the kinetic parameters (in this paper,
the relative deviation between any two quantities a and b is
defined as |a − b|/min(a, b), min(a, b) means the smaller one
of a and b. Details can be found in SM Sec. I A [21]). This
formula shows that the true fidelity at site i is overwhelmingly
determined by the nearest-neighbor sites. For simplicity, we
omit all the superscripts below unless it causes misunder-
standing, and also use Wi to represent any type of mismatch.
Each term in the sum represents the error frequency of a
particular type of mismatch, whose reciprocal (denoted as
Fi) corresponds to the mismatch-specific fidelity discussed
in the conventional steady-state assay or transient-state as-
say. Here the mismatch-specific fidelity is denoted as Fi ≡
Fini,i · Fpro,i, in which Fini,i is the initial discrimination and
Fpro,i is the proofreading efficiency. Similarly, we denote Fi ≡
F pol

i · F exo
i , F pol

i ≡ kRi−1Ri/kRi−1Wi , F exo
i ≡ 1 + rRi−1Wi/kWiRi+1 .

According to Eq. (1), we have

Fi ≈ Fi. (2)

Since Fini,i is actually the fidelity for exo−-DNAP, we can set
r = 0 in Eq. (1) to obtain

Fini,i ≈ F pol
i ≡ kRi−1Ri

kRi−1Wi

. (3)

Hence, Fpro,i ≡ Fi/Fini,i can be estimated by F exo
i ≡

Fi/F pol
i , as follows:

Fpro,i ≈ F exo
i = 1 + rRi−1Wi

kWiRi+1

. (4)

F exo
i is similar to fpro defined in Sec. I, if kWiRi+1 , rRi−1Wi

are regarded as kel,W, kex,W , respectively. In these equa-
tions, ≈ means that the relative deviations of Fi, F pol

i , F exo
i

from Fi,Fini,i,Fpro,i are less than 10% (see details in SM
Sec. I A [21]).

For exo+-DNAP which has second-order neighbor effects,
we have also derived the approximate analytical expressions
for the overall fidelity at site i [20],

F ov
i ≈

[ ∑
Wi �=Ri

kRi−2Ri−1Wi

kRi−2Ri−1Ri

kel
Ri−1WiRi+1

kel
Ri−1WiRi+1

+ rRi−2Ri−1Wi

]−1

,

kel
Ri−1WiRi+1

= kRi−1WiRi+1 kWiRi+1Ri+2

kWiRi+1Ri+2 + rRi−1WiRi+1

. (5)

Each term in the sum represents the mismatch-specific error
frequency at site i. Its reciprocal defines the mismatch-specific
fidelity which again consists of the initial discrimination and
the proofreading efficiency, but the latter differs significantly
from fpro defined in Sec. I, since the effective elongation
rate is not kRi−1WiRi+1 but instead kel

Ri−1WiRi+1
which includes the

next-nearest-neighbor effects. The same logic can be readily
generalized to higher-order neighbor effects where the proof-
reading efficiency will be more complicated [20,24].

In real DNA replication, either the dNTP incorporation
or the dNMP excision is a multistep process. By using the
FP method, the complex reaction scheme can be reduced (or
mapped) to the minimal scheme Fig. 1, and the fidelity can
still be calculated by Eqs. (1)–(5), with only one modifica-
tion: k and r are now the effective incorporation rates and
the effective excision rates, respectively, which are functions
of the involved rate constants. In the following sections, we
will derive these effective rates by FP method for different
multistep reaction schemes. It should be noted that Eqs. (1)–
(5) can be used because these effective rates always satisfy
the biorelevant conditions (details are given in later sections).
Then we will compare them with the fidelity given by the
steady-state assays or the transient-state assays. For simplic-
ity, we only discuss the first-order neighbor effects of DNAP
in details, since almost all the existing literature focused on
nearest-neighbor effects. Higher-order neighbor effects will
also be mentioned in later sections.

Below shows a simple example of the effective rates calcu-
lated by the FP method for the single-nucleotide incorporation
reaction in the direct competition assays.

Figure 2 shows a three-step kinetic model of the compet-
itive incorporation of a single dRTP or dWTP to site i + 1,
catalyzed by exo−-DNAP. The direct competition assay esti-
mates the true fidelity by the ratio of the final product [DiR]
to [DiW ], which can be interpreted by the FP method as
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dWTP

dRTP

FIG. 2. The three-step reaction scheme of the competitive
incorporation of dRTP and dWTP. E : exo−-DNAP. Di: the primer-
template duplex with the matched(R) terminal at site i. For brevity,
the subscript i in each rate constant is omitted.

follows:

F ≈ F = kRR/kRW ,

kRR = k0
1,RRk2,RR

k2,RR + rRR
[dRTP], (6)

kRW = k0
1,RW k2,RW

k2,RW + rRW
[dWTP].

F is exactly the initial discrimination defined by Eq. (3) with
the two effective incorporation rates kRR and kRW . These equa-
tions predict correctly the dNTP concentration-dependence of
the fidelity which is consistent of the experimental observa-
tions in the direct competition assays [6]. Detailed discussion
can be found in SM Sec. I B [21].

III. RESULTS AND DISCUSSION

As mentioned above, the total fidelity of exo+-DNAP is
assumed to consist of the initial discrimination fini and the
proofreading efficiency fpro. In this section we present a de-
tailed analysis to show the availability and limitations of the
conventional kinetic assays to characterize fini and fpro. The
reaction scheme under discussion is shown in Fig. 3.

In this reaction scheme, the primer terminal can transfer
between Pol and Exo in two different ways, i.e., the in-
tramolecular transfer without DNAP dissociation (the transfer
rates are denoted as kpe and kep), and the intermolecular trans-
fer in which DNAP can dissociate from and rebind to either
Pol or Exo (the rates are denoted as kon and koff). These two
modes have been revealed by single-turnover experiments[17]
and directly observed by smFRET [25]. Here the quasi-first-
order rate kon is proportional to the concentration of DNAP
or DNA, i.e., kon = k0

on[E] or kon = k0
on[DNA] (see later sec-

tions). k∗ is the effective incorporation rate, as explained
below.

A. The FP method

Applying the FP method to complex reaction schemes
like Fig. 3(a), one can always reduce them to the simplified
version Fig. 1 with uniquely determined effective rates. For
instance, for the multistep incorporation schemes in Fig. 3(b),
the effective incorporation rate k∗ is given by (see details in
Appendix B or SM Sec. I C [21])

k∗ = k′
N−1kN/(r′

N−1 + kN ),

k′
j = k′

j−1k j/(r′
j−1 + k j ),

r′
j = r′

j−1r j/(r′
j−1 + k j ),

dNMP

dNTP
PPi

dNTP
PPi

(a)

(b)

FIG. 3. (a) The multistep reaction scheme of exo+-DNAP in-
cluding the multistep incorporation process [indicated by k∗ and
details are shown in panel (b)], the intramolecular/intermolecular
transfer (i.e., without/with DNAP dissociation) of the primer ter-
minal between Pol and Exo and the excision of the primer
terminal nucleotide. (b) The multistep incorporation scheme. The
enzyme-substrate complex (ED) goes through N states (indicated
by subscripts 1, . . . , N) to successfully incorporate a single dNTP
(indicated by subscript i). To simplify the notation, the superscripts
indicating the template nucleotide Xi and the subscripts indicating
the primer nucleotide αi are omitted. This rule also applies to other
figures in this paper, unless otherwise specified.

( j = N − 1, . . . , 3),

k′
2 = k1k2/(r1 + k2),

r′
2 = r1r2/(r1 + k2). (7)

Here k1 = k0
1[dNTP], so k∗ = k∗0[dNTP].

For the complete scheme Fig. 3(a), the effective rates are

k = k∗, r = k̃peq

k̃ep + q
,

k̃pe = kpe + kp→e, k̃ep = kep + ke→p, (8)

kp→e = kp
offk

e
on

kp
on + ke

on

, ke→p = ke
offk

p
on

kp
on + ke

on

.

Details can be found in SM Sec. I D [21]. These rates can
be written more explicitly such as kRR = k∗

RR, if the states of
the base pairs at site i, i − 1, etc. are explicitly indicated. All
the rates in the same equation have the same state-subscript.
kp→e and ke→p define the effective intermolecular transfer
rates between Pol and Exo. So k̃pe and k̃ep represent the total
transfer rates via both the intramolecular and the intermolec-
ular ways. Here kp

on = kp0
on [E], ke

on = ke0
on[E], so kp→e, ke→p

do not depend on [E]. It can be reasonably assumed that
these effective rates satisfy the biological-relevant conditions
(details see SM Secs. I A and II A, II B [21]), so one can
apply the Eqs. (3) and (4) to estimate the initial discrimination
by Fini ≈ Fini = k∗

RR/k∗
RW and the proofreading efficiency by

Fpro ≈ Fpro = 1 + rRW /k∗
W R. Here we use the symbols Fini

and Fpro to replace F pol and F exo which are defined only for the
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minimal scheme. We keep these notations for any multistep
scheme in the following sections.

B. The steady-state assay

1. The initial discrimination

The steady-state assay is a standard method to analyze
the catalytical capability of enzymes in biochemistry. The
steady-state condition in experiment is usually established by
two requirements, i.e., the substrate is in large excess to the
enzyme, and the enzyme can dissociate quickly from the prod-
uct once a single turnover is finished to resume its catalysis.
The last dissociation step is reasonably assumed irreversible,
since the enzyme will much unlikely rebind to the same
substrate molecule after dissociation because the substrate is
in large excess to the enzyme. Under such conditions, the
amount of any intermediate product can be regarded approxi-
mately as constant (i.e., in steady state) in the initial stage of
the reaction and thus the amount of the final product increases
linearly with time. This initial growth velocity is defined as the
steady-state turnover rate which is often used to characterize
the catalytical capability of the enzyme.

It should be noted that, however, the steady-state assay is
only valid for enzymes with single catalytical activity such as
exo−-DNAP. So one should properly modify the exo+-DNAP
to obtain mutant exo−-DNAP (e.g., by deactivating the exonu-
clease activity or even eliminate the exonuclease domain by
genetic mutations, without changing the polymerase activity
of the DNAP), and then employ the steady-state assay to
measure the initial discrimination of the DNAP. By measuring
the initial velocity of the final product generation (i.e., single
dNTP incorporation) under the steady-state condition, one
can calculate the normalized velocity per enzyme which is in
general given by the Michaelis-Menten equation

vpol
ss = kcat[dNTP]

[dNTP] + Km
. (9)

Here kcat is the maximal steady-state turnover rate of dNTP
incorporation and Km is the Michaelis constant. The super-
script pol indicates the polymerase activity, the subscript “ss”
indicates the steady state. Fitting the experimental data by
this equation, one can get the specificity constant kcat/Km

either for dRTP incorporation or dWTP incorporation, from
which the initial discrimination was defined as fss,ini =
(kcat/Km)R[dRTP]/(kcat/Km)W [dWTP].

However, there is an apparent difference between the
above-defined fidelity and the true fidelity: the former is
measured under steady-state conditions, whereas the latter is
defined without preassumptions like the steady-state approxi-
mation. So what is the relation between them?

To understand the exact meaning of kcat/Km, we have to
consider the multistep reaction scheme of dNTP incorporation
(Fig. 4) which explicitly includes the DNAP binding to DNA
and dissociation from DNA. In general, we consider cases
where the substrate DNA can bind either to the polymerase
domain or to the deficient exonuclease domain (if the domain
is only mutated but not eliminated). For the mutant exo−-
DNAP, the transfer rate k′

pe and k′
ep are different from kpe

and kep of the wild-type exo+-DNAP. Under the steady-state

dNTP
PPi

FIG. 4. The reaction scheme for the steady-state assay to mea-
sure the specificity constant of the nucleotide incorporation reaction
of DNAP with deficient exonuclease domain. The omitted multistep
incorporation process is shown in Fig. 3(b).

condition, it can be easily shown(
kcat[dNTP]

Km

)
αi−1αi

= k∗
αi−1αi

(Kss )αi−2αi−1

. (10)

Here k∗ is defined in Eq. (7), α = R,W . Kss = 1 + k′
pe/k′

ep +
kp

off/kp
on, kp

on = kp0
on [DNA].

Theoretically, the real reaction scheme may be more com-
plicated than Fig. 4, i.e., there could be more pathways or
more steps in DNAP binding or dissociation or DNA transfer.
No matter how complicated the scheme is, it can be proven
that the form of Eq. (10) is universal: k∗ is exactly the effective
incorporation rate defined by Eq. (7), and Kss is a simple
function of the equilibrium constants of the steps just before
dNTP binding (see details in SM Secs. II A and II B [21]).

Since Kss is independent on the incoming dNTP(αi), the
fidelity can be given generally by

fss,ini ≡ (kcat[dNTP]/Km)Ri−1Ri

(kcat[dNTP]/Km)Ri−1Wi

= k∗
Ri−1Ri

k∗
Ri−1Wi

, (11)

which is equal to Fini. Since Fini is a good approximation
to Fini with less than 10% deviation, the steady-state assay
provides a quite good measure of the initial discrimination.

Below we give an example of using the measured speci-
ficity constants to estimate the site-specificity fidelity. In the
steady-state assay of KF− [6], kcat and Km of the incorporation
of 4 types of dNTP onto the template T (the underline indi-
cates the target site under investigation) has been measured
separately, as listed in Table I. The initial discrimination fss,ini

of each mismatch can then be calculated by Eq. (11). The
result is shown in the last column, indicating the signifi-
cant mismatch-specific variations of the fss,ini. One can also

TABLE I. The steady-state assay of KF− [6].

kcat Km kcat/Km

Template/Primer (s−1) (μM) (μM−1 s−1) fss,ini

TTa /AA 0.18 0.04 4.5 1
TT/AC 0.0093 390 2.4×10−5 1.8×105

TT/AG 0.043 79 5.4×10−4 8.4×103

TT/AT 0.0019 62 3.1×10−5 1.5×105

aThe template sequence is presented in the direction of 3′ → 5′, and
the primer is presented in 5′ → 3′. The underlines indicate the target
template site.
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calculate the site-specific initial discrimination, ≈7.6 × 103,
simply by using Eq. (1).

Here we give some explanations on the validity of the
biorelevant conditions. The examples in Table I and Eq. (11)
show k∗

RR/k∗
RW � 1. However, the FP method gives k = k∗.

So the biorelevant condition (a) is reasonable. Similarly,
the steady-state assays can measure (kcat[dNTP]/Km)W R

but failed to measure (kcat[dNTP]/Km)WW , meaning that
(kcat[dNTP]/Km)WW is too small to be measured. Since
(kcat[dNTP]/Km)W R/(kcat[dNTP]/Km)WW = k∗

W R/k∗
WW , we

can assume that k∗
WW is arbitrarily smaller than k∗

W R, i.e.,
k∗

WW ≈ 0 s−1. So the condition (b) kWW ≈ 0 s−1 is reasonable.
Moreover, Eq. (11) holds for any possible considered reaction
scheme, so one can follow the similar logic to show that the
effective rates always satisfy biorelevant conditions (for more
details see SM Secs. I A and II A, II B [21]).

2. The proofreading efficiency

There were also some works using the steady-state assay
to define the effective elongation rate kel,W and the effective
excision rate kex,W to characterize the proofreading efficiency
fss,pro = 1 + kex,W /kel,W of exo+-DNAP. If kex,W equals to
rRW and kel,W equals to kW R, we then have fpro = Fpro ≡
1 + rRW /kW R. Unfortunately, however, neither equation holds
in general.

For instance, some works used the turnover velocity
vexo

ss [17,26], the specificity constant [27,28] or the maximal
turn-over rate kcat [15] as kel,W . As shown by Eq. (10), how-
ever, kW R is not equal to any of the three quantities. So, the
steady-state assay fails to measure kW R, unless Kss ≈ 1. For
the reaction scheme Fig. 4, this condition may be met, since
the mutant exo−-DNAP has no exonuclease domain(k′

pe/k′
ep is

absent) or it binds the DNA preferentially at the polymerase
domain(k′

pe � k′
ep) and the DNA concentration in the experi-

mental assay can be set large enough to ensure kp
on � kp

off. In
such cases, the specificity constant, but not kcat or vexo

ss , can be
regarded as kW R.

Of course, Kss ≈ 1 may not hold if one considers reac-
tion schemes more complicated than Fig. 4. For instance, the
primer terminal transfer may be a multistep process rather
than the one-step process shown in Fig. 4. In this paper we
do not discuss such schemes, since so far there are no ex-
perimental supporting evidences (except that there could be
an additional DNAP translocation step before dNTP binding,
as discussed in later sections). So we assume that kW R can
be reasonably measured by the specificity constant for cases
discussed in this paper.

The steady-state assay was also employed to study the
excision reaction of DNAP (Fig. 5). There was some studies
which measured the initial velocity (vexo

ss )RW and interpreted it
as kex,W [15]. Whereas (vexo

ss )RW is determined by all the rate
constants in Fig. 5, some rate constants like kp†

off and k†
pe are

absent from the effective excision rate rRW . So in principle,
(vexo

ss )RW is not equal to rRW .
In summary, since (kcat[dNTP]/Km)W R ≈ kW R but

(vexo
ss )RW �= rRW , fss,pro may differ significantly from

Fpro. A numerical example is shown in Fig. 6, where

FIG. 5. The reaction scheme for the steady-state assay to mea-
sure the effective excision rate of exo+-DNAP.

F/ fss = Fpro/ fss,pro ≈ rRW /(vexo
ss )RW (here we have assumed

kex,W � kel,W and rRW � kW R for efficient proofreading).
Because the fidelity is a dimensionless number, the ab-

solute values of the kinetic rates do not matter for our
calculation. So we set q = 1 and other kinetic rates in unit
of q with the magnitudes inspired by the measured values for
T7 DNAP [17] (Table II), e.g., kep and ke

off are set equal to q,
and kpe and kp

off are smaller than q which are set to be 0.1.
kp

on and ke
on are determined by DNA concentration which is

often taken as 1 μM in experiments (e.g., Ref. [15]). So these
two values can be very large and we set them to be 103 in the
calculations, which ensures kp

on > kp
off and ke

on > ke
off. Larger

values do not change the results. The dissociation rate from
Exo are assumed irrelevant to the identity of the terminal, so
ke†

off = ke
off.

Figure 6 shows that the ratio F/ fss can even become larger
than 10 when k†

pe, kp†
off are much smaller than kpe, kp

off. This
may unfortunately be true, since k†

pe is the transfer rate of
the newly formed matched terminal (after excision), which
should be much smaller than the corresponding rate kpe of

FIG. 6. The ratio F/ fss may become larger than 10 when k†
pe �

kpe and kp†
off � kp

off. The kinetic rates are set as q = 1, kep = k†
ep = 1,

kpe = 0.1, ke
off = ke†

off = 1, kp
off = 0.1, kp

on = 103. ke
on is calculated ac-

cording to the thermodynamic constraint (ke
on = kp

onkpeke
off/kp

offkep =
103). The binding rates are large enough, i.e., ke

on > ke
off and kp

on >

kp
off, kpe.
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TABLE II. Kinetic rates of the excision of a mismatched T of
AG/TT of T7 DNAP [17].

Kinetic parameter Rate

q 896 s−1

kep 714 s−1

kpe 2.3 s−1

kp
off 0.4 s−1

ke
off 1022 s−1

kp0
on 4 × 107 M−1s−1

ke0
on (4 − 6) × 108 M−1s−1

the original mismatched terminal. kp†
off is the dissociation rate

of DNAP from the matched terminal, which should be much
smaller than that from the mismatched terminal kp

off. So the
steady-state assay are invalid to measure the proofreading
efficiency of exo+-DNAP. In the experiment to estimate Fpro

for ap-polymerse [15], the authors wrongly interpreted kcat

and vexo
ss as kW R and rRW , respectively, and gave that fpro ≈

(vexo
ss )Ri−1Wi/(kcat )WiRi+1 . This measure is even totally irrelevant

to Fpro.
One can also change the concentration of the substrate

DNA to obtain the specificity constant of the excision reaction
in experiments [16], as can be shown theoretically(

kcat[DNA]

Km

)exo

= q
(
kpekp

on
/(

kpe + kp
off

) + ke
on

)
q + kepkp

off

/(
kpe + kp

off

) + ke
off

. (12)

This expression includes explicitly the DNA concentration,
whereas the effective rate r is independent of DNA concen-
tration. So, it cannot be used to estimate the effective excision
rate. Details can be found in SM Sec. II C [21].

C. The transient-state assay

1. The initial discrimination

Similar to the steady-state assay, the transient-state assay
can also be employed to study the polymerase and exonu-
clease of DNAP separately. The transient-state assay often
refers to two different methods, the pre-steady-state assay or
the single-turnover assay. Since the theoretical foundations of
these two methods are the same, we only discuss the latter
below for simplicity.

In single-turnover assays, the enzyme is in large excess
to the substrate, and so the dissociation of the enzyme from
the product is neglected. The time course of the product ac-
cumulation or the substrate consumption is monitored. The
data is then fitted by exponential functions (single-exponential
or multiexponential) to give one or more exponents (i.e., the
characteristic rates). In the initial discrimination assay, these
rates are complex functions of all the involved rate constants
and dNTP concentration, which in principle can be analyti-
cally derived for any given kinetic model. For instance, for
the commonly used two-step model including only substrate
binding and the subsequent irreversible chemical step, one can
directly solve the kinetic equations to get two rates. However,
the time course of the product accumulation can often be
well fitted by single-exponential function at any given dNTP
concentration, which implies that the two rates differ by more

FIG. 7. The reaction scheme for the transient-state assay to mea-
sure the specificity constant of the nucleotide incorporation reaction
of DNAP with deficient exonuclease domain. The omitted multistep
incorporation process is shown in Fig. 3(b).

than one order of magnitude and only the smaller one is
recorded in experiments. It was proved by Johnson that the
smaller one obeys approximately the Michaelis-Menten-like
equations [29] (see also SM Sec. III A [21]):

v
pol
ts ≈ kpol[dNTP]

[dNTP] + Kd
. (13)

The subscript “ts” indicates the transient state. Similar to the
steady-state assays, kpol/Kd is regarded as the specificity con-
stant and thus the initial discrimination is defined as fts,ini =
(kpol/Kd )R[dRTP]/(kpol/Kd )W [dWTP].

To get a better understanding of kpol/Kd , we consider the
much more realistic multistep scheme in Fig. 7, in which the
DNA can bind to either the polymerase domain or the deficient
exonuclease domain and the dNTP incorporation is a multi-
step process. One can prove that Eq. (13) still holds for such
schemes and the specificity constant can be approximated as(

kpol[dNTP]

Kd

)
αi−1αi

≈ k∗
αi−1αi

(Kt ·s)αi−2αi−1

. (14)

Equation (14) provides a rough estimate of the real speci-
ficity constant with less than 200% relative deviation. The
rigorous analysis is too lengthy to be presented here (for
details see SM Sec. III B [21]). Here α = R,W . Kts = 1 +
k′

pe/k′
ep + kp

off/kp
on, kp

on = kp0
on [E]. Hence, the relative deviation

of fts,ini from Fini(= k∗
RR/k∗

RW ) is less than 200%. Since Fini ≈
Fini (with less than 10% deviation), the transient-state assay
can give a rough estimate on Fini. In practice, both the steady-
state assay and the transient-state assay are always used (say,
Ref. [6]) to guarantee that the specificity constants obtained by
both methods agree with one another (no order of magnitude
difference) to make a good estimate on k∗ and thus the true
initial discrimination. Additionally, the specificity constant,
but not kpol, can be used to estimate k when Kts ≈ 1.

2. The proofreading efficiency

The transient-state assay of the exonuclease activity is of-
ten done under single-turnover conditions. The time course of
product accumulation or substrate consumption is fitted by a
single exponential or a double exponential to give one or two
characteristic rates [17,27,28]. In the following, we show that
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FIG. 8. The reaction scheme for the transient-state assay to mea-
sure the effective excision rate of exo+-DNAP.

the smallest one of the fitted exponents may probably be equal
to r under some conditions.

The simplest model for the transient-state assay of the
excision reaction is depicted in Fig. 8. By solving the cor-
responding kinetic equations, one can get three characteristic
rates and the smallest one is given by

vexo
ts ≈ kpeq

(
kp

on + ke
on

) + qkp
offk

e
on(

kp
on + ke

on

)
(q + kpe + kep) + ke

offk
p
on + kp

offk
e
on + ε

.

(15)

Equation (15) gives a rough estimate on the precise vexo
ts

with less than than 200% deviation (details can be found
in SM Sec. III C [21]). Here ε = kpeq + kepkp

off + kpeke
off +

qkp
off + kp

offk
e
off, kon = k0

on[E]. The DNAP concentration in the
experiments can be set large enough, which ensures kp

on >

kp
off, ke

on > ke
off, kp

on > kpe and ε ≈ 0 (compared to other terms
in the denominator), Eq. (15) can be simplified as

vexo
ts ≈ k̃peq

k̃pe + k̃ep + q
. (16)

If k̃ep > k̃pe (when DNA binds preferentially to the poly-
merase domain) or q > k̃pe (when the excision is a very fast
process), one can get vexo

ts ≈ r, with r defined by Eq. (8).
So, if the real excision reaction follows the simplest scheme
in Fig. 8, then vexo

ts may be interpreted as r. However, if
q, k̃ep < k̃pe, then there could be large difference between vexo

ts
and r. Figure 9 gives an example showing the difference in a
wide range of some key parameters.

In Fig. 9 the proofreading efficiency is defined as fts =
1 + kex,W /kel,W, kex,W is taken as (vexo

ts )RW and kel,W is taken
as (kpol[dNTP]/Kd )W R. Since k∗

W R ≈ (kpol[dNTP]/Kd )W R, we
have F/ fts = Fpro/ fts,pro ≈ rRW /(vexo

ts )RW . In this example, we
show the precise value of vexo

ts by numerically solving the
original kinetic equations, rather than using the approximate
expression Eq. (15). The kinetic rates are set as explained
in Sec. III B 2. The typical free energy difference between
DNA binding to Pol and Exo may be only a few kBT , so
we set 10−2 < kpe/kep < 102. As shown, the ratio F/ fts may
become even larger than 10 when q, k̃ep � k̃pe (the red area).
So the transient-state assay can be used to roughly measure
the proofreading efficiency only when q > k̃pe or k̃ep > k̃pe

(the blue region in Fig. 9).

FIG. 9. The ratio F/ fts may become larger than 10 when q, k̃ep <

k̃pe. The kinetic rates are set as q = 1, ke
off = 1, kp

off = 0.1, kp
on =

103. ke
on is calculated by the thermodynamic constraint (ke

on =
kp

onkpeke
off/kp

offkep). The binding rates are always large enough when
adjusting kpe and kep, i.e., ke

on > ke
off and kp

on > kp
off, kpe.

In Table II we list all the kinetic rates of the excision
reaction of T7 DNAP determined by the experiment [17],
which shows q, k̃ep > k̃pe, so we can use vexo

ts to estimate r
and calculate the Fpro by Eq. (4). In the original paper [17],
however, the authors defined the proofreading efficiency as
fpro = 1 + (kpe + θkp

off )W /kel,W, with the ambiguous quantity
θ which was supposed between 0 and 1 (depending on the
fate of the DNA after dissociation), and regarded kel,W as v

pol
ss

[Eq. (9)]. This is essentially different from Eq. (4). Moreover,
the authors ignored the template sequence-dependence of the
proofreading efficiency in their calculations. In fact, Table II
lists the rates of excising a mismatched T of AG/TT, the
corresponding elongation rate (kel,W) should be the rate of in-
corporating the matched dNTP over the mismatched terminal
T, i.e., (kel,W)AGX

T T R (X can be one of A, T, G,C; R means the
dNTP matched to X ), according to Eq. (4). But the authors
used (kel,W)T AG

AAC = 0.012 s−1 (calculated by Eq. (9) with the
measured kcat = 0.025s−1, Km = 87μM, [dNTP]= 100μM in
Ref. [26]) to estimate fpro and finally gave fpro = 1 + (2.3 +
0.5 × 0.4)/0.012 ≈ 210(θ = 0.5). So this estimate is highly
questionable. Even if the template sequence-dependence of
kel,W can be ignored, one should estimate Fpro by Eq. (4). The
elongation rate kel,W (or kW R) is approximately determined
as kcat[dNTP]/Km = 0.03 s−1. The effective excision rate is
determined by Eq. (8), rAG

T T ≈ 1.23 s−1. So we get a rough
estimate of the proofreading efficiency for this template se-
quence, Fpro,i ≈ Fpro ≈ 1 + 1.23/0.03 ≈ 40 which is much
smaller than that given by the authors.

There is another example possibly showing the second-
order neighbor effects in proofreading of human mitochon-
drial DNAP. The excision velocities and the elongation
rates were measured for a particular template sequence
GTTGG/CAT by the transient-state assays [27,28], as listed
in Table III. Since there is no additional information on
q, k̃pe, k̃ep, we cannot use these values to estimate the proof-
reading efficiency. Here we just assume that the excision
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TABLE III. Kinetic rates of human mitochondrial DNAP [27,28].

Effective Experiment Measured
rate measure rate

rGT T
CAT

a vexo
ts 0.4 s−1

k
T T G

ATC kpol[dNTP]/Kd
b 0.1 s−1

rT T G
ATC vexo

ts
c 3.0 s−1

rT T G
ATC v̂exo

ts
d 21.5 s−1

k
T GG

TCC kpol[dNTP]/Kd 2.7 s−1

aThe template sequence around the target site T is presented in the
direction of 3′ → 5′: GTTGG.
b[dNTP] = 100 μM.
cWithout dNTP in the solution.
dIn the presence of dNTP.

velocities can be taken as the effective excision rates to make
a rough estimate. Fpro of a certain type of mismatch [Eq. (5)]
can be rewritten as

Fpro,i ≈ Fpro,i = 1 + rRi−2Ri−1Wi

kRi−1WiRi+1

(
1 + rRi−1WiRi+1

kWiRi+1Ri+2

)
. (17)

With the kinetic rates in Table III, we get

Fpro ≈ Fpro ≈ 1 + 0.4

0.1

(
1 + 3

2.7

)
≈ 9.4, (a),

Fpro ≈ Fpro ≈ 1 + 0.4

0.1

(
1 + 21.5

2.7

)
≈ 36.9, (b). (18)

These two values correspond to two different experimental
conditions: (a) without dNTP in the solution; (b) in the pres-
ence of dNTP. In the latter case, the second-order proofreading
(21.5/2.7) contributes to Fpro even more than the first-order
proofreading (0.4/0.1).

It is worth emphasizing that the interpretation of vexo
ts is

model-dependent. Theoretically, the reaction scheme could
be more complicated than the simplest model in Fig. 8, e.g.,
there may be multiple substeps in the intramolecular transfer
process since the two domains are far apart (2–4 nm [18]). For
any complex scheme, one can analytically calculate vexo

ts and
r. These two functions always differ greatly (examples can be
found in SM Sec. III D [21]). So the single-turnover assay per
se is not a generally reliable method to measure the effective
excision rate.

In total, neither the steady-state assay nor the transient-
state assay can reliably measure the effective elongation rates
and the effective excision rates, so it is invalid in principle
to use these assays to estimate the proofreading efficiency of
DNAP, unless one can do more detailed study to confirm that
the required conditions on the key rate parameters are actually
met.

D. More realistic models including DNAP translocation

So far we have not considered the important step, DNAP
translocation, in the above kinetic models. DNAP should
translocate forward along the template to the next site after
dNTP incorporation, which empties the active pocket to ac-
cept the next dNTP for incorporation. Goodman et al. had

FIG. 10. The multistep reaction scheme of exo+-DNAP includ-
ing the translocation step.

discussed the possible effect of such a translocation on the
transient-state gel assay very early [30], and recently DNAP
translocation has been directly observed for phi29 DNAP by
using nanopore techniques [31–34] or optical tweezers [35].
However, so far there is no any theory or experiment to
seriously study the effect of translocation on the replication
fidelity.

By using optical tweezers, Morin et al. had shown that
DNAP translocation is not powered by PPi release or dNTP
binding [35] and it is indeed a thermal ratchet process. So the
simplest reaction scheme accounting for DNAP translocation
can be depicted as Fig. 10. kt and rt are the forward and the
backward translocation rate, respectively. EpreDi and EpostDi

indicate the pre-translocation and the post-translocation state
of DNAP, respectively. Here, the primer terminal can only
switch intramolecularly between Ee and Epre (but not Epost),
according to the experimental observation [34]. We also as-
sume DNAP can bind DNA either in state EpreDi or in state
EpostDi with possibly different binding rates and dissociation
rates.

This complex scheme can be reduced to the minimal
scheme Fig. 1 by using the FP analysis. The obtained effective
rates are given by(details see SM Sec. IV A [21])

k = k∗(1 − q̃kpe/ξ ),

r = qη/ξ,

η = kpost→e(kt + kpre→post + k̃pe)

+ (rt + kpost→pre )̃kpe,

ξ = (q + ke→post )(kt + k̃pe + kpre→post )

+ k̃ep(kt + kpre→post ),

k̃pe = kpe + kpre→e,

k̃ep = kep + ke→pre,

ka→b = ka
offk

b
on

/(
kpre

on + kpost
on + ke

on

)
,

a, b = pre, post, e. (19)

here k∗ is defined by Eq. (7), ka
on = ka0

on [E]. One can also
reasonably assume that these effective rates still satisfy the
biological-relevant conditions, so one can use Eqs. (2)–(4)
with these effective rates (for details see SM Sec. IV A [21]).
The total true fidelity Fi(≡ Fini,i · Fpro,i ) can be
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approximated by Fi(≡ Fini,i · Fpro,i ), as given below

Fi ≈ Fi,

Fini,i ≈ Fini,i = k∗
Ri−1Ri

k∗
Ri−1Wi

,

Fpro,i ≈ Fpro,i

= (1 − q̃kpe/ξ )Ri−1Ri

(1 − q̃kpe/ξ )Ri−1Wi

(
1 + rRi−1Wi

kWiRi+1

)

≈ qRi−1Wi

k∗
WiRi+1

(1 − q̃kpe/ξ )Ri−1Ri

(1 − q̃kpe/ξ )WiRi+1

(
η

ξ − q̃kpe

)
Ri−1Wi

. (20)

Here Fini,i is the initial discrimination and Fpro,i is the proof-
reading efficiency, which are esitmated by Fini,i and Fpro,i,
respectively. Fini,i is obtained by applying Eq. (3) with the
effective rates k in Eq. (19) while setting q = 0. The rela-
tive deviations of Fi, Fini,i, Fpro,i from Fi,Fini,i,Fpro,i are less
than 10% (for details see SM Sec. IV A [21]).

However, we can calculate the fidelity defined by the ki-
netic assays. Following the same logic in Sec. III C 1, we
obtain the specificity constant by the transient-state assay of
the mutant exo−-DNAP (for details see SM Sec. IV B [21]),(

kpol[dNTP]

Kd

)
αi−1αi

≈ k∗
αi−1αi

(Kts )αi−2αi−1

. (21)

Here α = R,W . Kts = 1 + rt/kt (1 + k′
pe/k′

ep) + kpost
off /kpost

on ,

kpost
on = kpost,0

on [E]. Equation (21) gives a rough estimate of the
specificity constant with less than 200% relative deviation.
Similarly, the steady-state assay also define another specificity
constant, (kcat[dNTP]/Km)αi−1αi = k∗

αi−1αi
/(Kss )αi−2αi−1 ,

with Kss = 1 + rt/kt (1 + k′
pe/k′

ep) + kpost
off /kpost

on , kpost
on =

kpost,0
on [DNA]. Since Kts (or Kss) is independent on the

incoming dNTP αi, the initial discrimination can be measured
by the steady-state assay with high precision or roughly
estimated by the transient-state assay, i.e., Fini = fss,ini and
Fini ≈ fts,ini (with no order of magnitude difference).

The transient-state excision velocity vexo
ts can be calculated

as follows:

vexo
ts ≈ qη/κ,

κ = (1 + rt/kt )(ξ − q̃kpe) + ε1 + ε2, (22)

where ε1 and ε2 are very complex functions of the kinetic
rates which are too lengthy to give here. Equation (22) offers
a rough estimate of the real vexo

ts with less than 300% deviation
(see details in SM Sec. IV B [21]).

With Eqs. (21) and (22), the proofreading efficiency fpro is
defined by the transient-state assay as

fts,pro,i ≡ 1 +
(
vexo

ts

)
Ri−1Wi

(kpol[dNTP]/Kd )WiRi+1

≈ 1 + qRi−1Wi

k∗
WiRi+1

(
ηKts

κ

)
Ri−1Wi

, (23)

where ≈ means less than 300% deviation. We compare this
rough estimate on fts,pro to Fpro defined by Eq. (20). They
might be approximately equal only under some conditions.

FIG. 11. The ratio F/ fts becomes larger than 10 when kt and rt

get small enough. The kinetic rates (for terminal mismatch RW ) :
q = 1, kpe = 0.1, kep = 1, ke

off = 1, kpre
off = 0.1, kpost

off = 0.001, kpre
on =

103. ke
on and kpost

on are calculated by thermodynamic constraints (ke
on =

kp
onkpeke

off/kpre
off kep = 103, kpost

on = kpre
on kt k

post
off /kpre

off rt ). The binding rates
are always large enough when adjusting kt and rt to ensure ka

on >

ka
off, a = pre, post, e, and kpre

on > kpe.

For instance, if the kinetic rates satisfy the following condi-
tions

(1) kt,RR � kpre
off,RR, kpe,RR,

(2) kt,W R � kpre
off,W R, kpe,W R,

(3) kt,RW � kpre
off,RW , kpe,RW and rt,RW � kpost

off,RW ,

(4) k̃ep,RW � k̃pe,RW and qRW � k̃pe,RW .
Here � means more than one order of magnitude

higher. Under such conditions, one can estimate that 0.69 <

Fpro/ fts,pro < 1.20, the relative deviation of fts,pro from Fpro is
less than 31% (details see SM Sec. IV B [21]). Here we have
assumed Kts ≈ 1 + rt/kt , since the DNAP concentration [E]
can be set large enough in the transient-state assays to ensure
kpost

on � kpost
off and the transfer rates k′

pe and k′
ep of the mutant

DNAP often satisfies k′
ep � k′

pe.
In general, fts,pro can be much different from Fpro in a

wide range of kinetic parameters, e.g., the translocation in the
presence of a terminal mismatch may be very slow [36] so
that the above condition Eq. (3) is violated. Figure 11 shows
an example. Since some kinetic rates for terminal mismatch
RW (for simplicity we omit the subscript in this example),
e.g., kpre

off and kpost
off , are unknown from the experiments, we just

assume that kpre
off = kp

off = 0.1 (see kp
off in Table II) and kpost

off =
0.001. Other rates is set as explained in Sec. III B 2. The
ratio rt/kt ranges from 10−2 to 102, corresponding to a free
energy difference (between the Pre and Post states) of a few
kBT . q = 1, k̃ep > 1 and k̃pe < 0.2, so the condition (4) still
holds. As shown in the figure, the ratio F/ fts ≈ Fpro/ fts,pro ≈
[qη/(ξ − q̃kpe)]RW /(vexo

ts Kts )RW can become larger than 10
when kt and rt get small enough. Here vexo

ts is precisely com-
puted by numerically solving the original kinetic equations,
and Kts ≈ 1 + rt/kt as discussed above.

Figure 12 shows another example where conditions (1),
(2), and (3) hold, but condition (4) is violated. We assume
for the terminal mismatch RW , kpre

off = kpost
off = kp

off = 0.1 (see
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FIG. 12. The ratio F/ fts may become larger than 10 when kpe

gets large enough. The kinetic rates (for terminal mismatch RW ):
q = 1, kep = 1, ke

off = 1, kpre
off = 0.1, kpost

off = 0.1, kt = 10, kpre
on = 103.

ke
on and kpost

on are calculated by thermodynamic constraints(ke
on =

kp
onkpeke

off/kpre
off kep, kpost

on = kpre
on kt k

post
off /kpre

off rt ). The binding rates are al-
ways large enough when adjusting kpe and rt to ensure ka

on > ka
off, a =

pre, post, e, and kpre
on > kpe.

kp
off in Table II). kt = 10 > kpre

off and rt > kpost
off which ensures

the condition (1). Other kinetic rates are set as explained in
Sec. III B 2. As shown, the ratio F/ fts may become larger than
10 when kpe gets large enough.

However, the condition (2) may also not hold for real
DNAPs. Since the buried mismatch may slow down DNAP
translocation, (1 − q̃kpe/ξ )WiRi+1 � 1 may hold if k̃pe,WiRi+1 �
kt,WiRi+1 , kpre→post,WiRi+1 and qWiRi+1 � k̃ep,WiRi+1 . However, ki-
netic rates for terminal W R are present in Fpro [in the factor
1/(1 − q̃kpe/ξ )WiRi+1 , see Eq. (20)] but totally absent from
fts,pro [see Eq. (23)]. So, Fpro can become much larger if
(1 − q̃kpe/ξ )WiRi+1 gets much smaller than 1, while other ki-
netic rates for terminal RW are fixed. That is to say, F/ fts may
become even more than one order of magnitude larger than
that shown by the red region in Figs. 11 and 12.

In total, if the terminal mismatch or the buried mis-
match severely slows down the DNAP translocation, then
the transient-state assay is likely to underestimate the fidelity
even by one or more orders of magnitude. Unfortunately, so
far as we know, there have been no experimental studies on
the translocation kinetics of any DNAP in the presence of
the terminal mismatch or the buried mismatch. So, in this
paper we cannot further evaluate the reliability of the reported
transient-state assays on specific DNAPs in the literature.
Future experimental studies should offer more information on
this issue.

IV. SUMMARY

The conventional kinetic assays of DNAP fidelity, i.e., the
steady-state assay or the transient-state assay, have indicated
that the initial discrimination fini is about 104∼5 and the proof-
reading efficiency fpro is about 102∼3 [18]. Although these
assays have been widely used for decades and these estimates
of fini and fpro have been widely cited in the literature, they are

not unquestionable since the logic underlying these methods
are not well founded. No rigorous theories about the true
fidelity F have ever been proposed, and its relation to the
operationally defined fss or fts has never been clarified.

In this paper, we examined carefully the relations between
fss, fts, and F , based on the FP method recently proposed
by us to investigate the true fidelity of exo−-DNAP or exo+-
DNAP. We conclude that for exo−-DNAP, the steady-state
assay can measure F with very high precision, while the
transient-state assay offers a rough estimate of F (with no or-
der of magnitude difference), just by measuring the specificity
constant (kcat/Km or kpol/Kd ).

For exo+-DNAP, however, the situation is more compli-
cated. The steady-state assay or the transient-state assay can
still be used to measure the initial discrimination Fini, as
done for exo−-DNAP (so the above cited estimates of fini

are reliable). But either method fails to directly measure the
effective excision rate and the effective elongation rate, and
thus in principle they cannot characterize the proofreading
efficiency Fpro. So the widely cited estimates fpro ∼ 102∼3

are very suspicious. Our analysis shows that these kinetic
assays may be valid to measure Fpro only if the involved
rate constants satisfy some conditions. If there are no further
evidences to support these conditions, the assays per se may
largely underestimate Fpro. Even when all these conditions
are met, there were still quite different strategies in using these
assays which often give inconsistent results. In this paper, we
have shown definitely that there is only one proper way to
estimate Fpro by using the transient-state assay.

How can one estimate the true fidelity unambiguously?
A possible way is to dissect the reaction mechanism, i.e.,
measuring the rate constants of each step by transient-state ex-
periments [17,26,37–41], and then calculate the effective rate
according to Eqs. (7) and (8). This is a perfect approach but
needs heavy work. Theoretically, there is another approach,
a single-molecule assay based on the FP analysis, to directly
measure the effective rates. Simply put, in the framework of
the first-passage theory, each effective rate required to calcu-
late the true fidelity can be interpreted as the reciprocal of
the residence time at the corresponding state in the stochastic
dNTP incorporation process or the terminal excision process
at the single-DNA level. This might be done, at least in prin-
ciple, by analyzing the stochastic trajectories obtained in the
single-molecule experiments. We do not discuss it here and
leave the details in SM Sec. V [21]. We hope that this may
inspire future single-molecule assays on DNAP fidelity.

Last, we have focused on the first-order (nearest-)neighbor
effect in this paper and just mentioned the higher-order
neighbor effects which may also be important to DNAP
fidelity. As shown in Sec. III C 2, the second-order (next-
nearest-)neighbor effect may even be more significant than
the first-order effect in the proofreading of human mitochon-
drial DNAP. Although this conclusion is based on the rough
estimates given there, we believe that it is somewhat univer-
sal. The proofreading efficiency Fi of exo+-DNAP consists
of two factors, rRi−2Ri−1Wi/kRi−1WiRi+1 and rRi−1WiRi+1/kWiRi+1Ri+2 ,
representing the first-order and the second-order proofreading
efficiency, respectively. These two factors are both dependent
on the stability of the primer-template duplex. For naked
dsDNA duplex, numerous experiments have shown that a
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penultimate mismatch leads to much lower stability than a
terminal mismatch [42]. This implies that a penultimate mis-
match may more significantly disturb the base stacking of the
primer-template conjunction in the polymerase domain and
thus the forward translocation of DNAP will be slower and
the Pol-to-Exo transfer of the primer terminal will be faster,
if compared with the terminal mismatch. More explicitly,
it is very likely that rRi−1WiRi+1 > rRi−2Ri−1Wi and kWiRi+1Ri+2 <

kRi−1WiRi+1 . In such cases, the second-order factor may be larger
than the first-order factor.

We hope that the analysis and the suggestions presented
in this paper will urge serious experimental reexaminations
on the conventional kinetic assays of DNAP fidelity and of-
fer some inspirations to single-molecule experimentalists to
conduct more accurate fidelity analysis.
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APPENDIX A: BASICS OF THE FP METHOD

For the minimal reaction scheme (Fig. 1), the master
equations for replicating a given template X1X2...XL (in the
direction 1 → L) are shown below (here we only discuss the
first-order neighbor effects as an example),

d

dt
PX1...XL

α1
=

∑
α2

rX1X2
α1α2

PX1X2...XL
α1α2

−
∑
α2

k
X1X2

α1α2
PX1...XL

α1
,

d

dt
PX1...Xi ...XL

α1...αi
= k

Xi−1Xi

αi−1αi
PX1...Xi−1...XL

α1...αi−1
+

∑
αi+1

rXiXi+1
αiαi+1

PX1...XiXi+1...XL
α1...αiαi+1

−
(

rXi−1Xi
αi−1αi

+
∑
αi+1

k
XiXi+1

αiαi+1

)
PX1...Xi ...XL

α1...αi
, 2 � i � L − 2,

d

dt
PX1...XL−1XL

α1...αL−1
= k

XL−2XL−1

αL−2αL−1
PX1...XL−2...XL

α1...αL−2
−

(
rXL−2XL−1

αL−2αL−1
+

∑
αL

k
XL−1XL

αL−1αL

)
PX1...XL−1XL

α1...αL−1
,

d

dt
PX1...XL

α1...αL
= k

XL−1XL

αL−1αL
PX1...XL−1XL

α1...αL−1
. (A1)

Here PX1...Xi ...XL
α1...αi

is the probability of the primer with the sequence α1...αi at time t . k and r are the nucleotide incorporation rate
and the excision rate, respectively. In these equations, we have assumed that the first unit α1 and the last unit αL of the primer
chain cannot be excised (the boundary condition), and α1 may be R or W with the given probability pα1 (the initial condition).

We are concerned only about the sequence distribution of the final products PX1...XL
α1...αL

(t → ∞), which can be given by
integrating Eq. (A1)

−pα1 =
∑
α2

rX1X2
α1α2

�X1X2...XL
α1α2

−
∑
α2

k
X1X2

α1α2
�X1...XL

α1
,

0 = k
Xi−1Xi

αi−1αi
�X1...Xi−1...XL

α1...αi−1
+

∑
αi+1

rXiXi+1
αiαi+1

�X1...XiXi+1...XL
α1...αiαi+1

−
(

rXi−1Xi
αi−1αi

+
∑
αi+1

k
XiXi+1

αiαi+1

)
�X1...Xi ...XL

α1...αi
, 2 � i � L − 2,

0 = k
XL−2XL−1

αL−2αL−1
�X1...XL−2...XL

α1...αL−2
−

(
rXL−2XL−1

αL−2αL−1
+

∑
αL

k
XL−1XL

αL−1αL

)
�X1...XL−1XL

α1...αL−1
,

PX1...XL
α1...αL

(t → ∞) = k
XL−1XL

αL−1αL
�X1...XL−1XL

α1...αL−1
. (A2)

Here
∫ +∞

0
d
dt PX1...Xi ...XL

α1...αi
dt = 0 for any 1 < i < L. �x = ∫ ∞

0 Pxdt is precisely the average residence time at the state x (see
Appendix A of Ref. [20]). One can solve these equations numerically to obtain PX1...XL

α1...αL
(t → ∞) and directly give the site-specific

fidelity Fi.
Fi can be numerically computed for any given kinetic parameters. It can also be calculated analytically, though approximately,

under some restrictive conditions on the parameters which seem quite reasonable for real DNA replications. That is, (a) k
XiXi+1

RiRi+1
�

k
XiXi+1

RiWi+1
, (b) k

XiXi+1

WiWi+1
≈ 0s−1, and (c) k

XiXi+1

RiRi+1
� rXi−1Xi

Ri−1Ri
, rXi−1Xi

Wi−1Ri
. Under such conditions, one can get the approximate expressions

of the true fidelity, as given by Eqs. (1)–(5). Details can be found in SM Sec. I A [21].

APPENDIX B: THE UNIQUE REDUCTION OF THE MULTISTEP SCHEME TO THE MINIMAL SCHEME

The FP method can also be applied to more complex reaction schemes such as the multistep scheme in Fig. 3. These schemes
can be reduced uniquely to the minimal scheme Fig. 1 and hence the true fidelity F can be calculated by Eqs. (1)–(5). Here we
take the scheme Fig. 3(b) as an example to illustrate the reduction procedure.
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Similar to Appendix A, one can write the master equations for all the states in the reaction scheme of replicating a template
X1...XL and integrate these equations to give the sequence distribution of the final products PX1...XL

α1...αL
(t → ∞). Here we only

show the integrated equations for the variables �
X1...Xi ...XL
α1...αi,2

, ..., �
X1...Xi ...XL
α1...αi,N

, �X1...Xi ...XL
α1...αi,p [�X1...Xi ...XL

α1,...αi,x corresponds to ExDi in Fig. 3(b),
x = 2...N, p]:

0 = kXi−1Xi

αi−1αi,1
�X1...Xi−1...XL

α1...αi−1,p + rXi−1Xi

αi−1αi,2
�

X1...Xi ...XL
α1...αi,3

− (
kXi−1Xi

αi−1αi,2
+ rXi−1Xi

αi−1αi,1

)
�

X1...Xi ...XL
α1...αi,2

,

0 = kXi−1Xi

αi−1αi, j−1�
X1...Xi ...XL
α1...αi, j−1 + rXi−1Xi

αi−1αi, j�
X1...Xi ...XL
α1...αi, j+1 − (

kXi−1Xi
αi−1αi, j + rXi−1Xi

αi−1αi, j−1

)
�

X1...Xi ...XL
α1...αi, j , 2 < j < N, (B1)

0 = kXi−1Xi

αi−1αi,N−1�
X1...Xi ...XL
α1...αi,N−1 − (

kXi−1Xi
αi−1αi,N

+ rXi−1Xi

αi−1αi,N−1

)
�

X1...Xi ...XL
α1...αi,N

,

and

0 = kXi−1Xi
αi−1αi,N

�
X1...Xi ...XL
α1...αi,N

+
∑
αi+1

rXiXi+1
αiαi+1,1

�
X1...Xi+1...XL

α1...αi+1,2
−

∑
αi+1

kXiXi+1
αiαi+1,1

�X1...Xi ...XL
α1...αi,p . (B2)

Here kXi−1Xi
αi−1αi,x, rXi−1Xi

αi−1αi,x correspond to kx,i, rx,i in Fig. 3(b). According to Eq. (B1), the variables �
X1...Xi ...XL
α1...αi,2

...�
X1...Xi ...XL
α1...αi,N

can be

solved as functions of �
X1...Xi−1...XL
α1...αi−1,p . There is a similar system of equations for �

X1...Xi+1...XL

α1...αi+1,2
...�

X1...Xi+1...XL
α1...αi+1,N

, and �
X1...Xi+1...XL

α1...αi+1,2
can also

be solved as a function of �X1...Xi ...XL
α1...αi,p . So Eq. (B2) can be rewritten as

0 = k∗Xi−1Xi
αi−1αi

�X1...Xi−1...XL
α1...αi−1,p −

∑
αi+1

k∗XiXi+1
αiαi+1

�X1...Xi ...XL
α1...αi,p , (B3)

with k∗ given by Eq. (7). Comparing Eq. (B3) with Eq. (A2), one can identify k∗ as the effective incorporation rate (k∗Xi−1Xi
αi−1αi

=
k

Xi−1Xi

αi−1αi
, if r = 0). No approximations, such as the steady-state assumption or the quasiequilibrium assumption, are needed in the

reduction procedure. It should be noted that the above reduction is unique in the sense that other reduction procedure eliminating
�X1...Xi ...XL

α1...αi,p (i = 1, . . . , L) will lead to equations much different from Eq. (A2). For example, the reduced integrated equation with

retained �
X1...Xi ...XL
α1...αi,N

is

0 = k′Xi−1Xi

αi−1αi,N−1kXi−2Xi−1
αi−2αi−1,N∑

αi
k′Xi−1Xi

αi−1αi,N−1

�
X1...Xi−1...XL
α1...αi−1,N

− (
r′Xi−1Xi

αi−1αi,N−1 + kXi−1Xi
αi−1αi,N

)
�

X1...Xi ...XL
α1...αi,N

+ k′Xi−1Xi

αi−1αi,N−1

[∑
αi

(
r′Xi−1Xi

αi−1αi,N−1�
X1...Xi ...XL
α1...αi,N

)]∑
αi

k′Xi−1Xi

αi−1αi,N−1

.

(B4)

k′
N−1, r′

N−1 is given by Eq. (7). The form of Eq. (B4) is totally different from Eqs. (B3) and (A2), so no effective incorporation
rates can be properly defined and Eqs. (2) and (A2) cannot be used to calculate the fidelity.

Similarly, the complex scheme Fig. 3(a) can also be mapped to Fig. 1 by the same logic. One can write the complete system
of the integrated equations, and eliminate �

X1...Xi ...XL
α1...αi,2

, . . . , �
X1...Xi ...XL
α1...αi,N

(corresponding to E2Di, . . . , EN Di) while retain �X1...Xi ...XL
α1...αi,p

(corresponding to EpDi). This procedure leads to exactly the same equations as Eq. (A2) (with only �X1...Xi ...XL
α1...αi

replaced by
�X1...Xi ...XL

α1...αi,p ), which defines the effective incorporation rate and the effective excision rate rigorously [Eqs. (7) and (8)] and thus the
probability distribution of the final products PX1...XL

α1...αL
(t → ∞) can be calculated in terms of these effective rates. Other reduction

procedures which eliminates �X1...Xi ...XL
α1...αi,p will result in equations totally different from Eq. (A2) and thus no effective rates can be

properly defined.
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