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Nonequilibrium model of short-range repression in gene transcription regulation
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Transcription factors are proteins that regulate gene activity by activating or repressing gene transcription. A
special class of transcriptional repressors operates via a short-range mechanism, making local DNA regions
inaccessible to binding by activators, and thus providing an indirect repressive action on the target gene.
This mechanism is commonly modeled assuming that repressors interact with DNA under thermodynamic
equilibrium and neglecting some configurations of the gene regulatory region. We elaborate on a more general
nonequilibrium model of short-range repression using the graph formalism for transitions between gene states,
and we apply analytical calculations to compare it with the equilibrium model in terms of the repression strength
and expression noise. In contrast to the equilibrium approach, the new model allows us to separate two basic
mechanisms of short-range repression. The first mechanism is associated with the recruiting of factors that
mediate chromatin condensation, and the second one concerns the blocking of factors that mediate chromatin
loosening. The nonequilibrium model demonstrates better performance on previously published gene expression
data obtained for transcription factors controlling Drosophila development, and furthermore it predicts that the
first repression mechanism is the most favorable in this system. The presented approach can be scaled to larger
gene networks and can be used to infer specific modes and parameters of transcriptional regulation from gene
expression data.
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I. INTRODUCTION

Gene regulation is crucial for understanding many biolog-
ical processes [1]. There is a growing need for quantitative
models of gene regulation to describe the increasing amount
of experimental data obtained with various data acquisi-
tion techniques [2–4]. A variety of data-driven modeling
approaches have been developed to describe the spatiotem-
poral dynamics of the expression products (mRNA and
proteins) in gene networks operating in various model or-
ganisms, including Boolean models, continuous models based
on reaction-diffusion equations, models based on statistical
thermodynamics, and stochastic models [5–14].

Thermodynamics-based models are the next step after phe-
nomenological gene expression models, providing enough
details for calculating gene expression levels from a DNA
sequence while reducing the potentially huge number of
free parameters by imposing equilibrium constraints on gene
regulation. Transcriptional regulation is performed by tran-
scription factors (TFs), which bind multiple energetically
preferable binding sites within the DNA regulatory regions
and form specific molecular configurations of the regulatory
DNA-protein complexes. The thermodynamics-based models
calculate the probabilities of these configurations under ther-
modynamic equilibrium conditions [15].

Relating the regulatory DNA sequence to the target gene
activity, some models assume that certain DNA-bound TFs
(activators) facilitate the association of cofactors that help
to surpass an energy barrier to initiate transcription [16,17].
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Other models consider the basal promoter of the target gene
as a binding site for the basal transcriptional machinery, con-
sidering this binding site in addition to the TF binding sites
from the regulatory sequence, and they calculate the expres-
sion rate as proportional to the fractional occupancy of the
promoter [18].

Thermodynamic models based on the assumption of ther-
modynamic equilibrium, which requires that there is no net
macroscopic flow of energy, are widely used to describe gene
regulation [18–21]. However, gene expression and its regula-
tion implicate several energy dissipating mechanisms, such as
reorganization of chromatin, the assembly and movement of
nucleosomes, the post-translational modifications of histones,
RNA synthesis, etc. [22]. These mechanisms consume energy,
which drives the regulation of gene expression away from
equilibrium. For example, single-molecule data show that
nonequilibrium mechanisms driven by transcription initiation
rule out simple operator occupancy models of gene regulation
in living E. coli cells [23]. Several attempts were made to build
models that take into account nonequilibrium mechanisms
[24,25], and a unifying graph formalism for the nonequilib-
rium Markovian chain based modeling was developed [26,27],
which we actively use in our work.

TFs that regulate gene activity split into activators and re-
pressors of target genes. Although the molecular mechanisms
by which activators and repressors regulate gene activity
in metazoa, and in particular in such model organisms as
Drosophila, are not fully understood, evidence suggests that
DNA-bound activators recruit cofactors, or “adaptor factors”
[16], that facilitate the binding of the basal transcriptional ma-
chinery to the promoter via an enhancer-promotor loop, and
thus they initiate transcription [28,29]. DNA-bound repressors
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recruit cofactors that induce histone deacetylation, thereby
facilitating chromatin compaction [30–32]. Repressive TFs
are classified into long- and short-range repressors, depend-
ing on the range of chromatin compaction provided by their
associated cofactors [30,33]. Short-range cofactors lead to the
local deacetylation of nucleosomes and chromatin condensa-
tion in the vicinity of a bound repressor. Thereby, short-range
repressors displace neighboring activators and indirectly in-
hibit gene activation. Drosophila CtBP is an example of such
a cofactor, associated with the short-range repressors Giant,
Krüppel, Knirps, and Snail [34]. It is assumed that long-range
corepressors are triggered locally, but polymerize and spread
along chromatin, leading to repression of a large chromo-
somal locus that may comprise distant enhancers and gene
promoters [30]. Groucho is an example of a long-range core-
pressor associated with the long-range repressor Hairy in early
Drosophila segmentation [31,32]. It was suggested that short-
range repression is important for maintaining the autonomous
functioning of multiple enhancers involved in the regulation
of Drosophila development [33]. Short-range repression was
implemented in the equilibrium thermodynamic models de-
scribing the regulation of developmental genes [17–20,35,36].

Current data allow a relationship to be established between
the presence of repressors and increased histone density of
targeted enhancer regions, but there are no specific details of
the putative interaction between the repressor and the cofac-
tor responsible for chromatin compactification [29–32]. We
consider two possible scenarios for this interaction, and we
call them mechanisms of short-range repression. In the first
mechanism, the repressor recruits cofactors that promote local
chromatin condensation but does not control the stability of
the condensed state. In the second one, the repressor does not
mediate the initiation of chromatin condensation but stabilizes
this state when it is formed. In this study, we examine these
two short-range repression mechanisms, formalizing them in
terms of rates of specific processes in a simple model of gene
regulation. We show that the equilibrium formalism does not
allow distinguishing between the mechanisms at the level of
mean mRNA copy number transcribed from the target gene,
and the nonequilibrium model must be used for that.

We formulate a minimal model that can incorporate short-
range repression in order to get feasible analytical results. We
compare the equilibrium and nonequilibrium versions of the
model in terms of the repression strength and gene expression
noise, and we demonstrate the advantages of the nonequilib-
rium approach. Using previously published gene expression
data [19], we show that the nonequilibrium model outper-
forms the equilibrium one and predicts the first mechanism
of short-repression as preferable. The main goal of our work
is to show that the nonequilibrium model provides biophysical
insights into the mechanisms of short-range repression, which
cannot be obtained from an equilibrium model.

II. MODELS OF TRANSCRIPTIONAL REGULATION
WITH SHORT-RANGE REPRESSION

A. Regulation of gene transcription

We consider a simple regulatory region in the DNA that
controls transcription of one gene [Fig. 1(a)]. The region
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FIG. 1. Model of gene expression under the influence of a reg-
ulatory region consisting of two binding sites. (a) Schematic of
transcription. (b) Full graph of transitions between the regulatory
region states (called “gene states” in what follows). (c) Reduced
transition graph considered in the equilibrium approximation. Red
circles denote bound activators, blue squares denote bound repres-
sors, and teal pentagons denote nucleosomes formed at the activator
site, making this site inaccessible for the activator. Edge labels denote
rates of transitions.

consists of two transcription factor binding sites, one for an
activator and one for a short-range repressor. The regulatory
region can be in six different states [Fig. 1(b)]:

(i) Activator and repressor sites are free.
(ii) Activator is bound, repressor site is free.
(iii) Both activator and repressor are bound.
(iv) Activator site is free, repressor is bound.
(v) Activator site is inaccessible (covered by nucleosome),

repressor is bound.
(vi) Activator site is inaccessible, repressor site is free.
At each state i (1 � i � 6), messenger RNA (mRNA) is

produced on the gene at a rate vi and degrades at a constant
rate γ [Fig. 1(a)]. We assume that the binding and unbinding
rates of the activator (a, b) are independent of whether the
repressor is bound or not, and the same rates for the repressor
(c, d) do not depend on the presence of the activator or nucle-
osome on their site. The repression mechanism in the model
is expressed by the fact that the bound repressor increases
the occupancy of the activator site by the nucleosome, so
the chromatin remodeling rates in the absence (k1, k2) and
presence (k3, k4) of the repressor are different. The association
rates a and c absorb concentrations of the activator ([A]) and
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repressor ([R]) in the cell, so that

a = a0[A] and c = c0[R], (1)

with some proportionality constants a0 and c0 defined by the
specificity of the binding sites and the site search kinetics
of TFs.

The described model [model based on Figs. 1(a) and 1(b)]
is inherently nonequilibrium even in a steady state unless a
detailed balance holds. The detailed balance is a fundamental
constraint on equilibrium systems, which requires the forward
probability flow from one state to another to be the same as
the backward one. Applying the detailed balance to this model
results in the absence of repression. This is because, under this
assumption, the probability flow to the state with the closed
activator site does not depend on the presence of a repressor
on its site, as we will discuss in more detail later. To include
the short-range repression mechanism in the equilibrium ther-
modynamic framework, models were formulated based on a
reduced state transition graph, in which the sixth state was
omitted [Fig. 1(c)] [18,20,35]. These models always satisfy
the detailed balance in a steady state. In the reduced graph,
the bound repressor is a prerequisite for the probability flow to
the state with the closed activator site, thus making repression
possible under the detailed balance.

The shift from the full graph from Fig. 1(b) to the reduced
graph from Fig. 1(c) is biologically justified only if a local
chromatin condensation in the vicinity of the activator site
is negligible in the absence of a bound repressor. This as-
sumption should be considered too restrictive, especially in
early Drosophila segmentation, since the repressor considered
in the model is most likely not the exclusive DNA-binding
partner of the chromatin remodeling cofactors responsible for
the local chromatin compaction. As a developmental process,
Drosophila segmentation is controlled by multiple enhancers
containing multiple binding sites for several short- and long-
range repressors [29]. These binding sites are tightly packed
and show essential overlap [37], so it is reasonable to regard
any given repressive TF as operating on the background of
other local DNA-bound repressors that may recruit histone-
modifying enzymes in the same local vicinity. Moreover, as
we pointed out above, this reduction of the state transition
graph historically appeared as a byproduct of the modeling
methodology and was not based on biological data.

In what follows, we investigate a more general model
based on the full transition graph [Figs. 1(a) and 1(b)] in the
nonequilibrium context, referring to it as the “nonequilibrium
model,” and we compare it to the model based on the reduced
graph [Figs. 1(a) and 1(c)] under the detailed balance, refer-
ring to the latter as the “equilibrium model.”

It should be mentioned that the detailed balance is a nec-
essary but not sufficient condition for the system to be at
equilibrium. In a genuine equilibrium system, the ratio of
the forward and backward rates, e.g., the rates a and b of
transitions between states 1 and 2 in Fig. 1, comes from the
Boltzmann distribution:

a

b
∼ e−�W12 ,

where �W12 is the difference in the Gibbs free energy be-
tween the two states. If mechanisms associated with energy

dissipation participate in transitions between some pairs of
connected states, the system is away from equilibrium. We
leave the deviation of rate constants outside the scope of
our study and consider the equilibrium only in terms of the
detailed balance.

B. Gene state probabilities

The change in gene state probabilities over time is defined
by the Laplacian matrix L of the transition graph as follows:

ṗ = Lp, (2)

where p(t ) = {pi(t )}m
i=1 is the vector of gene state probabili-

ties, m is the total number of the states (m = 6 and 5 for the
full and reduced graphs, respectively), Lii is the negative sum
of all outgoing edge labels from vertex i, and Li j is equal to the
edge label from vertex j to i if this edge exists and 0 otherwise.
The steady-state solution p∗ = p(t → ∞) of Eq. (2) belongs
to the Laplacian matrix kernel, which is one-dimensional in
the case of a strongly connected graph:

p∗ ∈ ker L, dim ker L = 1, ker L = span{ρ∗}. (3)

The probability vector p∗ is obtained from ρ∗ by normaliza-
tion, ensuring that the sum of all vector components is equal
to 1.

In the general case, component ρ∗
i of the Laplacian matrix

kernel element ρ∗ is equal to the sum of products of the edge
labels of all spanning trees (�i) rooted at vertex i [38]:

ρ∗
i =

∑
θ∈�i

( ∏
j

r→l∈θ

r

)
. (4)

If the graph represents a system that reaches thermody-
namic equilibrium, the detailed balance must be satisfied. This
means that, for each forward transition from state i to state j
with the rate ri→ j , there is a backward one with the rate r j→i,
and the following equality holds:

ρ∗
j = ri→ j

r j→i
ρ∗

i , (5)

which represents the equivalence of the forward and backward
probability flows. Using this equation, the stationary probabil-
ities of all states in the equilibrium system from Fig. 1(c) can
be easily found, and these probabilities depend only on the
ratios of forward and backward transition rates [see Eq. (A1)
in the Appendix]. This is not true for the nonequilibrium
system from Fig. 1(b), where all probabilities depend on each
transition rate separately [see Eq. (A2)]. Application of the
detailed balance (5) to the nonequilibrium system yields the
equality

k1

k2
= k3

k4
,

which means that the bound repressor does not make the
activator site less accessible than the unbound repressor state,
and therefore there is no repression in the full graph under the
detailed balance assumption.
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C. Master equation and distribution moments for the mRNA
copy number

A stochastic model of gene transcription can be formulated
as the master equation for the whole system, which includes
the regulatory region together with the mRNA copy number
transcribed from the gene, taking the following form:

ṗ(0) = (L − T )p(0) + Dp(1), (6a)

ṗ(n) = T p(n−1) + (L − T − nD)p(n)

+(n + 1)Dp(n+1), n � 1, (6b)

where p(n)(t ) = {p(n)
i (t )}m

i=1 is a vector of gene state proba-
bilities when the system contains n mRNA molecules, L is the
Laplacian matrix introduced before, T = diag{v1, v2, . . . , vm}
denotes mRNA production, D = diag{γ , γ , . . . , γ } denotes
mRNA degradation, and m is the total number of gene states.
The model (6) represents the standard chemical master equa-
tions derived from the basic principles [39]; similar models
can be found in many applications [40,41].

The total gene state probabilities are equal to the sum of
probabilities for all numbers of mRNA:

p(t ) =
∞∑

n=0

p(n)(t ), p∗ =
∞∑

n=0

p(n)(t → ∞).

Using the generating function method [42], all moments of the
mRNA copy number distribution can be found, and we have
the following solutions for the steady-state mean and variance:

μ = p∗ · v

γ
, (7)

σ 2 =
(

m∑
i=1

gi

)
+ μ − μ2, (8)

where v = {vi}, and g = 2[(L − 2D)−1T ][(L − D)−1T ]p∗. It
follows from (7) that the mean mRNA copy number in the
equilibrium system, similar to the state probabilities, depends
only on the ratios of transition rates. The mRNA variance in
both the equilibrium and nonequilibrium systems depends on
each transition rate separately.

D. Analysis and comparison of the models

Previous experimental studies showed that the short-range
repression by the TF Knirps can be associated with the in-
creased histone density of targeted regulatory regions in the
Drosophila genome, and two mechanisms were proposed to
explain this association [31]. One mechanism suggests that
Knirps recruits factors mediating chromatin condensation,
while the second mechanism invokes blocking of proteins
responsible for the loosening of chromatin. In terms of our
model, the contribution of the first mechanism to the total
repression is defined by the value of rate k3, while the con-
tribution of the second mechanism is defined by the value of
rate k4. Therefore, in this section we are focused on studying
the dependence of the model predictions for mean expression
levels and expression noise on k3 and k4 and whether this
dependence is symmetrical.

For simplicity, in what follows we assume that mRNA is
produced at a constant rate vA when the activator is bound,

i.e., the gene is either in state 2 or 3, and in all other states it
is produced at a basal rate v0 < vA:

vi =
{
vA if i = 2 or 3,

v0 otherwise. (9)

We compare the equilibrium and nonequilibrium models
of short-range repression by analyzing a repression factor CR,
which represents repression strength via the relative decrease
in mean mRNA copy number due to the presence of repressor,
as follows:

CR = μ0 − μ

μ0 − v0/γ
= 1 − p∗

2 + p∗
3

p∗
0,2

, (10)

where μ0 and p∗
0,2 denote the stationary mean mRNA copy

number and stationary probability of the activated state, re-
spectively, in a system without a repressor (c = 0 in Fig. 1),
while μ and p∗

2 + p∗
3 denote similar quantities when a repres-

sor is present. v0/γ in (10) is the stationary mean expression
level at the basal transcription rate. The resulting formula for
CR in terms of the stationary probabilities does not contain
v0 and vA. The repression factor values from the interval
0 � CR � 1 cover all levels of repression strength. Negative
CR values correspond to situations in which the repressor
effectively becomes an activator, so we do not analyze these
regimes.

The full expressions of CR in the nonequilibrium and equi-
librium models are given in the Appendix in Eqs. (A3) and
(A4), respectively. It follows from these expressions that the
repression factor in the nonequilibrium model is positive if
and only if

k3

k4
>

k1

k2
, (11)

and it is positive for all positive values of k3 and k4 in the
equilibrium system. If (11) does not hold, the presence of the
repressor (c �= 0) shifts the balance of the probability flow
in Fig. 1(b) away from the chromatin closed state, i.e., the
repressor acquires an activating function.

Just as for the mean mRNA copy number, the repression
factor in the equilibrium model depends only on the ratios of
forward and backward transition rates. Hence, its dependence
on k3 and k−1

4 is symmetrical, and the repression mechanisms
associated with these rates cannot be distinguished at the
level of mean mRNA in this model. In contrast, CR in the
nonequilibrium model depends on each transition rate sepa-
rately. Plotting CR as the function of k3 and k−1

4 in this model
for various values of other parameters reveals different levels
of repression strength at two limits, one corresponding to large
values of both k3 and k4 and the other to small values of both
rates (Fig. 2). This provides an asymmetric picture of the rate
dependence in the nonequilibrium case, in which an increase
in the rate of chromatin condensation (k3) appears as a more
efficient repression mechanism compared to a decrease in the
rate of chromatin loosening (k4).

We can distinguish between two different regimes for the
repression factor, separated by the dashed line in Fig. 2. CR

depends on k3 and k4 predominantly through the ratio k3/k4 at
small values of k−1

4 and is almost independent of k4 at large
values of k−1

4 . The critical value k∗
4 that approximately sepa-

rates these two cases can be estimated from the analysis of CR
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FIG. 2. Dependence of the repression factor CR in the nonequi-
librium model on k3 and k−1

4 for various values of other parameters.
The white regions correspond to negative CR. The horizontal dashed
line corresponds to the critical value k∗

4 described in the text. Param-
eter values (a, b, c, d , k1, k2) for each panel: (a) (100, 50, 1000, 2, 1,
100); (b) (100, 100, 400, 10, 1, 1000); (c) (3000, 2000, 800, 100, 0.1,
100); (d) (1200, 1800, 4000, 300, 0.01, 10). In all plots, γ = 1.

[see Eq. (A6)]. Values of k4 in the vicinity of k∗
4 correspond to

the cases when the repression is susceptible to both k3 and k4

and depends on these rates, not through their ratio.
Another qualitative difference between the equilibrium and

nonequilibrium models is that maximal repression in the equi-
librium model can be reached by varying k3 and k4 alone:

lim
k4→0

Ceq
R = lim

k3→∞
Ceq

R = 1,

while this is not true for the nonequilibrium model:

lim
k4→0

Cneq
R < lim

k3→∞
Cneq

R < 1, (12)

and the latter limit is independent of k4 [see Eqs. (A7) and
(A8)]. Additional parameters associated with the repressor
must be tuned to gain maximal repression in this model.
Namely, high concentrations of the repressor (a large value of
rate c) or high specificity of the repressor binding site (small
value of d) are additionally required:

lim
k3,c→∞

Cneq
R = lim

k3 → ∞,

d → 0

Cneq
R = lim

k4 → 0,

c → ∞

Cneq
R

= lim
k4,d→0

Cneq
R = 1. (13)

To understand how the repression mechanisms associated
with k3 and k4 influence the noise in gene expression, we
analyzed the Fano factor, or the variance-to-mean ratio, as
a function of these rates. The full analytical expression of
the Fano factor is cumbersome and is not given here. An
asymptotic analysis reveals that increasing the rate k3 yields
smaller Fano factor values than decreasing k4 in both models:

lim
k4→0

σ 2

μ
> lim

k3→∞
σ 2

μ
, (14)

FIG. 3. Dependence of the Fano factor on k3 and k−1
4 for various

values of other parameters in the nonequilibrium model. The white
lines show levels of constant repression factor CR (and, therefore,
constant mean expression). The white regions correspond to negative
CR. Parameter values for each panel consist of the values from Fig. 2
and the following values of (v0, vA): (a) (10, 100); (b) (10, 300);
(c) (20, 400); (d) (0, 200). In all plots, γ = 1.

and the latter limit is independent of k4. This is an in-
dication that the two repression mechanisms contribute to
gene expression noise asymmetrically in both equilibrium and
nonequilibrium models.

The simulation of the Fano factor dependence on k3 and
k−1

4 for various values of model parameters gives a visual
representation of this asymmetry (Figs. 3 and 4). The figures
show that repression due to a decrease in the probability
of chromatin loosening (large k−1

4 ) leads to much greater
noise than repression due to an increase in the probability of

FIG. 4. The same as in Fig. 3 but for the equilibrium model.
Parameter values for each panel are as in Figs. 2 and 3 except that
k1 and k2 should be omitted.
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FIG. 5. The asymmetry of the Fano factor as a function of the
repression factor for (a) the nonequilibrium model and (b) the equi-
librium model. The curves correspond to parameter values taken
from the captions of Figs. 3 (nonequilibrium model) and 4 (equi-
librium model) as indicated in the inset.

chromatin condensation (large k3), even at the same repression
factor levels.

We quantified the asymmetry of the Fano factor depen-
dence on k3 and k−1

4 as the ratio of its maximal to its minimal
value along the fixed repression factor level lines, and we
plotted this ratio as a function of the repression factor (Fig. 5).
The two models exhibit qualitatively different distributions of
this asymmetry over the repression levels. The asymmetry
in the nonequilibrium model has a maximum at moderate
repression levels (around CR = 0.5), while in the equilibrium
model this maximum is shifted to the large repression levels,
and, in the case of v0 = 0, this maximum is almost at CR = 1
[curve d in Fig. 5(b)].

III. APPLICATION TO GENE EXPRESSION DATA

We further analyze the difference between the equilibrium
and nonequilibrium models by applying the models to previ-
ously published data on gene expression in an experimental
setup that is very close to the system from Fig. 1(a) [19]. We
consider five genetic constructs from that experiment (con-
structs 1–5 from Fig. 2 in Ref. [19]) regulating the expression
of the reporter gene lacZ in transgenic Drosophila lines. Each
construct consists of a pair of sites binding the short-range
repressor Giant, a pair of sites binding the activating TF Twist,
and a pair of sites binding the activating TF Dorsal. The
activator sites are located next to each other, and the same
is true for the repressor sites. The constructs differ from each
other by the distance between the group of repressor sites and
the group of activator sites, which takes the following values
in constructs 1 through 5: 0, 25, 35, 50, and 60 base pairs.
The increasing distance between the activator and repressor
sites is associated with the reducing repression strength of
Giant. Following the authors of Ref. [19], we assume that
the two consecutive Giant binding sites are a single repressor
site and the four consecutive sites of the activating TFs are a
single activator site. Each construct corresponds to the system
depicted in Fig. 1(a) under this assumption, so we can apply
the modeling formalism described above.

The expression data for each construct contained the nor-
malized lacZ expression values for a set of normalized Giant
concentrations [19]. We preprocessed these data obtaining
estimates of the absolute lacZ expression levels in the mRNA
copy numbers, as described in the Appendix. Next, we split

the processed expression values into 20 bins corresponding
to different Giant concentrations, and we calculated the mean
and variance within each bin, separately for each construct.
We fitted the analytically derived mean and variance from (7)
and (8) to these experimental mean and variance values.

A. Comparison of models

During the model fitting, we optimized parameter values
by minimizing the root-mean-square error (RMSE) as an ob-
jective function:

RMSE =
√√√√ 1

2n

n∑
i=1

((μi − μ̃i )2 + (σi − σ̃i )2), (15)

where μ̃i and σ̃i denote the experimental mean and standard
deviation values for the ith bin (ith value of Giant concentra-
tion), μi and σi are the model predictions of these quantities
from (7) and (8), and n is the total number of bins. We
discarded several bins corresponding to large Giant concen-
trations from the data for constructs 4 and 5, as the expression
variance demonstrated an anomalous jump in these bins,
which we interpret either as an artifact or as associated with
an unknown regulator (see the discussion in the Appendix).

The experimentally measured values of Giant concentra-
tion are used as the [R] concentration in (1), with c0 as a
free parameter. As Twist and Dorsal are ubiquitously ex-
pressed transcription factors, we do not estimate the activator
concentration [A] explicitly and leave a as a free parameter
[19]. To reduce the number of free parameters, we set the
basal rate of mRNA production to zero (v0 = 0). Therefore,
the full list of free parameters consists of transition rates
(a, b, c0, d, k3, and k4 in both models, and additionally k1

and k2 in the nonequilibrium model), transcription rate vA, and
mRNA degradation rate γ . As the formulas for the mean and
variance will not change if all parameters are divided by γ ,
we set γ = 1 and interpret other parameters as divided by γ .
We assume that rates k3 and k4, which define the efficacy of
the repressor, are specific for each construct, while all other
model parameters are the same for all constructs.

We performed 200 optimization runs for each model using
the dual annealing algorithm from SciPy library [43,44]. The
best solutions in both models show a good correspondence
to the data (Fig. 6). The two solutions are visually close to
each other, but the nonequilibrium one demonstrates slightly
smaller errors for most constructs in the data and for most Gt
concentrations (Fig. S1 in the Supplemental Material [45]).
Another qualitative difference between the models is that the
nonequilibrium model effectively samples a wider range of
Fano factor asymmetry values in parameter optimization (Fig.
S2 [45]).

To compare the models quantitatively, but reduce possible
overfitting, we used an ensemble approach and analyzed all
optimization results simultaneously, not only the best one. In
the majority of optimization runs, the nonequilibrium model
resulted in smaller RMSE values than the minimal RMSE
obtained in the equilibrium model, and this holds both for
the mean and for the variance part of the objective function
separately (Fig. 7). The optimization for the nonequilibrium
model yielded RMSE = 1.63 in most cases (154 runs out of
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FIG. 6. Mean expression and standard deviation in the best solutions found by numerical optimization in the nonequilibrium and
equilibrium models in comparison with data. Gt, normalized Giant concentration. The filled area in the first row of the panels shows the
μ ± σ interval. Columns (a, f)–(e, j) correspond to constructs one through five, respectively, in the data.

200), while the lowest RMSE value obtained for the equilib-
rium model was 1.7.

As the nonequilibrium model has two additional parame-
ters (k1 and k2) compared to the equilibrium one, we scored
the performance of the two models using the Akaike infor-
mation criterion with correction for small data samples [46]:

AICc = 2k + 2n ln
(
RMSE2

min

) + 2k(k + 1)

2n − k − 1
, (16)

where k is the number of model parameters and 2n is the
total number of data points. AICc scores for the nonequilib-
rium and equilibrium models are equal to 191.2 and 200.8,
respectively.

Figure 6 shows that the standard deviation fit is not satis-
factory for construct 4 at moderate concentrations of Giant.
To ensure that this flaw does not affect our conclusions, we
performed additional fits using data without construct 4. We
obtained similar parameter values and confirmed the advan-
tage of the nonequilibrium model (Fig. S3 [45]).

We got similar results when the models were fitted only by
their mean values, i.e., when noise was discarded in the data.
In this case, the objective function is obtained from (15) by
removing the difference between standard deviations.

FIG. 7. Violin plots for RMSE values (a) and mean square error
of the mean and standard deviation separately (b) obtained in 200
optimization runs in the equilibrium and nonequilibrium models.

The nonequilibrium model has five parameters more in this
setting, because the equilibrium model depends only on the
ratios of the forward and backward transition rates at the level
of the mean. However, the AICc score for the nonequilibrium
model (74.6) is significantly lower than the score for the
equilibrium model (117.4). We additionally fitted using the
functional that contains the inverse variance as weights, as
follows:

RMSE =
√√√√1

n

n∑
i=1

(μi − μ̃i )2

σ̃ 2
i

. (17)

This computational experiment also resulted in better per-
formance of the nonequilibrium model compared to the
equilibrium one in terms of the AICc score (−314 versus
−287, respectively).

The nonequilibrium model reduces the RMSE score by
4% compared to the equilibrium case (Fig. 7), which can be
estimated as a relatively small value given the noisy gene
expression. However, as we show in Sec. III C, the main
advantage of the nonequilibrium approach is its ability to
distinguish between different mechanisms of repression.

B. Entropy production rate

The gene state transition graph can be related to the ther-
modynamic quantities by introducing the probability flux Fi j

from the ith to the jth state and corresponding thermodynamic
force Ai j [47]:

Fi j = piri→ j − p jr j→i, Ai j = ln
piri→ j

p jr j→i
, (18)

where, as before, pi denotes the probability of the ith state,
and ri→ j is the rate of transition from the ith to the jth state.
The detailed balance requires Fi j = Ai j = 0 for all i and j.
Using these variables, the internal entropy production rate can
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FIG. 8. Probability fluxes Fi j in the nonequilibrium model for
parameter values corresponding to the best fit and the first construct
in the data; Fa = 3.2 × 10−4, Fb = 3.6 × 10−4. These values were
calculated using γ = 0.4 × 10−2 s−1 (see the Appendix A 3).

be calculated as follows:

diS

dt
= 1

2
kB

∑
i, j

Fi jAi j, (19)

where S is the entropy and kB is the Boltzmann constant. This
expression can be rewritten in terms of the fundamental set
of the graph cycles emphasizing the key role of cycles in the
entropy production [27,48]. An increase in entropy indicates
irreversible processes that dissipate energy. The dissipation
power can then be estimated by multiplying the internal en-
tropy production rate by the ambient temperature.

To see how the detailed balance is broken in the nonequilib-
rium model, we visualized the probability fluxes Fi j in Fig. 8
for the parameter values corresponding to the first construct
in the data. The figure shows that the flux is nonzero between
each pair of states in the state transition graph, demonstrating
that the gene operates in a nonequilibrium regime. The total
dissipation power of the system from Fig. 8 is 2.3 × 10−23 W
at temperature T = 298 K, which approximately corresponds
to the standard free energy of one ATP hydrolysis reaction
(∼5 × 10−20 J [49]) expended each 2000 s. The small value
obtained in this estimate depends on the chosen data nor-
malization method and other approximations made in our
study, so it should be treated with caution. We can expect
a significant increase in the dissipation power in more real-
istic regulatory modules consisting of many sites for many
transcription factors. Similar results for parameter values cor-
responding to other constructs are shown in Figs. S13 and
S14 [45].

C. Distinguishing between short-range repression mechanisms

We showed above that the short-range repression mecha-
nisms associated with the rates k3 and k4 can be separated in
the nonequilibrium model both at the level of mean expression
and its variance, and we demonstrated that the repression
strength depends on these constants asymmetrically. In this
section, we use the nonequilibrium model and expression data
to identify which of these mechanisms is a primary source
of repression in the biological system. The first mechanism
is present if the rate values inferred from the data obey the
inequality k3 > k1, which means that the bound repressor
facilitates the recruiting of factors associated with chromatin

FIG. 9. Dependence of the construct-specific rates k3 and k4 on
the distance between the activator site and the repressor site as a
result of parameter optimization in the nonequilibrium model. The
dashed horizontal lines indicate values of the construct-independent
rates k1 and k2.

condensation. The second mechanism is present if k4 < k2,
which means that the bound repressor hampers the local loos-
ening of chromatin.

A typical relation between the rates as found from opti-
mization is shown in Fig. 9 for all constructs, i.e., for all
distances between the activator and repressor sites. The pat-
tern is that k3 > k1, and k3 decreases monotonically with an
increase in distance between the binding sites. This means
that the first mechanism is present in the system, and a larger
distance expectedly corresponds to the lower impact of this
mechanism on the total repression. On the other hand, the
decrease of k4 with distance is counterintuitive, since a more
distantly bound repressor should be less effective in holding
the condensed chromatin state on the activator site, thus lead-
ing to larger k4. Moreover, k4 > k2 for small distances, i.e.,
the condensed state becomes less stable in the presence of a
repressor.

A possible explanation for this behavior of k4 can be related
to a hypothesis that, in addition to providing the fixation of
the condensed chromatin state as a repression mechanism,
a repressor located too close to the activator site also can
destabilize this state by an independent mechanism. In this
case, the distance dependence of k4 and its alternating relation
to k2 in Fig. 9 can be an emergent property resulting from
the two counteracting mechanisms working simultaneously.
However, we believe that another explanation is more likely.
We observed a high correlation between values of k3 and k4

found in multiple optimization runs for a single construct
(Fig. S7 [45]), which can be attributed to a certain level of
practical nonidentifiability of these parameters (see the Ap-
pendix for more details). This correlation can have the same
nature as the correlation between k3 and k4 values for all the
constructs shown in Fig. 9. As k3 behaves more expectedly,
we may suggest that k3 serves as a more effective repression
parameter in the model, while k4 just follows the values of the
former as a less identifiable parameter.

Plotting the best-fit values of k3 and k4 in an analog of
Fig. 2 shows that the k4 values are in the vicinity of k∗

4 for
several constructs (Fig. S4 [45]). This means that the observed
correlation between k3 and k4 in the fit cannot be explained by
the dependence of the repression factor on k3 and k4 through
their ratio. The parameter values found by optimization for
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FIG. 10. Violin plots for RMSE values (a) and mean square error
of the mean and standard deviation (b) obtained in a set of 100 opti-
mization runs in the nonequilibrium model with fixed k4 (mechanism
1) and k3 (mechanism 2).

most constructs lie in a region where k3 and k4 are effectively
uncoupled in the repression factor.

To identify the mechanism primarily responsible for re-
pression and to get rid of possible nonidentifiability issues,
we performed parameter optimization in the nonequilibrium
model with either k3 or k4 fixed across the constructs. In the
first computational experiment, we set k4 = k2 and left k3 to
be construct-specific. This setting means that only the first
repression mechanism is present in the system. In the second
experiment, we set k3 = k1 and left k4 to be construct-specific,
so that repression in the system was only due to the second
mechanism. The optimization results showed that the model
with the first repression mechanism as the sole source of
repression is associated with a significantly smaller RMSE
than the model with the second mechanism (Fig. 10). This
suggests that repression by increasing k3 is more effective in
the nonequilibrium model for gene regulation by Giant.

D. Extended models

We investigated extended models implementing a modified
version of the state transition graph from Fig. 1(b), in which
the repressor binds its site in the presence of nucleosome
(transition from state 6 to state 5) with the rate c1 (c1 �= c)
and unbinds (transition from state 5 to state 6) with the rate
d1 (d1 �= d). This extension relies on a reasonable assumption
that the DNA compaction state alters the DNA binding and
unbinding kinetics of the repressor. We also considered a
possibility that the basal transcription rate v0 is not zero, and
we added this rate as an additional parameter to the extended
models. The modified transition graph can provide repression
under equilibrium conditions, so we keep all six states of the
graph in the extended equilibrium model.

We optimized the parameters in the extended models in
the same way as before (Sec. II of the supplemental material
[45]). The nonequilibrium model demonstrated better perfor-
mance on the expression data than the equilibrium one, both in
terms of the total error (Fig. S10 [45]) and AICc score, show-
ing an essentially better quantitative correspondence with the
data in the mean expression, but a slightly worse correspon-
dence in the expression variance (Figs. S10 and S11 [45]).
We simulated the two repression mechanisms by setting either
k3 = k1 or k4 = k2 in the extended nonequilibrium model,
and we performed the same computational experiment in the
extended equilibrium model, since the new equilibrium model
contains the same parameters as the nonequilibrium one and

allows ki separation in the variance. The first mechanism
was associated with a smaller error than the second one in
the nonequilibrium model, and the errors in the equilibrium
model were almost the same for both mechanisms and were
close to the error in the nonequilibrium model associated
with the second mechanism (Fig. S16 [45]). Therefore, the
mechanisms are indistinguishable in the extended equilibrium
model, and the first repression mechanism is more preferable
according to the nonequilibrium approach.

IV. DISCUSSION

Regulation of gene expression involves energy-dissipating
processes, therefore it operates away from equilibrium
[22]. However, quantitative models based on the assump-
tion that some of these processes stay in a thermodynamic
equilibrium showed tremendous success in describing spa-
tiotemporal expression patterns of many genes in many
organisms [7,8,12,35,36,50–52]. The equilibrium assumption
brings simplicity in terms of a reduced number of free pa-
rameters into the gene expression models, which already
incorporate quite a few details about gene regulation. The
costs for this simplification can only be determined by exam-
ining both equilibrium and nonequilibrium models in a truly
comparative study.

We formulated a simple model of gene regulation involv-
ing short-range repression, and we compared the equilibrium
and nonequilibrium representations of this model. We showed
that, under the choice of parameters as in Fig. 1, the full graph
including all possible states of the regulatory DNA region
is inherently nonequilibrium, because the introduction of de-
tailed balance into the graph leads to effectively no repression
in the system. This forces the use of a reduced state tran-
sition graph within the equilibrium framework, leaving one
regulatory state aside. Therefore, the use of the equilibrium
approximation for this system implies qualitative changes in
the full picture of gene transcription, and not only a smaller
number of parameters. Alternatively, one can apply the ex-
tended equilibrium model, which has all six states in the
transition graph, but this model requires a larger number of
free parameters.

As a short-range repressor provides local chromatin com-
paction, preventing the activator from binding DNA or from
recruiting additional factors that bind to the basal promoter,
two mechanisms can be distinguished for how this compaction
is achieved [31]. The repressor may recruit factors mediat-
ing chromatin condensation or block proteins responsible for
chromatin loosening. In the model, these two mechanisms can
be formalized with an increase in the rate k3 or a decrease
in the rate k4, respectively. The equilibrium model does not
separate these mechanisms at the level of the expression mean.

In contrast, we showed that the repression efficiency in the
nonequilibrium model depends on k3 and k−1

4 asymmetrically,
which means that only this formalism can be used to infer
a possible difference between the repression mechanisms.
On the other hand, both models are applicable in analyzing
the influence of the different repression mechanisms on the
expression noise, and they lead to the conclusion that the
k3-related mechanism provides less noisy expression.
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The qualitative difference in how the repression mecha-
nisms are implemented in the models also appears in the fact
that the maximal repression in the equilibrium model can be
achieved at either infinitely large k3 or infinitely small k4,
irrespective of the values of all other parameters. The nonequi-
librium model demands the binding and unbinding rates for
the repressor to be additionally tuned to gain the maximal
repression. Thus, the interaction between the repressor and
its binding site on the DNA comprises an independent source
for repression in the nonequilibrium model, which cannot be
compensated by any action of a bound repressor, in contrast
to the equilibrium formalism.

We showed that the nonequilibrium model better describes
gene expression data in the context of regulation by the
Giant transcription factor in Drosophila development. This
model is more accurate than the equilibrium one in estimat-
ing both the mean expression and expression variance of the
target gene. As the total number of free parameters in both
models is relatively large, our estimates of parameter values
demonstrate some variation. An efficient way to increase the
confidence in examining various hypotheses in this situation is
to use an ensemble approach, taking into account all possible
combinations of parameter values and corresponding model
performance scores in the analysis [13]. Moreover, most of
the parameter values found by parameter optimization yield
very close performance scores. We also reduced parameter
variation by fixing some parameters without affecting the
quality of fitting (see the Appendix).

Despite the fact that the quantitative measures indicate
outperformance of the nonequilibrium model over the equi-
librium one on the expression data, the solutions in the two
models are visually close. Therefore, the new model should
not be considered as a better descriptive tool, at least for the
chosen data, especially taking into account the larger num-
ber of parameters. However, the main advantage is that the
nonequilibrium model brings a possibility to verify biological
hypotheses that can be impossible to examine using the equi-
librium framework. We showed that the distinction between
two alternative mechanisms of repression on the expression
data is indeed possible in the nonequilibrium model, but not
in the equilibrium one.

The simulation of the two repression mechanisms on the
expression data reveals that the rate k3 is more preferable
as a repression parameter than k4. Therefore, the modeling
predicts that the short-range repression by Giant is most
probably associated with the recruiting of factors mediat-
ing chromatin condensation, rather than with the blocking
of proteins responsible for chromatin loosening. The prefer-
ence of this mechanism can theoretically be related to two
analytical results shown in our study. First, repression by
increasing k3 is stronger (in terms of the repression factor)
than by decreasing k4 in a wide range of values of other
parameters. Second, the k3-related repression provides lower
expression noise. Giant belongs to the TF family that regu-
lates the segmentation of the Drosophila embryo as part of
the embryonic developmental program, which is a process
involving highly coordinated expression patterns of many
genes. These specifics may require the selection of more
efficient and precise regulatory mechanisms in the course of
evolution.

Violation of the detailed balance in the fitted nonequilib-
rium model entails the internal production of entropy in time,
which in theory means the dissipation of energy in the system.
This energy flux is needed to maintain the system in a station-
ary state. The nonequilibrium model predicts a specific pattern
of the probability flux in the gene state transition graph.
Experimental estimates of the energy expenditure associated
with gene regulation can help validate these model predictions
or can be used as additional data for model calibration.

We used the nonequilibrium formalism to study short-
range repression in the context of a regulatory region with
a fairly simple architecture. This approach can straightfor-
wardly be generalized to more complex regulatory modules,
consisting of multiple activating and repressing sites and/or
involving cooperative interactions between TFs. The rise in
complexity leads to disadvantages of the increasing num-
ber of parameters in the model. This problem can partially
be solved by decomposing a complex interaction graph into
more or less independent modules so that each module can
be associated with a model of a moderate complexity [26].
For example, a similar categorization approach has proven
effective in finding basic building blocks that govern the logic
of how the TF-DNA molecular configurations are formed for
complex promoters [53]. Another way to generalize our model
is to estimate the gene state transition rates as functions of
microscopic parameters which would accommodate processes
associated with possible energy dissipation.

It is also important to improve our modeling results by
distinguishing between the intrinsic and extrinsic sources of
noise in the data. The models considered in this paper assume
that all observed variability is entirely intrinsic, i.e., it stems
from the stochastic nature of gene transcription and regula-
tion. Making this distinction may require more sophisticated
models as well as more advanced data, since the in situ data
we used for model validation have limitations in estimating
true concentration levels and their variability. However, we
confirmed the conclusions on the separation of short-range
repression mechanisms in the models fitted only to the mean
expression, so our results are reliable even after considering
the possible inaccuracy in treating noise in the data.

APPENDIX

1. Long formulas

Here, we show the components ρ∗
i of the Laplacian matrix

kernel from Eq. (4) normalized by ρ∗
1 . For the equilibrium

model,

ρ∗
1 = 1, ρ∗

2 = a

b
, ρ∗

3 = ac

bd
, ρ∗

4 = c

d
, ρ∗

5 = ck3

dk4
. (A1)

For the nonequilibrium model,

ρ∗
1 = 1, ρ∗

2 = a

b

(
1 − cα

F

)
,

ρ∗
3 = ac

bd

(
1 − (b + c)α

F

)
,

ρ∗
4 = c

d

(
1 − (b + c + d )α

F

)
,
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ρ∗
5 = ck3

dk4

(
1 −

(
b + c + d + s d

k3

)
α

F

)
,

ρ∗
6 = k3

k4

(
1 −

(
b + c + d + s k4+d

k3

)
α

F

)
, (A2)

where s = a + b + c + d , α = k3k2 − k4k1, and F =
s(dk2 + ck4 + k2k4) + (b + c + d )k2k3. The probabilities
of gene states are then p∗

i = ρ∗
i /

∑
ρ∗

i . Note that the detailed
balance holds if α = 0.

The repression factor in the nonequilibrium and equilib-
rium models takes the form

Cneq
R =

c
d

( k3
k4

− k1
k2

)
k4[s(c + d + k2) + uk1]

F
∑6

i=1 ρ∗
i

, (A3)

Ceq
R =

c
d

k3
k4(

1 + a
b

)(
1 + c

d

) + c
d

k3
k4

, (A4)

where u = b + c + d . Cneq
R and Ceq

R are the expressions for the
repression factor (10) for the systems in Figs. 1(b) and 1(c),
respectively.

To analyze the dependence of Cneq
R on k3 and k4, we express

it as follows:

Cneq
R = A

( k3
k4

− k1
k2

)
B + C k3

k4
+ D 1

k4

, (A5)

where coefficients A, B, C, and D do not depend of k3 and k4.
The critical value k∗

4 that delimits the asymptotic regimes in
which Cneq

R depends on k3 and k4 qualitatively differently can
be approximately estimated by equating the last term in the
denominator of (A5) to the first one:

k∗
4 = D

B
= sd[ak2 + b(k1 + k2)]

s(a + b)(c + k2) + (sb + ac)k1
. (A6)

The asymptotic forms of Cneq
R are as follows:

Cneq
R ∼

k4�k∗
4

Ak3

Ck3 + D
, Cneq

R ∼
k4 	 k∗

4 ,

k3 = O(k4 )

A
( k3

k4
− k1

k2

)
B + C k3

k4

.

Here, as before, s = a + b + c + d .
The full expressions for the limits of the repression factor

are

lim
k3→∞

Cneq
R = bc[s(c + d + k2) + uk1]

(c + d )[adk2 + bs(c + k2) + buk1]
, (A7)

lim
k4→0

Cneq
R = bck3[s(c + d + k2) + uk1]

(c + d ){dk2[s(a + b) + ak3] + bG} , (A8)

where G = s(dk1 + ck3 + k2k3) + uk1k3.

2. Experimental data processing

The experimental data contain lacZ mRNA concentrations
for various Giant concentrations, both in arbitrary units. For
each genetic construct, we split the lacZ mRNA concentra-
tions into 20 bins, with each bin corresponding to a narrow
range of Giant concentration, and calculated mean and vari-
ance within each bin. However, there is an anomalous jump

FIG. 11. Boxplots for parameter values obtained in 200 opti-
mization runs. Rates ki

3 and ki
4 denote k3 and k4 values for the ith

construct.

in the mean and variance in six bins with high Giant con-
centrations in constructs 4 and 5, which is likely an artifact
caused by the small number of data points in those domains.
For this reason, we removed from the analysis these bins with
the data at [Gt] > 0.65 and [Gt] > 0.7 in constructs 4 and 5,
respectively. At the end of this procedure, we have 20 bins for
each construct 1, 2, and 3 and 14 bins for constructs 4 and 5;
the total number of bins n = 88.

The Fano factor calculated from the estimated mean and
variance was much less than 1 for each bin. This prevents
us from using the data in the original form for stochastic
modeling, since the simplest deregulated model of mRNA
production has the Poisson distribution as the stationary so-
lution, which has a Fano factor equal to 1, while the presence
of regulation should lead to the factor values exceeding 1 [54].
We assumed that the lacZ expression in the bin associated with
the absence of Giant ([Gt] = 0) corresponds to this simplest
deregulated case. Therefore, we scaled all lacZ expression
values from the data with a scaling coefficient that makes
the minimal Fano factor (at zero Giant concentration) equal
to 1. We used the same scaling coefficient for all constructs.
The resulting lacZ expression values can be interpreted as
estimates of the mRNA copy number, and they have the
same order of magnitude as those reported for lacZ in the
literature [55].

3. Parameter identification

The parameter optimization in the equilibrium and
nonequilibrium models produced a wide range of estimated
parameter values (Fig. 11). As a consequence of parame-
ter nonidentifiability, we observed high correlation between
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FIG. 12. Boxplots for parameter values obtained in 200 op-
timization runs in the nonequilibrium model with a = 104

and b = 103.

several parameters. In particular, ki
3 and ki

4 exhibit high posi-
tive correlation for each construct i (Fig. S7 [45]).

To improve the identifiability, we fixed values of a and b,
which were involved in correlations with other parameters,
using estimates for these parameters obtained from the lit-

erature. We write a = [A]/(τγ ), where τ is the typical time
required for one activator molecule to find its binding site, and
division by γ appears because we set γ = 1 in all optimization
runs, as discussed in the main text. We use the following
estimates: τ ≈ 100 s [56], [A] ≈ 104 is an estimate of pro-
tein copy number per blastoderm Drosophila nucleus for TFs
involved in the segmentation gene network [57,58], and the
lacZ mRNA half-life of 3 min leads to γ ≈ 0.4 × 10−2 s−1

[59]. This yields an approximate value a ≈ 104, which we use
as the fixed value for a. We set b = 103 since our optimization
runs with free a and b typically produced a one-magnitude
difference between these rates.

With fixed a and b (in addition to fixed γ ), the optimization
resulted in much more precise estimates of the remaining
parameters, which essentially solved the nonidentifiability
problem (Fig. 12). In particular, ki

3 and ki
4 values also show

a small variation for each construct i. However, since these
rates are allowed to change from construct to construct, we
still see the positive correlation between k3 and k4 across the
constructs. Therefore, we believe that this correlation is of
the same nature as the correlation observed for each construct
when these rates were free.
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