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Diffusive wave dynamics beyond the continuum limit
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Scientists have observed and studied diffusive waves in contexts as disparate as population genetics and
cell signaling. Often, these waves are propagated by discrete entities or agents, such as individual cells in
the case of cell signaling. For a broad class of diffusive waves, we characterize the transition between the
collective propagation of diffusive waves, in which the wave speed is well described by continuum theory, and
the propagation of diffusive waves by individual agents. We show that this transition depends heavily on the
dimensionality of the system in which the wave propagates and that disordered systems yield dynamics largely
consistent with lattice systems. In some system dimensionalities, the intuition that closely packed sources more

accurately mimic a continuum can be grossly violated.
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Partial differential equations (PDEs) pervade quantitative
studies of biological phenomena. One famous success story of
PDEs in biology is the study of diffusive waves, first begun by
Luther in 1906 [1] and furthered by Fisher and Kolmogorov
et al. in 1937 [2,3]. In the typical setting, a homogeneous en-
vironment can propagate a diffusive wave by picking up some
diffusing element, an organism or a signaling molecule, and
producing more of that same element, through reproduction
or secretion of the same entity. The process of diffusion and
reproduction can be represented by a partial differential equa-
tion, the dynamics solved by way of a traveling wave ansatz,
and the wave speed deduced analytically (in certain scenar-
ios). This type of machinery has been adopted to understand
a variety of traveling waves (unstable, metastable, bistable,
and pulsatile) governing apoptosis [4], ecological range ex-
pansions [2,3,5-7], cell signaling [8—10], mitosis [11], and
microbial consortia [12,13].

However, in many of these applications, one is led to
believe that the underlying PDE models hold in the case of
discrete sources. For instance, cell signaling waves are propa-
gated by discrete cells [8,9] while mitotic and calcium waves
in Xenopus are paced by discrete sources (nuclei and receptor
channels, respectively) [10,14—18]. In such cases, whether
the wave of interest is propagating into a bistable, unstable,
or excitable medium, it is not necessarily valid to assume a
homogeneous environment when calculating the properties of
the diffusive wave; one must instead solve the dynamics for a
different set of PDEs with discrete sources.

Here, for a broad class of unstable and metastable wave
models, we show that the discreteness of source terms can
drastically alter the diffusive wave dynamics. We find that
in many cases, one can characterize these corrections analyti-
cally for both ordered and disordered systems. The corrections

*arielamir @seas.harvard.edu

2470-0045/2021/104(1)/014406(14)

014406-1

can be dramatic, especially in the case of Fisher wave dynam-
ics. In the extreme limit of very disparate sources, we find the
Fisher wave speed is independent of the source density and the
diffusion constant. By examining the effects of discreteness,
we see a clear distinction between diffusive waves that can
be driven by activation at or beyond the wave front (termed
“pulled waves” in the literature) and those that rely on concen-
tration build up from sources behind the front (termed “pushed
waves”). In the extreme limit of sparse sources, we show that
pulled waves are driven by self-amplification while pushed
waves rely on excitation from a nearest neighbor. We find that
the effects of discreteness on asymptotic wave propagation
are dimension dependent. For systems with diffusion in two
dimensions, packing sources ever closer does not make the
system behave more like a continuum; for diffusion in three
dimensions, packing sources ever closer makes the system be-
have less like a continuum. We also characterize the effects of
disorder on diffusive wave propagation, finding that for many
system dimensionalities a simple lattice model suffices for
understanding the dynamics of diffusive waves in disordered
systems.

I. MODEL CONSTRUCTION

To begin, we consider a model of diffusive wave prop-
agation in which we monitor the concentration ¢ of some
elements, e.g., signaling molecules in the case of cell sig-
naling, organisms in the case of Fisher waves, which diffuse
with diffusion constant D. In addition to basic diffusion,
the elements can be secreted by the background according
to some concentration-dependent production function F(c).
Combining production with diffusion, we arrive at a generic
model for the propagation of the concentration in time:

ac 2
EZDV c+ F(c). (D)
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Concretely, one could imagine a background of cells of
density p which secrete diffusible molecules at some rate
a above a certain threshold concentration Cy,; in this case,
with ®[. .. ] the Heaviside step function F' (¢) = ap®[c — Cy]
[9,19,20]. Inspired by ecology, Fisher and Kolmogorov et al.
considered production according to a logistic growth process
in which F(c) = ac(1 — ¢) [2,3]. Importantly, the dynamics
driven by the Fisher-Kolmogorov production function de-
pend only on the fact that F(c) is concave and goes like
F(c) ~ ¢ for ¢ <« 1. This fact has been elucidated clearly
by Aronson and Weinberger who showed, in part, that the
Fisher-Kolmogorov wave speed is bounded from above and
below by the same value [21]. These inequalities assume
the concentration is restricted between O and 1, a boundary
condition that is not respected by the asymptotic form of
models we consider below (see Ref. [19], Appendix 5 for
a reformulation of our model that respects these boundary
conditions). We will consider a class of functions that inter-
polate between the Fisher-Kolmogorov and Heaviside limits,
in which the production function is of a Hill function form
F(c)= apﬁ. For n = 1, the production function scales
linearly in ¢ for ¢ < Cy: F(c < Cy) ~ c. In this case, as we
will show shortly, our model reproduces Fisher-Kolmogorov
dynamics. For n — oo, F(c) = ap®[c — Cy] and we will
reproduce Heaviside dynamics. In total, then, we commit our-
selves to studying equations of the form

dc DV2e 4 c"
— = c+a
o1 Poyar
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along with the discrete analogs thereof.

As we have shown previously, this class of models yields
waves that are either stable or metastable in the continuum
limit, depending on the system dimensionality and Hill coeffi-
cient n [19]. In a one-dimensional (1D) diffusive environment,
a small region of “activated” cells of size 7; will always initiate
a wave, independent of n. All one-dimensional wave models
of this form are therefore unstable. In a two-dimensional (2D)
diffusive environment, initiation of the diffusive wave takes
a finite, but potentially very long, time that scales harshly as
exp[(2D/vr;)?] for n — oo. In three-dimensional (3D) diffu-
sive environments with n > 3, sufficiently small (compared to
D/v) values of r; can fail altogether to initiate a wave. Such
wave models are metastable.

Several prior works inspired by calcium waves [15-18]
have studied the one-dimensional discrete analogs of Eq. (1),
accounting additionally for simple decay of ¢ by way of a
term —yc. These works cover a variety of production func-
tions, primarily focusing on the form put forth in Eq. (2) as
n — 0o. One such work treats discreteness as a perturbation
to the continuum theory dynamics [15]. We will instead opt
for a solution that yields the wave speeds, albeit through
transcendental equations, even far from the continuum limit.
Additional discrete corrections have famously been studied by
Brunet and Derrida, among others, in the context of Fisher
waves [22]. The Brunet-Derrida corrections, due to the so-
called “cutoff” effect, in which it takes at least one individual
to replicate, take a simple inverse log-squared form, in con-
trast to the transcendental relationships we will shortly find.
Here, we will assume that decay is negligible and will seek

to understand the corrections due to discreteness for all n.
Moreover, whereas these works focused almost exclusively on
the dynamics of latticelike systems in one dimension, we will
additionally characterize the dynamics under disorder and in
all dimensions.

To take into account the effects of discreteness, we will
assume that sources are pointlike and thus that the discrete
analogs of Eq. (2) can be written using Dirac delta functions
8(...). Thus, and by replacing the density p with a sum over
the locations r; of all sources, we have

ac c"
— = DV? 8(r—r;). 3
o c+acn+%; (r—r)) 3)

The goal of this work will be to study the relationship
between the dynamics of Eq. (2) and those of Eq. (3). To start,
we will review the standard, continuum theory wave dynam-
ics of Eq. (2) in all dimensions; we will then calculate the
one-dimensional discrete model corrections to the continuum
theory by considering Eq. (3) for all » and with different dis-
tributions of r;; finally, specializing to the case of n — oo, we
will solve for the dynamics in arbitrary dimensions, showing
in the process that the nature of the wave speed corrections
heavily depends on the dimensionality of the diffusive envi-
ronment and the distribution of sources within it.

II. CONTINUUM MODEL SOLUTIONS IN ALL
DIMENSIONS

Let us begin our study of the continuum model of Eq. (2)
by considering a purely one-dimensional system, in which
case we have

dc D82c n c"
=D— +a
pc” +Cy

— = 4
ot 0x2 @
with p a density of cells in one dimension. By making a
traveling wave ansatz c(x, t) = ¢(¥ = x — vt), in which a con-
centration wave travels with constant speed v and X is the
distance with respect to the wave front, one can eliminate the
time derivative of Eq. (4) and work instead with nonlinear
ordinary differential equations (ODEs) of the form
9%c c"

dc
O=v—+D—+a

5
0x 9x? ©)

Posar
Our goal is to find the wave speed v as a function of the
physiological parameters n, D, Cy,, a, and p.

As n — 1 or oo, this task has a well-known solution. For
the latter, one may substitute ¢"/(c" + Cj;) — Olc — Cy]l;
recognize that ¥ = 0 is the point at which c¢(X) = Cy; and
stitch together solutions for ¥ > 0 and ¥ < 0, in which ®[c —
Cn] =1 and 0, respectively [9,16,19,20]. Throughout this
paper, we will refer to the wave speed with sources distributed
in N dimensions, with diffusion in M dimensions, and with
Hill coefficient n as vy ,; the calculation described above

reveals that
U1,1,n—»00 = v/ apD/Cy,. (6)

The solution for n =1 is more involved and appeals to
mathematics first worked out by Fisher and Kolmogorov et al.
[2,3]; here, one examines the region well beyond the wave
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front (¥ > D/v), in which ¢ < Cy, and ¢/(c + Cyp) = ¢/Ci.
In these limits, we may consider a modified form of Eq. (5):

ac 9%
0~ v—+D_— +apc/Cp. (7
ox ox
One then plugs an ansatz of the form ¢ = cpe~7* into Eq. (7),
which results in a relationship between v and y:

ap
Cany .

Given the restriction that v, y > 0, Eq. (8) appears to allow
a range of solutions v > 2./apD/Cy; famously [2,3], the
minimum speed allowed by Eq. (8) is the one that the wave
attains, a fact that has been proven to hold with periodic
and homogeneous production functions alike [23]. This result
holds so long as the initial concentration profile has finite
support or decays sufficiently quickly at large distances from
the origin [3,24]. Thus,

v1,1,1 = 24/apD/Cy. )

It is not a coincidence that v; 1 ; and v} 1 ,— oo both scale as
JapD/Cy. As has been shown previously [1,19], this scaling
can be deduced by dimensional analysis considerations. In
brief, the source terms on the right-hand side of Eq. (4) are
proportional to ap, meaning all concentration scales are also
proportional to this factor. Thus, the four parameters of a, p,
Cin, and D are boiled down to two parameters D and Cy,/ap
with respective dimensions m?/s and s. As we wish to calcu-
late an emergent wave speed v with units m/s, the only viable
formula for v is a scaling law of the form v ~ /apD/Cy,.

While these results plainly hold in systems of dimension-
ality (N,M) = (1, 1), they also hold asymptotically in all
systems of dimensionality N = M, so long as the dynamics
are observed at radii » > ND/v [6,19].

In contrast to systems with N = M, one could consider a
system in which some N-dimensional distribution of sources
is embedded within a higher-dimensional, M > N diffusive
environment. One example is an assemblage of cells sitting
upon a two-dimensional plane with a semi-infinite extracel-
lular medium above [19]. In such a scenario, assuming a
semi-infinite diffusive environment with N =1 and M = 2,
Eq. (2) becomes

ac 9% 9% c"
— =D — 4+ — 2ap8(z)—————
or (ax2 * az2) e e

v=Dy + 3

(10)

with x the dimension in which the sources live, z the per-
pendicular dimension, and p a one-dimensional density of
sources. Within the aforementioned traveling wave ansatz, one
can reduce this to a spatial PDE of the form

9 32 82 n
0= +D<—C + —C> +2aps(z)———. (1)

ox 0x2 = 072 "+ Cf

Before noting the exact solutions of the wave speed, we
again appeal to dimensional analysis. As in the case of N =
M discussed above, the source terms on the right-hand side
of Eq. (4) are proportional to ap and thus we are again left
with only two effective model parameters, D and Cy,/ap, with
which to construct a wave speed. However, unlike the case
of N = M, in which Cy/ap ~ s, we now have Cy/ap ~ s/m.

TABLE I. Summary of continuum theory wave speeds. Here,
we summarize the diffusive wave speed for systems with sources in
N dimensions and diffusion in M dimensions. We consider system
dimensionalities of N = M and N = M — linthe casesof n = 1 and
n — 00. As shown in the main text, dimensional analysis demands
that systems with N = M — 1 display a diffusion constant (D) in-
dependent wave speed and scale differently in the source density p,
emission rate a, and threshold concentration Cy,.

N=M N=M-1
n=1 v N1 = 24/apD/Cy vnNt11 = 2ap/Ci
n— oo VN N0 = A/apD/Cy, UNN+1Lnsoo = 2ap/TCyy

Thus, the only formula involving D and Cy,/ap which forms a
valid wave speed v of units m/s is the D-independent scaling
law of v ~ ap/Cy,.

For n — o0, one can solve Eq. (11) using a partial Fourier
transform over z and the methodology employed on Eq. (5) to
yield

2ap

12)

V1,2, = .
n—oo ﬂcth
A similar approach with n = 1 requires an unwieldy partial
Fourier transform over z of

ac 8%c 3% N
O0=v—+D| 5+ -5 )+2apé@)c(x 2)/Cn. (13)
X ox 0z

In Appendix D we show it is possible to solve for the dynam-
ics of Eq. (13) with Green’s function methods. Doing so, we
show that

vi21 = 2ap/C. (14)

In closing this section we note that, as in the case of N =
M, Egs. (12) and (14) hold for all systems with N =M — 1
so long as the curvature of the wave front is negligible (in a
spherically symmetric system, this requirement is met when
observing the dynamics at radii r > ND/v). We also note
that systems for which N = M — j and j > 2 lack wavelike
solutions in the continuum. Here, dimensional analysis reveals
a wave speed relationship such that v increases (j > 2) or
remains constant (j = 2) with increasing Cy. The issue is
that embedding a continuum of diffusive sources in a higher-
dimensional space creates a divergent concentration at the
sources when the discrepancy between the source dimension
and the diffusive dimension is more than one. The results for
continuum systems with N =M or N = M — 1 are summa-
rized in Table I.

III. DISCRETE MODEL SOLUTIONS IN ONE DIMENSION

We now seek to depart from the continuum theory of dif-
fusive waves by focusing on waves propagated by discrete
sources. To do so, we examine the one-dimensional version
of the discrete model put forth in Eq. (3):

dc 3%c

Cn
Lop o ta— Y s —xp). 15
or 8x2+ac”+Ct’}’1; (=) (15
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FIG. 1. Discrete lattice wave dynamics in 1D. (a) Schematic demonstrating our solution method for Fisher-type waves with n = 1. Here,
we examine the region well beyond the wave front and make an ansatz that the concentration at source N + j is given by c(x = (N + j)d,t =
0) ~ e~ ™*+)vd_This ansatz allows a range of solutions v(y ), the minimum of which is the realized wave speed. (b) Schematic demonstrating
the solution method for Heaviside waves with n — co. Here, the concentration at the wave front is given by Cy, while the source a distance
kd from the wave front has been emitting since time t = —kd /v. (c) Discrete wave speeds divided by continuum wave speed as a function
of ad /DCy, = ¢ for the n = 1 theory (blue line), n — oo theory (black line), and finite » numerics (colored circles). For all n > 1, large
separation between sources leads to a subcontinuum wave speed while for n = 1 the wave speed increases compared with its continuum value.
At small values of ¢, the wave can be understood as a collective effect that is well described by a continuum theory. (d) Theoretical wave speed
for n =1 as stipulated by Eq. (23). At large values of ¢, the wave speed attains a d- and D-independent value of a/2Cy,. () Concentration at
source N generated by source N + j for various values of ¢ and for n = 1. At small ¢, many sources contribute to the concentration at source
N while as ¢ increases, the wave propagation becomes a few-body phenomenon. For ¢ = 1000, we see the extreme limit of a pulled wave, in
which the concentration at the wave front is almost entirely due to self-amplification. (f) Concentration at the wave front generated by source j
asn — 00. As with the case of n = 1, many sources contribute to the concentration at the wave front when ¢ is small. As ¢ increases, the wave
propagation becomes a few-body problem. In contrast to the case of n = 1, for ¢ = 1000 the wave front is pushed by the nearest neighbor

behind the front.

Here, we have discrete sources at positions x;, each of which
responds to the local concentration ¢ by emitting diffusible
molecules at some rate ac"/(c" + Cj). In this setting, we
would like to find something akin to the wave speed calculated
in the continuum limit.

To begin, let us consider the dynamics of sources on a
lattice with separation d (i.e., density p = 1/d) as in Figs. 1(a)
and 1(b). We anticipate that the wave speed will be close to
that of the continuum model for sufficiently small &, but how
small?

Examining the n = 1 solution above, we see that our ansatz
has a beyond-the-front solution of e~*/?P. Thus, D/v is
roughly the length scale of the diffusive wave, and we expect
that when many sources fit inside this length scale, i.e., when
dv/D « 1, the continuum and discrete models will agree. Of
course, v itself depends upon d. Within the continuum theory
p=1/d = v~ JaD/dCy, which implies that d < DCy,/a
is the limit in which the two models should agree and that
DCy/a is the length scale against which we should compare
d.

We can come about this length scale through simpler
means of dimensional analysis. Omitting d, the only other
parameters in our model are Cy, a, and D. As in the con-
tinuum limit, we may eliminate a by noting that the source
terms in Eq. (15) are all proportional to a. Thus, we are left
with D (units of m?/s) and Cy/a (units of s/m) as the only

other model parameters. Using these parameters to construct
a length scale, we see there is a unique length scale DCy,/a
against which we may compare d. In essence, when Cy,/a or
D is sufficiently small, only the nearest neighbors contribute
to the local concentration and we can expect deviations from
the continuum theory. Keener colorfully refers to this limit
as the “saltatory” regime, in which the wave front hops form
one source to the next [15]. In this regime, the concentra-
tion profile becomes peaked around the sources; for waves
propagating into a bistable medium, Keener has shown that
discreteness shifts the shape of the critical curve that governs
whether a medium will support wave propagation. With this
length scale in mind, let us conduct a rigorous analysis for
n— ocoandn = 1.

A. Lattice solution for n — oo

In the limitn — o0, itis possible to construct a relationship
which gives a unique wave speed v as a function of d, D, and
Cin/a. To do so, we consider a lattice of point sources, as in
Fig. 1(b), through which a diffusive wave has been traveling
at speed v. We set the time and space origins such that the
concentration at ¢, ¥ = 0 is Cy,; doing so, we stipulate that the
source a distance jd away has been continuously emitting at
a rate a since time t = —jd /v. Using the diffusion equation
Green’s function for a pointlike source, we can therefore see
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that the concentration c; created by the source a distance jd
away from the origin is given by

0 242
cj =a/ df e’ |/ —4nDi
jd /v

iad [ [ 4D id
e P Y Sy | (16)
2D 7 jdv 4D

while the threshold concentration Cy, obeys a self-consistency
relationship given by summing over all the sources:

oo
Cth = g Cj.
j=1

In constructing Eq. (17), we have successfully derived a rela-
tionship between v and the system parameters Cy,/a, d, and
D. We will now explore this relationship to test the intuition
we developed through dimensional analysis.

By examination of Eq. (16), we plainly see that the length
scale with which to compare d is D/v. The latter is the
length scale of the diffusive wave, as mentioned above. Let
us assume that d < D/v, i.e., that many sources fit within the
length scale of the diffusive wave, in which case one may turn
Eq. (17)’s sum over j into an integral and deduce that

A7)

oo
d < DJv:Cy~ / djcj =aD/v’d
0

= v =+/aD/dCy,

which is exactly the continuum theory result of Eq. (6) with
o = 1/d. Using our expression for v, we may deduce that the
assumption of d < D/v is equivalent to

dCy,
d <D/v=D D= d L CpD/a,

exactly as predicted by our dimensional analysis. In this limit,
the concentration wave can be understood as a collective
phenomenon in which many sources contribute to the con-
centration at the wave front [Fig. 1(f)] and the wave speed is
approximately that of our continuum theory [Fig. 1(c)]. Thus,
when the dimensionless parameter ¢ = ad/DCy, is small, the
collectivity is high and vice versa.

In the contrasting limit of d > CyD/a, the concentration
at the wave front is primarily generated by the nearest source
[Fig. 1(f)] and the wave speed is considerably less than that
predicted by the continuum theory. We will return to this limit
shortly.

(18)

19)

B. Lattice solution for n = 1 and numerics for all n

Next, we consider the n = 1 version of Eq. (15). To address
this case, we again consider a lattice of point sources, as in
Fig. 1(a), in which a diffusive wave with speed v has been
traveling. Examining the region of space well beyond the
wave front in which ¢ < Cy,, we follow the example of Fisher
[2] and propose an ansatz that the concentration some distance
X = Nd beyond the wave front is given by

(X = Nd, 1) = cye VNV (20)

In the limit of ¢ <« Cy, the production function may be
approximated as c¢/(c + Cy) =~ ¢/Cyp. Thus, the concentra-
tion ¢; generated by the source X = (N + j)d as measured
at ¥ = Nd and ¢t = 0 can again be calculated by integrating
the production function of source N + j against the Green’s
function for the diffusion equation:

242 .
aCOenyd 0 655764yjd+yw
]‘ =
Ca 0o  —4m Dt

—yNd
_ 0™ —aGy+iIVTID)
2Ch/y Dv
One may construct a self-consistency relationship along the
lines of Eq. (17) by recognizing that the concentration c(¥ =
Nd,t = 0) is merely the sum of all the c;, so that

21

o0
cE=Nd,1=0)= ) ¢

(22)
j=—00
which can be written in full as
2Dy . )
= = ) expl—Jjyd — |jldy/yv/DI
a Pt
1 1
=1+ + .
edv+dJ/yv/D _ | e—dv+dJyv/D _ |
(23)

Through Eq. (23), we are endowed with a relationship, like
Eq. (17), that fully specifies v given the physiological param-
eters Cy,/a, d, and D, but with one exception. As in the famous
case of Fisher’s equation, we must also specify y; and, as in
the case of Fisher’s equation, the value of y that is selected
is the one that minimizes v. Given Eq. (23), one can find
the wave speed v by minimizing v over all y subject to the
transcendental relationship of Eq. (23). That the wave speed
achieved is the minimum has been proven for all periodic
systems in recent work [23].

As in the case of n — oo, our goal here is to see how
the wave speed stipulated through the above calculations
relates to the continuum theory of Eq. (9). Appealing to
our previous intuition, we can guess that d < Cy,D/a will
yield a wave speed consistent with the continuum theory.
Indeed, we may expand Eq. (23) to lowest order in d for
d L yd, dy/yv/D; doing so leaves one with exactly the
relationship of Eq. (8) with p = 1/d. The value of y which
minimizes v is y = 4/dCyD/a, meaning that our imposition
of d K yd, d/yv/D is equivalent to d < CyD/a. In this
limit, the wave speed v agrees well with the continuum theory
[Fig. 1(c)] and the effect is a collective one in which many
sources contribute to the concentration generated at every
other source [Fig. 1(e)].

In the opposite limit of d > Cy,D/a, the primary driver of
the concentration generated at each source is the concentration
generated by the source itself [Fig. 1(e)]. The source is seeded
with some small concentration from its nearest neighbor, then
self-amplifies; thus, unlike in the case of n — oo in which
only the nearest neighbor matters, we now must account for
both the nearest neighbor and the self-interaction. Surpris-
ingly, the wave speed in this limit is independent of d and
D, as we will now show and as is pictured in Fig. 1(d).
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In this limit, one can approximate the sum in Eq. (23) by
considering only the dominant j =0, —1 terms (self and
nearest-neighbor). Doing so yields

d>CyD/a: (24)

2CnvDyv _ Tz N
a

Treating v as a function v(y), one can take a derivative of

both sides of the above equation with respect to y. Rearrang-

ing terms, we can see that dv/dy = 0 in the d — oo limit

requires y — +/yv/D ~ logd/d and thus that

d>»>CwD/a:y =v/D = v=a/2Cy,

(25)
Yy =a/2DC,

where the relationship after the arrow is had by plugging the
relationship before the arrow into Eq. (24).

It is strange that, in the d > Cy,D/a limit, a wave propa-
gated between discrete sources and driven by diffusion has a
speed that depends neither on the distance between the sources
nor on the rate of diffusion. To understand how this can be,
we return to the ansatz of Eq. (20) and plug in the values of
Eq. (25), which yields

Nda a2

d>>CaD/ja: c(i = Nd,1) = coe ™ o5 (26)

An examination of Eq. (26) shows that the wave speed
is indeed d- and D-independent in the large-d limit. We see
that c¢(X = Nd,t) = c[¥ = (N + 1)d, t + 2Cd /a], meaning
that the concentration wave travels a distance d in a time
T = 2Cyd/a. As aresult, the wave speed v = d /7 is indepen-
dent of d. In essence, increasing d results in an exponentially
smaller initial concentration at any point source but gives that
point source more time to self-amplify, effects that exactly
cancel when calculating the wave speed.

Similarly, increasing the diffusion constant D results in
an exponential increase in the initial concentration at a point
source [see the factor of ¢~V94/2PCu in Eq. (26)] due to the
fact that molecules can more quickly diffuse from source to
source; however, this effect is exactly canceled by the decrease
in the concentration’s growth rate a*/4DC3, and results in the
D-independent hopping time between sources, T = 2Cyd/a,
calculated above.

To understand the origin of this d and D independence,
we must therefore understand why the concentration takes the
precise form of Eq. (26). To do so, let us consider a single
source seeded with some small concentration ¢y < Cy, att =
0 and secreting with a concentration-dependent rate ac/Ci,.
In this scenario, the concentration c¢ at the source at time ¢ is
given self-consistently given by integrating ac/Cy, against the
diffusion equation Green’s function, thus giving us

a 4 -~ ~ ~
_— - 27
cthm/()‘”c(’)/ i—to @D

which can be solved with an ansatz coe'” for ¢t > 1/T" by
sending + — oo in the integral bound, telling us that the con-
centration at the source indeed grows exponentially with rate

c(t) =

a?

r=——. 28
4DC} (28)

Comparing this exponential growth rate of the concentration
at a single point source with the traveling wave dynamics
stipulated by Eq. (26), we can plainly see that the growth rate
of the concentration at sources well beyond the wave front is
exactly the exponential growth rate of the concentration at a
single, self-amplifying point source.

Moreover, by integrating the Green’s function against the
concentration production rate of ac/Cy, for ¢ <« Cy, we can
deduce that a self-amplifying point source that has been grow-
ing for a time ¢ > I', r>/D creates a concentration profile
given by

Xz -~
gi aD(i—7) ert

a t
—/ dl‘—~
CavénD Jo Vit — 1

x2 =
00 ~e—mert

o i
This is precisely the profile that the diffusive wave gen-
erates in the limit d > CyD/a [see Eq. (26)]. Thus, we
can understand the temporal dependence of Eq. (26) as the
self-amplification rate of a single source and the spatial depen-
dence of Eq. (26) as the the concentration profile that results
from this self-amplification.

clx,t) =

~ TP, (29)

~

C. Transition to pushed waves for n > 1

While in the case of n = 1 we may solve for the dynamics
through a Green’s function analysis of Eq. (15) in the ¢ < Cy,
limit, the same analysis does not permit solutions for n > 1,
not even for n = 1.0001. In fact, as we now show, the dynam-
ics for n > 1 is fundamentally different than the dynamics of
n = 1, as is well known from the studies of continuum models
like Eq. (4), in which n = 1 waves are termed “pulled” by
self-amplification in the ¢ <« Cy, limit while n > 1 waves are
“pushed” by the concentration generated sources behind and
around the wave front. This distinction was first discussed by
Stokes [25] and has been refined and expanded upon by a
multitude of works [5-7,24,26].

To see this, we start by calculating the self-amplification
dynamics of a point source with # > 1 in the limit of ¢ < Cy,.
In this limit, ¢"/(c" + C};) ~ ¢"/C};, and we may construct a
self-consistency relationship of the form (27) by integrating
the emission rate ac" /C}j, against the Green’s function for the
diffusion equation and setting that equal to the local concen-
tration at some later time ¢:

a ! ~ > ~
c(t) C&m /:oodtc @)/t —1, 30)

Fixing the time origin such that c( = 0) = ¢y, the concen-
tration grows as [with & ~ —a?/(4C3"D), see Appendix A for
full expression]

1
C(l) — [Oll +C(;2(”_1)] z(n—l)’ (31)

meaning that, for ¢y < Cy,, the time for ¢(¢) to double scales
as

t ~ (Cin/co)* " V. (32)

In contrast, for any n, a diffusive wave (whether propagated
by discrete or continuous sources, see Appendix B) will create
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a concentration profile in the limit ¢ < Cy, that decays expo-
nentially in distance beyond the wave front and thus grows
exponentially in time. Therefore, the timescale needed for
the wave to pass through a distant point source with initial
concentration ¢ is roughly given by

t ~ log[Cin/co]- (33)

We can therefore see that for n > 1, individual point
sources cannot propagate an initial concentration quickly
enough to exceed Cy, by the time the wave passes through;
thus, the concentration at sources well beyond the wave
front (where ¢ < Cy,) is primarily generated not through the
self-interaction of sources in that region but rather through
the buildup of concentration generated by sources behind or
around the wave front. This is precisely the phenomenon of a
“pushed” wave. This distinction is shown clearly in Figs. 1(e)
and 1(f). For large ad /DCy,, we can see that the concentration
at the wave front for n = 1 is generated almost entirely by
self-amplification. In contrast, the concentration at the wave
front for n — oo is generated almost solely by the source
immediately behind the wave front.

Because the wave front for systems with n > 1 is pushed
by the concentration generated by sources behind the front, we
expect that for sufficiently large separation, in the limit where
only nearest neighbors play a role, the wave speed will behave
similarly to that of a system with n — oo in that the wave
front will hop to the source beyond the wave front primarily
as a result of concentration buildup generated by the source
immediately inside the wave front. This is a necessity because
sources with n > 1 in the exponential tail of the diffusive wave
cannot excite themselves quickly [Eq. (32)], but instead rely
on the neighbors to “send them” the diffusive wave.

A necessary consequence of this fact is that the wave
speed will fall in comparison to the continuum wave speed.
This is because diffusion requires a time t ~ d* to bring
a neighboring source over the threshold concentration. The
apparent wave speed of this process is then v ~ d /7 ~ 1/d.
In comparison, the continuum theory wave speed scales as
Viln ™~ 1/\/3. Thus, for n > 1 and ad/DCy, >> 1, the dis-
crete source wave speed will fall below the continuum theory
wave speed as ad /DCy, — 0.

To affirm this result, we turned to numerical simulation. In
Fig. 1(c), we plot the wave speeds for various values of n and
ad /DCy,. We obtained these values through numerical simula-
tion of Eq. (15) and compared them to their continuum theory
analog through numerically solving Eq. (4) (see Appendix C
for numerical details). As expected, systems for all values of
n agree well with their continuum theory analogs for small
ad /DCy,. For large ad/DCy, systems with n = 1 display a
supercontinuum wave speed; in contrast, for sufficiently large
ad /DCy,, systems with n > 1 display a subcontinuum wave
speed as they rely not on self-excitation but on the compar-
atively slower process of diffusion between discrete sources
around the front.

D. Effects of disorder forn =1, n - oo

Of course, in biology and elsewhere, the sources which
propagate diffusive waves are not always found in discrete
lattices. As such, we now seek to quantify how similar the

?
105

102
ad/DChy

1 1 L
1 10 100 1071
ad/DChy

FIG. 2. Comparison of lattice and disordered wave speeds in 1D.
(a) Solution methodology for finding the wave speed propagated by a
discrete, disordered system in 1D. The wave speed is determined by
the average distance between sources d, divided by the mean hopping
time 7. In the limit d <« DCy/a, T can be solved for analytically.
(b) Discrete wave speed for n = 1 divided by the continuum theory
wave speed as a function of ad /DCy,. When v/v; 1, & 1, the discrete
theory is in the continuum limit. Here, we see that the lattice theory
(solid line) agrees well with the disordered numerics (circle markers),
both of which agree with the nearest-neighbor disordered theory
(dashed gray line) in the limit of ad /DCy, > 1. (c) Same as B, but
forn — oo. Unlike for n = 1, here we see significant deviation of the
disordered numerics (circular markers) and the lattice theory (solid
line). In the limit ad /DCy, >> 1, this discrepancy is well character-
ized by our nearest-neighbor disordered theory (dashed gray line).

dynamics of discrete lattice systems are to the dynamics of
disordered relays with discrete sources. Here, we will special-
ize to the cases of n = 1 and n — oo as these cases will afford
us analytical expressions for the wave speed of disordered
systems for ad /DCy, >> 1. As in the case of lattice systems,
the relevant dimensionless parameter for disordered systems
is ad | DCyy; this fact can be gleaned through dimensional anal-
ysis or by considering the concentration variance generated by
a fixed speed diffusive wave propagating through a disordered
medium (for details of the latter, see Appendix E).

In a disordered system, a chain of sources in 1D will
have some inhomogeneous density of sources [Fig. 2(a)]. The
result of this straightforward observation is that the wave front
does not propagate smoothly through the system of discrete
sources, but rather hops incongruously from source j to source
j+1in a time 7; ;. [Fig. 2(a)]. One can therefore define
the wave speed v in a disordered 1D system only through an
ensemble average in which the average number of sources
with the local concentration exceeding threshold at time ¢,
m(t), is related to the wave speed v via the average source
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separation d:
m(t) = vt/d, (34)

where we assume sufficiently large ¢ so that the initial condi-
tion is negligible.

In general, it is difficult to fully perform the calculation
for 7(¢); to see why, consider the case of n — oo and consult
Fig. 2(a). In order to find the hopping time between source j
and source j + 1, one must know the concentration at source
j + 1 at all times so that one can find the moment at which it
exceeds Cy,. But this requires knowledge of when sources j,
Jj — 1, etc., turned on (i.e., first exceeded Cy,), so that calculat-
ing 7; j4+1 requires knowing every previous hopping time.

For all n, one can break this endless cycle in the limit
ad /DCy, >> 1 because in that limit, the concentration at every
source is generated principally by that source and its nearest
neighbor. As a result, the hopping time 7; ;1 is a function (to
be calculated shortly) only of n, D, Cy,/a, and the distance,
dj j+1, between source j and source j + 1. Thus, the hopping
time between sources separated by a distance x, t(x), can be
written in terms of the lattice wave speed v}

T(x) = x /v (35)

Then, given some distribution of separations, p(x), with
mean d, we can calculate m(t) as ¢ divided by the mean
hopping time T:

o0 —1
d > DCy/a:m(t)=1t/T = t(/ dx t(x)p(x)) . (36)
0

It follows from Eq. (34) that

o0 —1
d>DCp/a:v=d/T = d(/ dx r(x)p(x)) . (37
0

For Poisson-distributed sources with mean separation d,
px) = e/ d /d and it only remains to calculate t(x), a task
we shall now undertake for n = 1 and n — 0.

Our task is straightforward for n = 1 since v = a/2Cy,
when d > DCy,/a. Thus, 7(x) = 2Cyx/a and

n=1,d>DCpja: v=d/t = (38)

2C

by Eq. (37). (Note that this result holds for all p(x) as d =
(x) and T = @ [ dxxp(x) = 228 This disordered wave
speed is plotted (dashed line) in Fig. 2(b) along with the lattice
theory (solid line) and results from numerical simulations of
Poisson-disordered systems (circles). As seen in Fig. 2(b), the
lattice theory closely corresponds with numerical simulations
over several orders of magnitude in ad /DCy,.

For n — oo, Cy can be approximated by truncating
Eq. (17) at j = 1. We then refer to Eq. (16) and note that on a
lattice v = d/t, meaning that

n— 00,

d> DCyja:Co = 2[5 [2PT et [ L
a:Cph=——=|e o, — — =1,
h "~ 2p wd? 4Dt
(39)

a relationship that can be numerically inverted for all d, then
numerically integrated over to give v.

The resulting nearest-neighbor theory for v (dashed line)
is plotted in Fig. 2(c) along with the lattice theory (solid line)
and results from numerical simulations of Poisson-disordered
systems (circles). Here, we see substantial deviation of the
lattice theory and the numerical simulations of disordered
systems for intermediate and large values of ad/DCy,. How-
ever, the disordered system numerics agree very well with our
nearest-neighbor theory in the limit ad /DCy, > 1.

We conclude that, in one dimension, the wavelike dynam-
ics of Poisson-disordered and lattice systems corresponds very
closely for n = 1 and all values of ad /DCy,. In contrast, with
sufficiently large ad/DCy, and n — oo, Poisson-disordered
and lattice systems propagate diffusive waves of substantially
differing wave speed.

IV. DISCRETE MODEL SOLUTIONS IN HIGHER
DIMENSIONS

We have fully characterized the diffusive wave dynamics
for sources and diffusion in one dimension (N = M = 1) and
now turn our attention to systems of other dimensionalities.
Interestingly, we will see that whereas, e.g., the N = M con-
tinuum theories all give the same asymptotic wave dynamics,
the discrete N = M = 1 dynamics are distinct from those of
N =M =2, 3; similarly, the dynamics of N =M — 1 =1
are different from those of N =M — 1 = 2.

Unfortunately, models of the form (3) are in general ill
posed for M > 2. This is due to the fact that the local concen-
tration at a point source diverges in two or more dimensions.
This results in an infinite self-interaction. Mathematically,
one can see this by integrating the Green’s function of the
diffusion equation for a continuously emitting point source in
M dimensions:

M>22:cx=0,1)

=a / dil4xD(t — D™ - . (40)
0

Therefore, the self-interaction will diverge for pointlike
sources with M > 2 and thus the dynamics of Eq. (3) is ill
posed. (The integral in Eq. (40) also shows up in a proof of
Pdlya’s theorem of recurrent vs nonrecurrent random walks
[271)

To circumvent this problem, one can consider modeling
finite-sized sources or a delay between the emission of a dif-
fusible agent and the measurement of its local concentration,
either one of which will eliminate the above divergence. We
consider a third alternative: sending n — oo. In this limit, the
dynamics is well posed because sources do not interact with
their own emissions until they are above the ¢ = Cy, threshold,
at which point self-interaction is irrelevant.

We will momentarily perform the task of solving for the
wave speeds v within lattice and Poisson-disordered arrange-
ments, but let us first develop intuition for these cases through
dimensional analysis. We have committed ourselves to study-
ing models of the form

ac
o= DV?c + a®[c — Cy] Za(r —r), (41

J
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in which we recognize (as we have previously) two indepen-
dent parameters D and Cy,/a, along with the mean separation
between sources d.

As above, our task here is to understand how varying d
affects the wave speed v for given values of D and Cy,/a. For
M = 1, we have seen that we must compare d to the diffusive
wave length scale D/v and that doing so reveals the continuum
theory to be valid when d < DCy,/a.

The same does not hold for M = 2. Here, D/v is still
the length scale of the diffusive wave, but now, with N = 2,
v ~ /aD/(d*Cy,) within the continuum theory. Constructing
a dimensionless parameter dv/D < 1 puts no conditions on
d and merely requires that a/DCy < 1. This implies that d
has nothing to do with the agreement between the discrete
and continuum theories. Instead, the agreement is entirely
determined by the value of DCy,/a. A similar argument holds
for (N, M) = (1, 2). This can be understood through dimen-
sional analysis. We are interested in constructing a length
scale against which we can compare d. The parameters we
can use, by the same arguments as in the M = 1 case, are D
(units m?/s) and Cy, /a (units m? /s, as distinguished from the
units of m/s for M = 1). Thus, there is no combination of
D and Cy,/a which can form a length scale. For fixed values
of D and Cy,/a, we cannot pack sources closer together and
get better agreement with the continuum theory. Nonetheless,
our previous intuition that D and Cy/a ought to be small
in order to violate the continuum theory is still valid. Here,
the dimensionless parameter which describes the agreement
between the discrete and continuum theories is a/DCy,.

The situation is even more extreme for M = 3. Yet again,
we seek to compare d with D/v. From our continuum theory
results, we know that when N = 3, v ~ \/aD/(d3Cy,). Re-
quiring dv/D < 1 yields a condition that (dDCy,/a)~" < 1,
the agreement between the continuum theory and the discrete
theory is worse when one decreases d at fixed D and Cy,/a.
Thus, by cramming sources ever closer together in a 3D diffu-
sive environment, one would weaken the agreement between
the discrete system dynamics and those of the continuum. A
similar argument holds for N = 2. We will shortly demon-
strate this effect through exact calculations and numerical
simulation.

A. Lattice solutions

Our goal in this section is to systematically find the rela-
tionships between v, D, d, and Cy, /a for a set of point sources
sitting on a lattice in N dimensions with diffusion in M dimen-
sions. We have already solved the case of N = M = 1 above
[see Egs. (16) and (17)]. Our methodology for the solutions
with other N, M is largely the same as that already employed,
but requires some further elaboration.

To calculate self-consistency relationships analogous to
Eq. (17) for N = 2, 3 we consider a plane wave propagating
through a system of sources in N dimensions. With N = 2, we
obtain a picture similar to Fig. 1(b), but with sources at y =
0, £d, £2d,.... Att =0, the sources at x = —jd and y =
0, £d, £2d, ... have been emitting since t = — jd /v. If we
assume that c(x =y =t = 0) = Cy, then we can construct a
self-consistency relationship by adding up the contributions
from all the point sources left of the origin. For the sake

of clarity, we have performed this calculation for (N, M) =
(2, 2) below; the self-consistency relationship for other sys-
tem dimensionalities can be found in Appendix F.

(N,M)=(2,2). To find a self-consistency relationshig
for this dimensionality, we consider the concentration C%:2 s
generated at x = y =t = 0 by a diffusive point source in two
dimensions at (x, y) = (—jd, kd) that has been emitting since
t = — jd/v. This can be calculated by integrating the diffusion
equation Green’s function for a 2D environment, a process
that yields, with I'y[. . .] the incomplete gamma function,

0
_ a L P24k, L
c(jﬁz-2) - _ / df e i /t
. 4dn D —jd /v

1
" 47D

vd  , 5

We may therefore calculate the self-consistency relation for
(N, M) = (2, 2) by adding up all of the sources:

N.M)=@2.2): Co=Y Y. . 43

j=1 k=—o00

Using Eq. (43) and its analogs [Egs. (F1), (F3), and (F4)], we
have plotted the wave speeds v for every system dimension-
ality in Fig. 3 (solid lines). As expected, these relationships
reveal that for M = 2 the discrete-continuum correspondence
is entirely independent of d and worsens as a/DCy, is in-
creased; for M = 3, the discrete-continuum correspondence
worsens as d decreases. Thus, our scaling arguments and
dimensional analysis provide clear intuition for the dynamics
of diffusive waves propagated by discrete sources.

B. Effects of disorder: Theory and numerics

Our goal in this section is to examine the effects of disorder
on the diffusive wave propagation in higher-dimensional sys-
tems. In short, we find that disorder leads to mild deviations
from the lattice wave theory developed in the previous sec-
tion, with the most severe discrepancies for (N, M) = (1, 2)
(Fig. 3).

To begin, we note that systems with N > 2 preclude cal-
culation of the wave speed according to the nearest-neighbor
techniques we developed previously for (N, M) = (1, 1). This
is due to the fact that in two-and-higher-dimensional spaces,
two sources can have the same nearest neighbor. However,
one can compute wave speeds in the noncollective limit for
(N, M) = (1, 2) and can numerically examine the effects of
disorder in all system dimensionalities, tasks we will now
undertake.

In the noncollective limit of an (N, M) = (1, 2) system, we
can arrive at an exact expression for the wave speed by consid-
ering the mean hopping time between nearest neighbors. With
vll"‘g‘;: « as the wave speed of a lattice theory, the hopping
time between two sources separated by a distance x is given
by

lattice
1,2,n—o00"

T(x) =x/v (44)
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(N, M)=(2, 3) (N, M)=(3, 3)
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FIG. 3. Comparison of lattice and Poisson-disordered wave speeds in higher dimensions. (a) Wave speed divided by the continuum theory
value with (N, M) = (1, 2) for disordered systems (circles) and lattice systems (black line); we plot this quantity for varying a/DCy, (top) and
varying d (bottom). When v/vy y.,—0 = 1, a discrete system is in the continuum limit. As predicted by dimensional analysis, v/v; 2 - does
not change at all with d (bottom panel), but decreases as a/DCy, increases (top panel). Results in the bottom panel are shown for a/DCy, = 10.
The disordered and continuum theories show substantial deviation, which can be understood through a disordered nearest-neighbor theory
(dashed gray line) at large a/DCy,. (b) Same as (a), but for (N, M) = (2,2). Here, we see close correspondence between the lattice and
disordered system wave speeds. As with (N, M) = (1, 2), the correspondence with the continuum theory is determined solely by a/DCy, (top
panel) and does not vary with d (bottom panel). Results in the bottom panel are shown for a/DCy, = 1000. (c) Wave speed divided by the
continuum theory value as a function of a/dDCy, with (N, M) = (2, 3). Here, we see a close correspondence between the continuum theory
(solid line) and the discrete numerical simulations (circles). Unlike the cases of M = 1, 2, decreasing d results in larger deviations from
continuum theory. (d) Same as (c) but for (N, M) = (3, 3). Here, we see deviations between the continuum theory and numerical simulation
for intermediate values of a/dDCy,. Again, we observe that decreasing d results in larger deviations from the continuum theory, as predicted

by dimensional analysis.

By our previous dimensional analysis and Eq. (12), we know

that
= f( >v1,2,n—>oo
2a
-5

ﬂxC[h ’
where f(a/DCy,) is a function that describes the solid curve
plotted in Fig. 3(a). Thus, the average hopping time 7 is given
by

a
DCy,
a

lattice
1,2,n—o00

(45)

/00 dx p(x)T(x)
0

B 7 Cip
2af(a/DCn) Jo

which for Poisson-distributed sources with mean separation d
gives us

~ dx x*p(x), (46)

__ . lattice
— Y1,2,n—00

v=d/t = f(a/DCy)——

wxCep

This relationship agrees with numerical simulations of disor-
dered systems in the large-a/DCy, limit.

To understand the effect of disorder in the remaining sys-
tem dimensionalities, we appeal to numerical simulations.
As shown in Fig. 3, the wave speeds observed in Poisson-
disordered systems largely agree with the wave speeds
observed in lattice systems of comparable a/DCy, (M = 2) or
a/(dDCy) (M = 3). As expected from dimensional analysis,
the effect of varying d in systems with M = 2 is nil [Figs. 3(a)
and 3(b)]. This intuition holds for both Poisson-disordered
and lattice systems. Meanwhile, increasing d in systems with
M = 3 indeed has the counterintuitive effect of improving the
agreement with the continuum theory [Figs. 3(c) and 3(d)].

/2. (47)

In systems with N > 1, we observe substantial agreement
between the lattice theory wave speed and the Poisson-
disordered wave speeds obtained in numerical simulation
[Figs. 3(b)-3(d)]. This correspondence is not perfect, as can
be seen most clearly for values of 1 < a/dDCy, < 1000 with
(N, M) = (3, 3) [Fig. 3(d), we have checked that these are not
numerical errors]; nonetheless, it is striking and worthwhile
to note that disordered dynamics is well approximated by the
more easily calculable properties of lattice theories.

V. DISCUSSION

In this work, we have provided an in depth study of
the validity of PDE models for understanding the dynamics
of one broad class of biological phenomena. Through par-
allel studies of the continuum and discrete-source models
of diffusion-reaction systems, we have shown that discrete-
ness can affect dynamical properties of these systems in a
dimension-dependent and disorder-insensitive manner.

From a physics perspective, many interesting puzzles re-
main. We have understood the effects of discreteness as a
competition between two length scales: the separation be-
tween sources and the inherent length scale of a diffusive
wave. Adding additional length and timescales, the finite
size of the source, the finite measurement time of diffusing
molecules, will inevitably result in richer models than those
we have considered here. So too would considerations of
advection and anomalous diffusion.

From a biological perspective, an even greater zoology of
effects remain to be characterized. Understanding the inter-
play between the external diffusive dynamics and the internal
regulatory dynamics of cells will provide a broader model
class than we have considered here. Previous work [28]
in one-dimensional systems has already demonstrated this
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approach to be an interesting one, as has much work on the
chemotactic response of Dictyostelium discoideum [8,9,29],
an organism that uses diffusive waves to guide chemotaxis
during the formation of fruiting bodies.
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APPENDIX A: SELF-INTERACTION FOR n > 1

Here, we calculate the concentration generated at a point
source in one diffusive dimension given self-interaction with
Hill exponent n > 1. As mentioned in the main text, we
assume the point-source has been self-interacting since t —
—o0 and a boundary condition of c(t = 0) = ¢y K Cypr. We
concern ourselves with the dynamics of ¢ <« Cy,, in which
limit the production function is ¢"/(c" + C}) ~ c"/C}. We
may therefore write a self-consistency relationship for c(#)
by integrating c(f < t) against the Green’s function of the
diffusion equation:

() = C&ﬁ f_ too dic@y|Vi—1. (Al
With an ansatz of
c(t) = (at + B) 77, (A2)
and a variable substitution of ¢ = ¢t — 7, we have that
(at + p) =D
= Chﬁ /Ooo j—;[a(r —)+ BT, (A3

which, performing the integral, gives the following self-
consistency relationship (with I'[...] the gamma function):

r(—) =2
o= _—(2“:”)2 e (A4)
F(Z(n—l)) th

Through the initial condition c(t = 0) = ¢(, we ascertain
that

B =c;?" . (A5)

Thus, the time needed for the concentration to double is
roughly

t ~ (Cp/co)*™ V. (A6)
APPENDIX B: EXPONENTIAL TAILS OF
A DIFFUSIVE WAVE

In this Appendix, we intend to show that diffusive waves
propagated among discrete sources on a lattice in one dimen-
sion form concentration profiles with exponential or nearly

exponential tails. We observe this property generically in nu-
merical simulation and can understand its origin in systems
withn =1 and n — oc.

First, we show exponential tails are a generated by sources
with n — oo. To do so, we imagine standing at a distance
r + jd from a point source that has been emitting at a rate a
since 7; = — jd /v. The concentration created at a time r = 0
by source j is thus given by

(jd+r)2v

ci(r,t =0)~ (jd + r)|:2e_ 4jaD

To find the concentration at r, we must add up the contribu-
tions from all j,
(=Y cj
J

and in the limit of r > D/v, d, i.e., by looking sufficiently far
away from the most recently emitting source, we may view the
sum over j as an integral, in which case

c(r) ~ /dj cj(r,t =0)~ e /P,

(B2)

(B3)

Thus, for n — o0, we can expect exponential tails.

The situation is simpler for n = 1. We have shown in the
main text that the concentration at point sources with n = 1
grows exponentially in time with rate y v. Thus, the concentra-
tion generated at distance » and time ¢t = 0 from a point source
that has been growing exponentially for a time T > y, r?/D
is given by

O -
c(rt =0)~f di emer )7
T

0 2 .
~ f di e e’ |/ —f ~ e VYUP - (B4)
—00

Thus, we can see that exponential tails of concentration pro-
files are a generic feature of diffusive waves.

APPENDIX C: NUMERICS DETAILS

To simulate the dynamics of models of the form (15),
we wrote a differential equation solver that uses cubic inter-
polants to efficiently compute the concentrations at all point
sources. Here, we briefly sketch the outlines of this semiana-
lytic method. The rate of emission A;(¢) at point source j is
given by the local concentration c(x;, t) = c;(t) at that point
source:

Aj(t) = ac/(c} + Cf), (CI)

so therefore

d .
dA;(t)/dt = %(1 _Aj)1+1/nA;71/nﬁ. (C2)
t

dt
At any given point source, we may calculate the con-
centration at time ¢ by adding up the contributions from all
sources over all prior times according to the diffusion equation
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Green’s function G;;(z, 7):

(xj—x; 2
40(1 )

= d A
= Z / di Ai(D)Gij(t,T) (C3)

from which one may also calculate dc;/dt and thus dA;/dt
via

de(l)_ ' - - ! - ‘~dGij(l‘,f)
— = Z I:A,(t)G,j(t,t — 1) +/m th,(t)—dt }

(C4)

The activity of solving for A;() then comes down to solving
coupled ODEs defined by Eq. (C4). We will do so numerically
using cubic interpolants.

Given two time points 7 and 7 + df, the activities A;(7)
and A;(f 4 df) along with their time derivatives dA;(7)/dt
and dA;(f + dr)/dt allow for the construction of a unique
cubic interpolant of the activity between 7 and 7 4 df. One
may then calculate dc;/dt by performing the integral in
Eq. (C4) using a cubic interpolant approximation of A;(#); the
cubic interpolant has the benefit of having an exact (though
algebraically clumsy) analytical expression when integrated
against dG;;(r, 7)/dt.

Thus, and in combination with standard fourth-order
Runge-Kutta methods, we solve for the dynamics of our PDE
system, Eq. (C4). An explicit implementation can be found in
[30].

APPENDIX D: FISHER-TYPE WAVES WITH
N,M,n)=(1,2,1)

Here, we concern ourselves with solving for the wave
dynamics of a continuum of sources at density p in one
dimension (N = 1) with diffusion in two dimensions (M = 2)
propagating Fisher-type waves (n = 1). Recall that the con-
tinuum dynamics here is given by Eq. (13), which admits no
straightforward solution that we are aware of.

To ascertain the continuum theory dynamics we take a
different path using Green’s function methods. These tech-
niques are almost identical to the case of (N, M, n) = (1,1, 1)
discussed in the main text; at a distance x > D/v well be-
yond the wave front, we presume the concentration has a
functional form c(x, r) = coe V*tr"" « Cy, [Fig. 1(b)]. Inte-
grating the production against the Green’s function gives us a
self-consistency relationship of

c(x,t) = coe VYV

s a0
t [ee] —yx+yvt a1
apcy ~ _e e
=2 / dt/ di— . (D1)
00 t—1

2 DC[h

For ¢ = 0, we may perform these integrals directly and ascer-

tain that
2

a + 9
Cid’Dy’

~ dCyp/yDw — yD)

which has a minimum wave speed of v = 2ap/Cy, a factor
of m times larger than the (N, M, n) = (1,2,n — 00) wave
speed, in line with previous numerical results [19].

=>v= (D2)

APPENDIX E: THRESHOLD CONCENTRATION
VARIANCE

We can gain additional intuition for the wave dynamics of
discrete, disordered sources by considering the ensemble av-
erage (e.g., across experiments) of the concentration variance
generated by sources subject to activation by a diffusive wave
that travels with constant speed v. To see this, we imagine
dispersing n sources in one dimension according to a Poisson
process. With a uniform density 1/d of sources in the region
0 < x < nd, the probability distribution for any given source
is p(0 < x < nd) = 1/nd. We assume a traveling wave prop-
agates leftward at a constant speed v through these discrete
sources, and that when the wave hits a given source the source
begins emitting at a rate a. In such a case, the concentration
created att = x = 0 by a source at ¥ is, for diffusion in 1D,

® =25 4D ferf XX (E1)
“=5p\°¢ XV 4D '

If we consider a source at X;, then its contribution at x =
t = 0 will be ¢(%;) = ¢;. The mean value of ¢; can be had by
integrating over 0 < ¥; < nd, and the expected concentration
created by all n sources is n times this average value. The
mean concentration at x = ¢ = 0 is therefore, as n — oo,

nd aD
(cx=1t=0)) = 11m n di p(®)c(x¥) = —. (E2)
n— /0 dv?
This is nothing more than the continuous theory value of Cy,.
To show that the disordered system deviates significantly from
the continuum theory for large vd/D, we next consider the
variance of the concentration at t = x = 0. As (c?) is simply
n times the expectation of ¢ generated by a single source, we
have

nd
(tx=t=0))= lim n / d% p(®)c*(%). (E3)
n— o0 0

In the limit n — oo, this expression becomes

2a*D(10 — 37) aD\?

Tim (3 = x = 0)) = n (ﬁ) . (B4

3ndv?
hence the square of the coefficient of variation is
2(10 = 3mw) dv
ol/(e) = () = (D)) = —=——F (5
T D

which tends to zero as vd/D — 0, the continuous theory
limit.

APPENDIX F: SELF-CONSISTENCY RELATIONSHIPS

In this Appendix, we construct the self-consistency rela-
tionships governing the wave speeds in systems of dimension-
ality (N, M) = (1, 2), (2,3), and (3, 3) with n — oo.

(N,M) = (1, 2). We recall that the concentration created
at (x,y) = (0, 0) by a wave-activated point source at (x,y) =

M/d kd) with diffusion in M = 2 dimensions is given by
( ) [see Eq. (42) for precise form]. By summing up the k =
0 terms we may construct the self-consistency relationship
for a one-dimensional lattice of point sources with diffusion
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in 2D:

o0
NM)=(1,2): Cp=2) M.
j=1

(FI)

Here, the factor of 2 is needed as we consider a semi-infinite
diffusive environment.

(N,M) = (2, 3). Following the logic above and in the
main text, we consider the concentration 65%73), generated at
x =y =t = 0 by a diffusive point source in three dimensions
at (x,y,z) = (—jd, kd, ld) that has been emitting since ¢t =
—jd/v. This too can be calculated by integrating the diffusion
equation Green’s function, a process that yields

0
_ a 2P
= [
. 4 D)"= J_ja

d(j2+k>+1%)
a 1 —erf /MT
S 4ndD PRy r

_i‘)—3/2

(F2)

Similar to the case of (N, M) = (1,2), we may calculate
the self-consistency relationship by adding up all the / =0
terms

(N.M)=(2,3): Co=2)_ > &2, (3

j=1 k=—o00

where the factor of 2 above is used because we again consider
a semi-infinite environment.

(N,M)=(3,3). Lastlyy, we may construct the self-
consistency relationship for a lattice of point sources in three
dimensions:

(NM)=(3,3): Ch=1)_ Y NV (F

j=1 k,l=—00
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