
PHYSICAL REVIEW E 104, 014405 (2021)

Contact inhibition of locomotion generates collective cell migration
without chemoattractants in an open domain
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Neural crest cells are embryonic stem cells that migrate throughout embryos and, at different target locations,
give rise to the formation of a variety of tissues and organs. The directional migration of the neural crest cells is
experimentally described using a process referred to as contact inhibition of locomotion, by which cells redirect
their movement upon the cell–cell contacts. However, it is unclear how the migration alignment is affected by
the motility properties of the cells. Here, we theoretically model the migration alignment as a function of the
motility dynamics and interaction of the cells in an open domain with a channel geometry. The results indicate
that by increasing the influx rate of the cells into the domain a transition takes place from random movement
to an organized collective migration, where the migration alignment is maximized and the migration time is
minimized. This phase transition demonstrates that the cells can migrate efficiently over long distances without
any external chemoattractant information about the direction of migration just based on local interactions with
each other. The analysis of the dependence of this transition on the characteristic properties of cellular motility
shows that the cell density determines the coordination of collective migration whether the migration domain is
open or closed. In the open domain, this density is determined by a feedback mechanism between the flux and
order parameter, which characterises the alignment of collective migration. The model also demonstrates that
the coattraction mechanism proposed earlier is not necessary for collective migration and a constant flux of cells
moving into the channel is sufficient to produce directed movement over arbitrary long distances.

DOI: 10.1103/PhysRevE.104.014405

I. INTRODUCTION

Neural crest cells are motile embryonic cells which are
present in all vertebrates and produce a variety of deriva-
tives including neurons, pigment cells of the skin, cartilage,
bone, muscle, and connective tissues of the skull, face, neck,
and heart [1–4]. Following the formation of neural crest
cells during vertebrate embryogenesis, the cells undergo an
epithelial-to-mesenchymal transition which enables them to
migrate long distances along specific pathways to different
target locations throughout the embryo, where they differ-
entiate into various essential cell types [1,4,5]. Due to this
widespread contribution of neural crest cells to nearly every
major organ, these cells serve as an important model system to
study the physiological and pathological processes, e.g., birth
defects and invasive cancers; reviewed in Ref. [6].

The migration of neural crest cell populations is a prime
representation of the collective migration of a loosely asso-
ciated stream of cells, because their migration as a collective
emerges from their occasional temporary interactions [7–12].
Both in vivo and in vitro experiments describe the directional
migration of the neural crest cells using contact inhibition of
locomotion (CIL) by which cells reshape and change their
direction of movement upon the cell–cell contacts [13,14].
CIL is also found to enhance the collective chemotaxis of
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neural crest cells towards a chemoattractant, where the cell
density promotes the cells chemotactic response [15,16]. In
contrast, dispersed single cells are unable to move towards
the chemoattractant [11,17]. This presents the crucial role
that CIL plays in the migration of neural crest cells during
health and disease [7,9]. For instance, the loss of CIL behavior
contributes to the malignant invasion, where the malignant
tumour cells spread to the healthy tissues [7]. This suggests
that targeting the collective behavior of a cell population may
be effective in controlling the associated diseases, e.g., cancer
metastasis [18].

A major class of theoretical models for collective migration
has been developed in the area of animal migration. These
models capture the group-level migratory properties using
simple interaction rules, e.g., local alignment, attraction, and
repulsion [19–24]. In these models, animals are represented
as point particles which interact via nonlocal rules, because
they use sight to interact with other animals at a distance. In
the context of the cell migration, however, the directionality
of the migration relies on the localized information provided
by direct physical contacts or chemical signals [25].

In addition, the motility of multiple diffusive species (sub-
populations), where the motility of a total population of motile
agents or particles represented as a system of interacting
subpopulations, has been studied in on-lattice [26] and off-
lattice [27] models. These models describe the distribution
of particles in space and time using systems of partial dif-
ferential equations. Such approaches can be useful in tracking
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a subpopulation of cells within a larger population, e.g., the
movement of neural crest cells along the developing intestine,
where donor quail cells were grafted into a chick host [28].

To describe the collective behavior of neural crest cells,
earlier theoretical models have used various computational
techniques (e.g., agent-based and Potts models) and analyti-
cal methods (e.g., partial differential equations) [28–32]. We
have developed a two-dimensional computational model for
the migratory dynamics of neural crest cells driven by CIL
[33]. We modeled cell shapes as closed contours and analyzed
the alignment patterns of the migration in a closed domain
as functions of the cell density and shape [33]. CIL and
chemoattraction toward a secreted chemical molecule have
been suggested by earlier computational models as key mech-
anisms to spontaneous collective migration [34–37]. Although
experiments have provided evidence to support the presence
of neural crest chemoattractants in vivo [11,38,39], it is well
documented that neural crest cultured in vitro in the absence
of any external chemoattractant exhibit directional collective
migration [11,31,40]. Yet, it remains poorly understood how
the transmission of alignment information through the cell–
cell interactions can affect their collective movement in an
open domain, depending on the influx rate of cells into the
domain and their motility properties.

Here, we analyze the role of the alignment interactions
among cells (equivalent to CIL [19,33]) in the collective mi-
gration of cells in an open domain with a channel geometry,
in the absence of cell proliferation and chemotactic signals.
The open channel geometry is more realistic for the migration
of neural crest cells, compared with a closed domain, as it
enables us to compare our theoretical results with experi-
ments and other modeling studies. In addition, we consider
the migration of a stationary, continuous stream of cells within
a channel, where cells enter the channel at a constant rate,
rather than than the migration of a finite cell cluster in a
channel studied in Refs. [31,34]. Furthermore, we consider
a simplified model based on interacting point particles de-
scribing cell–cell contacts within a certain interaction radius,
based on [19], without modeling the cell shapes explicitly
as implemented in the cellular Potts models [31] and the
biochemical models [34]. Our model demonstrates that the
alignment information transmitted through the cell–cell inter-
actions, in the presence of a constant influx of cells into the
channel, is sufficient to generate a directed collective migra-
tion over long distances. In this regime, we further analyze
how the individual cell-level motility and channel properties
(e.g., width of the channel and the influx rate of the cells into
the channel) would influence the properties of the population-
level motility, including the alignment of collective migration,
the migration time for a cell to cross the domain, and the cell
density in the domain. The results are discussed in the context
of experiments and other theoretical studies.

II. MODEL DESCRIPTION

First, we run preliminary simulations using a model where
the cell shapes are modeled as contours, similar to the one
described in Ref. [33]. Then, based on these observations we
study the same problem in more details using the simplified,
but computationally more efficient particle-based model [19].

Briefly, in Ref. [33], the migration of cells was modeled in
a closed square shaped domain with periodic boundaries. The
shape of the cells was initialized as contours (composed of a
circular core surrounded by a deformable region representing
cell protrusions) in polar coordinates with a Gaussian function
of the angle θ :

Q0(θ ; θ0) = R0 + Ae−(θ−θ0 )2/2ω2
, θ0 − π < θ < θ0 + π,

(1)
where R0 is the radius of the cell core, A and ω are the
cell shape parameters, θ0 is the instantaneous cell orienta-
tion [33]. Numerically, the contours are approximated by a
discrete set of m points, corresponding to equally distributed
orientations θk = 2πk/m, where k = 1, .., m. The cell shape
function Q0(θ ; θ0) is then used to determine the cell velocity
in the direction of net force produced by cell protrusions:

�v(t ) = V0

∫ 2π

0
(Q0(θ ) − R0)�nθdθ, (2)

where V0 is a constant velocity parameter and �nθ is the radial
unit vector in the direction θ . In the absence of cell–cell
interactions, a single cell moves with the velocity given by
Eq. (2) with an additional random noise:

d�r
dt

= �v(t ) + �η(t ), 〈�η(t ) · �η(t − τ )〉 = σ 2δ(τ ), (3)

where �η(t ) is an uncorrelated white noise with the intensity σ .
When two cells collide, due to CIL, their protruded contours
collapse and, as a result, the cells redirect their movement. In
numerical simulations, overlapping protrusions are detected
and in the corresponding radial directions the contours are
reset to the core radius. The collapse of protrusions breaks the
symmetry of the cell with respect to the original orientation
axis. Due to this modified shape of the contour the cells
move away from each other and gradually regain their normal
shape and velocity by reforming protrusions symmetrically
along the new movement direction. At each time step, the
velocity vector is determined from the newly updated cell
shape Q0(θ ; θ0) according to Eq. (2), and the orientation of
the velocity vector is combined additively with the noise cor-
responding to Eq. (3). The resulting direction θ0(t ) determines
the orientation of the target Gaussian cell shape Q0(θ ; θ0(t ))
according to

∂Q(θ, t )

∂t
= −γ [Q(θ, t ) − Q0(θ ; θ0(t ))] + ξ (θ, t ), (4)

where γ is the regrowth rate of the cell contour; and for a
more realistic representation of the cells here we also include
a noise term ξ which describes random fluctuations of the
cell protrusions, since pseudopodia are randomly distributed
along the cell perimeter [41]. Note that θ0(t ) is determined by
the orientation of the cell velocity vector �v(t ) defined by the
integral in Eq. (2).

Results from preliminary simulations with this contour-
based cell model are shown in Fig. 1. Starting with an empty
channel with solid reflecting boundaries at the top, bottom,
and left, the cells enter the channel on the left side at a constant
rate with random initial direction, uniformly distributed be-
tween 0 and 2π . When a cell hits a boundary its shape changes
so that the part of the protrusion that is outside of the domain

014405-2



CONTACT INHIBITION OF LOCOMOTION GENERATES … PHYSICAL REVIEW E 104, 014405 (2021)

FIG. 1. Migration of cells simulated with the contour-based model. (a), (b) Snapshots of cells in an open migratory domain with a channel
geometry and dimensions Lx = 40 and Ly = 10, where top and bottom boundaries are reflective. Flux rates f are 0.02 (a) and 0.2 (b). Other
simulation parameters are: R0 = 0.5, A = 0.5, ω = 2, V0 = 1, γ = 0.5, ξ = 0.1, and η = 0.1. For each cell shape, red arrow: the instantaneous
cell velocity; black circle: cell body with radius R0; blue contour: cell shape; see Eq. (1). (c) Simulations are run long enough to observe
that the number of cells in the channel remains steady. (d) Order parameter � versus time. For f = 0.2, � = 0.83 ± 0.04. For f = 0.02,
� = 0.39 ± 0.17.

is removed which leads to a change in the direction of move-
ment. For simplicity, it is assumed that cells exit the channel
from the right end of the channel. Therefore, when the cells
reach the right end of the channel they are eliminated from the
simulation. The simulations were run until the cell numbers in
the channel reached an approximate steady state; see Fig. 1(c).
The simulation was repeated with different values of the input
cell flux into the channel. The main observation from these
simulations is that when the input flux is relatively high the
migration is well ordered, i.e., cells move in approximately
the same direction, and when the input flux is low there is
a lower cell density in the channel and the cells often loose
the overall direction of the migration and follow a longer
random forward-and-backward trajectory to get through the
channel; see Fig. 1(d) and Movies 1 and 2 in the Supplemental
Material [42]. The collective alignment of migrating cells can
be characterized by the order parameter:

� =
∣∣ ∑

i �vi

∣∣∑
i |�vi| , (5)

where � varies between 0 (uncorrelated random movement)
and 1 (fully aligned migration). The order parameter as a
function of time for two values of the input flux is shown in
Fig. 1(c).

In order to characterize the properties and more detailed
parameter dependence of the cell migration in the open chan-
nel, we use a simplified particle-based computational model.
We have shown earlier [33] that in a closed domain the
contour-based cell model has similar properties and produces
qualitatively similar phases of ordered coherent and irregular
movement as the self-propelled particle-based model intro-
duced in Ref. [19]. The effective alignment interaction of the
Vicsek model [19] was found to also arise from various other
types of cell–cell interactions [43–48]. Therefore, we model
the migratory properties using the particle-based cells in an
open domain.

We assume that the self-propelled cells (particles) enter the
domain on the left side of the channel at a fixed rate f , defined
as the number of new cells added per unit time (see Movie 3
and 4 [42]). The model is discrete in time so the time step
taken to update the cell positions is the time unit, 
t = 1.
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Following [19], each cell i moves in the domain by updating
its position �ri = (xi, yi ) at each time step as

�ri(t + 1) = �ri(t ) + �vi(t )
t (6)

with a constant velocity of magnitude v0:

�vi(t ) = v0�ni. (7)

To determine the direction of the self-propelling par-
ticles that interact, in a well-known model Vicsek and
colleagues used the average velocity direction of the neigh-
boring particles [19]. Without considering information about
the movement directions of neighbors, the collective direction
can be determined by assuming only short-range interactions
[49]. This later experimentally motivated model exhibited a
continuous phase transition from a disordered into an ordered
state, which indeed belongs to the same universality class as
the model in Ref. [19]. Therefore, following the fundamental
model in Ref. [19], here, the direction of the displacement
�ni = (cos αi, sin αi ) is calculated as

αi(t ) = 〈α j (t )〉R + 
α, (8)

where 〈αi(t )〉R is the average of the velocity directions α j of
the cells (including cell i) within an interaction circle of radius
R surrounding cell i. 
α is a random noise term uniformly
distributed over the interval [−η/2, η/2] [19]. When a cell hits
the top or bottom boundary, the orientation of the particle is
reflected as αi → 2π − αi. We also used reflecting boundary
conditions on the left end of the domain by changing the orien-
tation of the particles when they cross x = 0 as αi → π − αi.
Finally, when a cell reaches the right end of the channel, it
is removed from the simulation, resembling a target region
where neural crest cells stop migrating and differentiate into
various cell types [29,50].

Since the cells are moving in an open domain, the cell den-
sity ρ is not prescribed as in the closed system studied earlier
[19,33], and is determined by the influx rate of the cells. By
simplifying the cell shapes into a single cell–cell interaction
radius, the number of free parameters is reduced, having only
the flux parameter f in addition to the three cell parameters
v0, η, and R. We will choose the interaction distance as the
length scale unit in the particle based simulations, i.e., R = 1.

Using the simulations based on Eqs. (6)–(8), we focus on
three characteristics of the collective migration: the alignment
of migration calculated using the order parameter defined in
Eq. (5), the migration time, and the cell density in the domain.
The migration time tm for a cell is defined as the time taken
for crossing the channel from left to right. Finally, the cell
density ρ is calculated by binning the domain along the x
dimension, where the width of each bin is five length units.
The cell density ρ is then calculated as the average number of
cells located in each bin divided by the area of the bin.

III. RESULTS AND DISCUSSION

We first examine how the properties of the migratory dy-
namics �, ρ and tm change in response to the influx rate f
of the cells into the domain. Typical snapshots of the cell
distribution in the channel in the stationary regime, are shown
in Figs. 2(a)–2(c). We find that increasing the flux rate f
promotes the migration alignment, accelerates the average

migration time, and increases the cell density in the domain;
see Figs. 2(d)–2(f). The distribution of the migration times
also shows that at lower input flux, in addition to the increased
average migration time, the variability of the time needed to
cross the channel also increases [see the broadening of the
distributions in Fig. 2(f)] indicating the increased randomness
of the individual cell trajectories.

For comparison, we also simulated the migration in the
case when the interaction between the particles was switched
off, i.e., the interaction radius R was set to zero (Fig. 3).
In this case, the cells follow discrete random-walk trajec-
tories, with step-size v0 and random direction αi(t + 1) =
αi(t ) + 
α. In the absence of interactions, the particles have
no information about the direction of migration. This leads
to a highly nonuniform distribution along the channel with
more cells accumulating on the left side of the domain where
they enter the channel; see Figs. 3(a) and 3(c). The stationary
density distribution along the channel can be described by
a one-dimensional diffusion equation with constant flux ( f )
boundary condition on the left, and zero density on the right:

∂ρ(x, t )

∂t
= D

∂2

∂x2
ρ(x, t ), −D

∂

∂x
ρ|x=0 = f ,

ρ(x = Lx, t ) = 0, (9)

where D is the diffusion coefficient of the cells. The stationary
solution of the diffusion Eq. (9) corresponds to a constant
density gradient ρ(x) = (Lx − x) f /D which agrees with the
numerical simulations shown in Fig. 3(c). Therefore, results
in Fig. 3 demonstrate that in the absence of alignment interac-
tions (i.e., without CIL) the influx of cells is not sufficient in
itself to generate a directed collective migration.

We also examine the migratory dynamics when cells move
with the maximum noise intensity (i.e., η = 2π ). The model
predicts a nonuniform distribution of particles along the
channel, similar to the diffusive behavior found for the non-
interacting cells with a lower η; see Fig. 3(c). Likewise, the
order parameter reduces to � ≈ 0.1, confirming the role of
the directional interactions in aligning a collective migration;
Fig. 3(b). In this diffusive regime, the cell density is higher
on the entry side of the channel resulting in an increase in the
migration time; see Fig. 3(d).

With increasing flux rate f , the random movement of
cells changes to organized collective migration, where the
migration alignment is maximised and the migration time
is minimized; see Figs. 4(a) and 4(b). A similar transition
from a sparse domain into a dense one is also obtained with
increasing f ; see Fig. 4(c).

These results motivate us to test the effect of the input
flux rate on another cell mobility characteristic: the directional
persistence of the cell’s displacement trajectories. The persis-
tence length P of cell trajectories determines how far cells can
migrate within the channel in a given amount of time, and is
determined by fitting the following equation:

〈R2〉 = 2P2

(
L

P
− 1 + e− L

P

)
, (10)

to the mean squared displacement 〈R2〉 of the trajectories of
length L [51–53]. We explore the persistence length P versus
the input flux f with varying the noise intensity η. First, we
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FIG. 2. Migratory dynamics simulations of the particle model. (a)–(c) Snapshots of cells, modelled as self-propelled particles, in an open
channel with dimensions Lx = 400 and Ly = 60, where the top and bottom boundaries are reflective. Flux rates are 2 (a), 4(b), and 20 (c) at
time 500. Other simulation parameters are v0 = 2, η = 1, and R = 1. Each red arrow: velocity of a cell. Blue trajectory: displacement trajectory
of a cell randomly selected at the start of the simulation. (d) Order parameter � versus time. For f = 2, � = 0.34 ± 0.09. For f = 4, � =
0.48 ± 0.07. For f = 20, � = 0.80 ± 0.03. Parameter values correspond to mean ± standard deviation (SD). (e) Cell density ρ versus the
binned length of the domain, where each bin is five length-unit wide. ρ are 0.19 ± 0.05, 0.28 ± 0.03, and 0.84 ± 0.02 for flux rates f = 2, 4,
and 10, respectively. (f) Distribution of the migration time tm needed for cells cross the domain. For f = 2, tm = 587.07 ± 219.34. For f = 4,
tm = 419.76 ± 111.19. For f = 20, tm = 251.14 ± 14.94.

FIG. 3. Migratory dynamics of noninteracting particles (i.e., R = 0) with the maximum noise intensity (i.e., η = 2π ). (a) A snapshot of
noninteracting particles in an open domain with dimensions Lx = 400 and Ly = 60 at time 500. Simulation parameters are f = 20, v0 = 2, and
η = 1. Each red arrow: velocity of a cell. Blue trajectory: displacement trajectory of a cell randomly selected at the start of the simulations.
(b) The order parameter � is equal to 0.14 ± 0.07 (for η = 1) and 0.08 ± 0.04 (for η = 2π ). (c) Cell density ρ versus the binned length of
the domain, where each bin is five length-unit wide. Lines: fit of ρ(x) = (Lx − x)m, where the slope m, which is equal to 0.14 ± 0.01 (for
η = 1) and 0.22 ± 0.01 (for η = 2π ), corresponds to f /D; see Eq. (9). Least-squares fitting was performed using MATLAB (version 2017b,
The MathWorks, Inc.). (d) The migration time tm is equal to 1338.35 ± 847.16 (for η = 1) and 1702.28 ± 933.48 (for η = 2π ).
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FIG. 4. Migratory dynamics of cells versus the influx rate f , obtained using the particle model. Order parameter � (a), migration time tm

(b), and cell density ρ (c) calculated with model parameters v0 = 1 and R = 1 for η = 0.5 and 1.5. Open domain dimensions: Lx = 400 and
Ly = 60. Dashed line in (b): minimum migration time Lx/v0.

calculate the mean square of the end-to-end distance R of the
particle trajectories of various lengths L generated from the
simulations; see symbols in Fig. 5(a). Then, fitting Eq. (10)
to the 〈R2〉 versus L calculations estimates P; see curves in
Fig. 5(a). We find that the persistence length of migrating cells

FIG. 5. Persistence length of the migrating cells calculated using
the particle model. (a) Four example calculations of the mean square
of the end-to-end distance R of the displacement trajectories of
particle versus the trajectory length L. Symbols: 〈R2〉 of trajectories
generated from the particle model simulations. Curves: fit of Eq. (10)
to the symbols, performed using MATLAB (version 2017b, The
MathWorks, Inc.). Inset: the persistence length P values correspond
to mean ± standard error (SE). (b) The persistence length P versus
the influx rate f (mean ± SE). Simulation parameters v0 = 1 and
R = 1 for η = 0.5 and 1.5 with an open domain of dimensions Lx =
400 and Ly = 60.

increases with the input flux. It is also found that the noise
intensity lowers the persistence length; see Fig. 5(b).

We further examine how the migratory characteristics
change depending on the cell’s parameters. In addition, we
analyze the effect of the width of the domain Ly on these
characteristics, since earlier studies have shown that a spatial
confinement [31] and growing domain [25,36] may affect the
collective migration of cells.

The cell velocity parameter v0 is found to have no sig-
nificant effect on the migration alignment, but increasing
v0 lowers the migration time and cell density, as shown in
Figs. 6(a)–6(c). Using a continuum representation of the mov-
ing cells, we can describe the flux in the channel as the product
of the average velocity and density. The average local velocity
of cells can be written as the product of the individual cell
velocity (v0) and the order parameter �. In a stationary state,
when the average density is approximately constant in time,
the flux inside the channel is balanced by the input flux of
cells entering the channel leading to the relationship:

f = v0�ρ. (11)

The validity of this relationship, in the form of ρ(v0) =
( f /�)v−1

0 is shown in Fig. 6(c).
Thus, in the open channel the stationary cell density is

determined by the input flux through the following feedback
mechanism: increasing the input flux f leads to higher den-
sity, which produces more ordered alignment of the cells’
movement. This is a consequence of the relationship between
the density and order parameter already well established in
closed domain with constant prescribed density [19,33]. The
increased order parameter raises the flux of cells through the
channel and reduces the density, thus producing a negative
feedback and a stable equilibrium density.

The analysis of the stochasticity of the cells movement
indicates that increasing the noise intensity η can transition
a coordinated migration to a random movement of cells. The
randomness in the movement of the cells blocks their coor-
dination in migrating as a collective. In turn, this leads to an
increased cell density in the domain; see Figs. 6(d)–6(f).

Finally, we find that the collective migration becomes more
aligned and faster with narrowing the domain; see Figs. 6(g)–
6(i). A narrow domain increases the chance of cell collisions,
suggesting that spatial confinement strengthens the effect of
CIL in coordinating the collective migration. For example,
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FIG. 6. Migratory dynamics of cells calculated using the particle model. Order parameter � (top row), migration time tm (middle row),
and cell density ρ (bottom row) versus cell velocity v0 (a)–(c), noise intensity of the cell motility η (d)–(f), and width of the open domain Ly

(g)–(i). Lx = 200. In (a)–(f), Ly = 60. In (\textrma)–(c), η = 1 and R = 1. Dashed curves in (c) calculated as f /(v0�) normalized to Ly. In
(d)–(f), v0 = 1 and R = 1. In (g)–(i), v0 = 1, η = 1, and R = 1. Dashed curves: mean �, tm, and ρ versus Ly for different flux density values,
proportional to Ly. Shaded region: SD. For example, with f = 1 and Ly = 15, one cell enters the domain every four time steps.

the order parameter decreases with the domain width; see
Fig. 6(g). Narrowing the domain (at fixed f , v0, η, and R)
accelerates the cell collision rate, resulting in a faster con-
vergence of the displacement directions αi to an aligned
direction. Accordingly, enhancing f , would increase �. When
the input flux f is proportional to the width of the domain
(e.g., for f = 1 with Ly = 30, one cell enters the domain
every second time-step), negligible changes in �, tm, and ρ

are found; see dashed curves in Figs. 6(g)–6(i).
To represent the relationship between the average cell

density ρ and the order parameter � in an open domain,
we can eliminate the flux parameter f in the calculations
of ρ( f ) and �( f ) in Figs. 4(a)–4(c). The result of this is
shown in Fig. 7(a). Higher cell density, which is produced by
increased incoming flux of cells, leads to a more coordinated
ordered migration. We can now compare this result to the
closed system where there is no flux across the domain and
the cell density is an externally controlled parameter deter-
mined by the initial condition. We find the same transition
from disordered to ordered collective movement in response
to the cell density ρ; see Fig. 7(b). We further explore this
relationship between ρ and � with the contour-based model.
While the order parameter and density both increase with the
input flux, similarly to the particle model, the cell density in

the channel saturates at a maximum value; see Figs. 8(a) and
8(b). This illustrates the effect of the volume exclusion (i.e., a
cell cannot occupy space that is already occupied by another
cell [54]) in the contour-based model, which is absent in the
particle model; compare Figs. 4(c) and 8(b). However, the
maximum density is reached at flux values when the system
is already in the ordered migration regime, therefore volume
exclusion does not affect the relationship between ρ and �.

FIG. 7. Alignment of collective migration versus the cell den-
sity calculated using the particle model in (a) open (400 × 60) and
(b) closed (60 × 60) domains. Simulation parameters are v0 = 1 and
R = 1 for η = 0.5, and 1.5.
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FIG. 8. The alignment of collective migration versus the cell density calculated using contour-based model in open (40 × 10) and closed
(30 × 30) domains. Simulation parameters: R0 = 0.5, A = 0.5, ω = 2,V0 = 1, γ = 0.1, ξ = 0.1, and η = 0.05.

We again find a consistent transition from disordered to or-
dered migration in the ρ versus � relation obtained from the
contour-based cell model with both open and closed domains;
see Fig. 8(c). These agreements show that the simplified par-
ticle model can reproduce the results of the more complex
contour-based model in Ref. [33]; see Movies 3–5 [42].

Our results are in agreement with experimental and earlier
theoretical findings. Experiments have shown that CIL dra-
matically increases the percentage of the neural crest cells
that reach their target region over time [29,31]. Likewise,
Woods et al. [30] found that the cell–cell interactions reduce
the time taken for the cells to reach a target location. These
observations confirm our results on the migration alignment
and time in Figs. 2(d) and 2(f), which are further analyzed
versus the motility properties of the cells.

The analysis of the effect of the randomness in the move-
ment of the neural crest cells in Figs. 6(d)–6(f) has shown that
stochastic fluctuations in the movement of cells limit the coor-
dination of the migration. This agrees with our earlier results
in Ref. [33], and the flocking models (where the self-propelled
particles had nonlocal interactions) [19,49], the self-propelled
short-range interacting agents in swarm migration [55], and
the self-propelled interacting cells [56] that the amplitude of
the stochasticity of the movement of cells leads to random
movement.

In addition, previous experimental and theoretical studies
on the effect of the spatial confinements on the migration of
neural crest cells have shown that removing the lateral con-
finement of the domain significantly reduces the directionality
of the collective movement [31,34]. In agreement with these
findings, the model calculated higher order parameter � for
narrower domains; see Fig. 6(g).

Finally, experiments have shown that the CIL interaction
of neural crest cells during migration increases migratory
persistence (i.e., the maximum distance along a cell trajectory
divided by the total length of that trajectory) [31]. More-
over, the self-propelled particle models have indicated that the
particle density transitions particles’ random movement to a
coordinated migration [49,55]. Together, this implies that the
coordination of the migration would increase in response to
an increase in the cell density in the domain. This has been
shown in our calculations for the flux-dependent persistence
length in Fig. 5(b) and the density-dependent order parameter
in Figs. 7(a) and 7(b).

IV. CONCLUSION

We extended our computational model of the analysis of
the migration of the neural crest cells [33] to an open domain.
This allowed us to take into account the effect of the flux
rate of the cells into the domain on the migration alignment
and cell density, in the absence of proliferation and chemoat-
traction. Our results suggest that when there is a sufficiently
strong sustained flux of cells into a confined channel the
cells interacting via CIL alone can maintain persistent di-
rected migration without directional chemotactic signals; see
Figs. 2(a)–2(c) and 3(a), blue trajectories. This resembles the
observations in Ref. [37], where the role of lead and trailer
neural crest cell identities examined that trailer neural crest
cells do not require chemotactic signaling factor (vascular
endothelial derived growth) for guidance, but instead receive
guidance instructions from lead cells. The alignment of the
directed migration is determined by the cell density the same
way as in a closed system of interacting self-propelled par-
ticles [19] or contour-based cells [33]. While in a closed
system with periodic boundary conditions there are multi-
ple choices for the common direction, in the open channel
a single direction consistent with the domain boundaries is
selected. Previous modeling work has shown [34] that directed
collective migration of cell clusters is possible when there is
coattraction between the cells mediated by a diffusing chem-
ical signal. Our model demonstrates that the key factor for
collective coherent movement is the cell density, and therefore
the coattraction mechanism is not necessary when the cell
density is maintained by a continuous flux of cells entering the
channel. In this case, the density is determined by the balance
between the external flux f and the flux in the channel defined
by v0ρ�(ρ).

Data availability

The computer code is available to download from the
website [57]. The code has been developed using MATLAB
version R2017b, The MathWorks, Inc.
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