
PHYSICAL REVIEW E 104, 014404 (2021)

Lattice protein design using Bayesian learning

Tomoei Takahashi ,1,* George Chikenji ,2 and Kei Tokita 1

1Graduate School of Informatics, Nagoya University, Nagoya 464-8601, Japan
2Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan

(Received 17 March 2020; revised 17 May 2021; accepted 11 June 2021; published 8 July 2021)

Protein design is the inverse approach of the three-dimensional (3D) structure prediction for elucidating
the relationship between the 3D structures and amino acid sequences. In general, the computation of the
protein design involves a double loop: A loop for amino acid sequence changes and a loop for an exhaustive
conformational search for each amino acid sequence. Herein, we propose a novel statistical mechanical design
method using Bayesian learning, which can design lattice proteins without the exhaustive conformational search.
We consider a thermodynamic hypothesis of the evolution of proteins and apply it to the prior distribution of
amino acid sequences. Furthermore, we take the water effect into account in view of the grand canonical picture.
As a result, on applying the 2D lattice hydrophobic-polar (HP) model, our design method successfully finds an
amino acid sequence for which the target conformation has a unique ground state. However, the performance was
not as good for the 3D lattice HP models compared to the 2D models. The performance of the 3D model improves
on using a 20-letter lattice proteins. Furthermore, we find a strong linearity between the chemical potential of
water and the number of surface residues, thereby revealing the relationship between protein structure and the
effect of water molecules. The advantage of our method is that it greatly reduces computation time, because
it does not require long calculations for the partition function corresponding to an exhaustive conformational
search. As our method uses a general form of Bayesian learning and statistical mechanics and is not limited to
lattice proteins, the results presented here elucidate some heuristics used successfully in previous protein design
methods.

DOI: 10.1103/PhysRevE.104.014404

I. INTRODUCTION

Proteins have important roles in living systems. The com-
plex three-dimensional (3D) structure that determines the
function of a protein represents an equilibrium state de-
termined by the amino acid sequence and the appropriate
physiological conditions [1]. Protein design [2] requires de-
termining the optimal amino acid sequence that results in a
given 3D structure as an equilibrium state. Protein design,
therefore, is the inverse problem of 3D structure prediction. In
addition, as amino acid sequences are determined by genomic
information, protein design can be used to explore the design
principles of life. In recent decades, many computational pro-
tein design methods have been proposed and applied to drug
design [3–10]. However, there have been fewer theoretical
studies of design principles based on statistical mechanics,
and few heuristics have been applied to the design of real
proteins.

In order to design an optimal sequence, the most rea-
sonable statistical mechanical procedure involves finding a
sequence that minimizes the free energy of a given target
conformation. As part of this procedure, one needs to carry
out a folding simulation to check that the selected sequence
folds into the target conformation with high probability every
time a candidate optimal sequence is selected, for example,
using the negative design method [11].
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However, many other design methods stabilize only a tar-
get conformation, although they could in principle lower the
energy of other conformations. Nevertheless, they success-
fully find an optimal sequence that minimizes the energy
of the target conformation. It is not clear why such design
(inverse problem) methods work without an exhaustive search
(forward problem) for all possible compact conformations.
One of the main purposes of the present study is to investigate
the success of the inverse problem without solving the forward
problem, which is a highly nontrivial problem in statistical
and biological physics.

In this study, we use the lattice model, which is the simplest
coarse-grained protein model. Lattice models have been used
to elucidate many problems such as characterizing the free
energy landscape of protein folding [12,13], an explanation
of the cold denaturation [14], the effect of mutation of amino
acid sequence for the native structure [15,16], and the analysis
of RNA folding energy landscape [17]. The minimal model
such as the lattice model is, therefore, still adequate for dis-
cussing why the natural protein design methods succeed in
designing proteins without the conformational search [3–10].

II. MODEL AND METHOD

A. The lattice HP model

In order to address the problem described above, we take
a statistical mechanical approach [18] based on Bayesian
learning, using a coarse-grained protein model called the HP
model [19]. We use a lattice model in which every amino acid
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residue is located on a lattice site, and a protein structure is
represented by a self-avoiding walk on a 2D or 3D lattice. Al-
though a real protein has 20 types of amino acid, the HP model
includes only two types, hydrophobic (H) and polar (P). Here
we consider N residues σ = {σ1, σ2, . . . , σN |∀i, σi = ±1} on
a lattice position r = {r1, r2, . . . , rN }, where i = 1, 2, . . . , N
σi = 1 indicates that the ith residue is an H residue, and
σi = −1 indicates that it is a P residue.

We assume the energy of the lattice protein is given by

E (r; σ ) =
∑
i< j

U (σi, σ j )�(ri − r j ), (1)

where U (σi, σ j ) denotes the interaction potential between
the monomers i and j. We moreover assume the simplest
functional form of U : U (1, 1) = ε1,U (1,−1) = U (−1, 1) =
ε2,U (−1,−1) = ε3, using two types of interaction set,
(ε1, ε2, ε3) = (−1, 0, 0) and (−2.3,−1, 0). The definition of
the contact energy �(ri − r j ) is

�(ri − r j ) =
{

1 if ri and r j contact each other,
0 otherwise, (2)

where contact between two residues is defined as the case
where |ri − r j | = 1 but |i − j| �= 1. In this model, therefore,
the energy given by Eq. (1) of denatured conformations is
always higher than the energy of compact conformations.
Equilibrium statistical mechanics have been successfully ap-
plied using the HP model, which is similar to the Ising model.
For lattice protein models of comparatively small size, several
successful theoretical studies have been reported.

B. Related works

The first and pioneering study of protein design using
statistical mechanics and the HP model was minimization of
the energy [Eq. (1)] of a target conformation performed by
Shakhnovich and Gutin (SG) [20]. Subsequently, Kurosky and
Deutsch proposed a design criterion in which the solution
of the design problem is a sequence σ that maximizes the
Boltzmann distribution p(R|σ) as the conditional probability
[21,22], where R is a set of position vectors of the target
conformation. We hereafter call p(R|σ) the “target probabil-
ity,” and the design criterion maximizing the target energy
probability is denoted the MTP criterion.

For the MTP criterion, a solution σMTP is given by

σMTP = argmax
σ

p(R|σ ) (3)

and

p(R|σ) = exp [−βE (R; σ )]

Zβ (σ)
, (4)

Zβ (σ) =
∑

r

exp [−βE (r; σ)], (5)

where β is the inverse temperature of the system, r is any
compact conformation of the conformation space into which
the sequence σ can fold, and Zβ (σ) is a partition function
of the conformation space. In terms of statistical learning,
the MTP criterion is the maximum likelihood estimation for
the canonical distribution [Eq. (4)]. The MTP criterion, how-
ever, includes Zβ (σ). Hence, to obtain σMTP, one must carry

out an exhaustive conformational search every time a candi-
date σMTP is found. For such conformational searches, very
fast and accurate methods are required. Currently available
methods include generalized ensemble Monte Carlo methods
[23–25]. Even these methods, however, cannot provide rea-
sonable results for longer chains (more than 100 residues).
Thus, design of large and realistic protein models remains im-
possible, and successful statistical mechanical protein design
using the MTP criterion has been reported only for com-
paratively small lattice proteins and models [21,22,26–37].
To overcome the above difficulty, Kurosky and Deutsch [22]
carried out high-temperature expansion of the free energy
Fβ (σ) = −(1/β ) ln Zβ (σ) and minimized Fβ (σ) using simu-
lated annealing for a 2D HP model with N = 10–18. A design
method using simulated annealing for both sequence and con-
formation space was proposed by Seno et al. [26], using a
2D lattice HP model with N = 12 and 16. The multisequence
Monte Carlo method proposed by Irbäck et al. [28,29] is an
efficient procedure that obtains an optimal sequence excluding
bad sequences with low target probability using fluctuation of
sequences; this method was used to design a comparatively
large 2D HP model (N = 32 and 50) and 3D off-lattice HP
model (N = 20). The “design equation” method of Iba et al.
was the first application of Boltzmann machine learning to
protein design and was used to obtain a correct sequence for
several 3D 3×3×3 cubic conformations [30,31]. There are
some other design methods with a similar policy to the design
equation method: minimization of the relative entropy [35,36]
and gradient descent [37] to optimize the sequence.

Some statistical mechanical methods of protein design do
not use MTP criterion. Coluzza et al. proposed a method using
energy minimization while maintaining a low variance of the
20 types of amino acid residues for some lattice target confor-
mations [38]. Coluzza also proposed a design method using
minimization of both energy and free energy and designed
his original off-lattice protein model [39]. Other methods that
introduced an explicit solvent to the minimization energy,
have also been studied [40–46]. These methods are effective,
but the reason for their effectiveness cannot be understood in
terms of the MTP criterion. We, therefore, propose a hypoth-
esis as a prior distribution of the Bayesian protein generative
model, for this problem in the following subsection.

In recent years, many successful applications of deep learn-
ing have been reported in various engineering and scientific
fields, including protein folding and drug design [47–54].
Deep learning for protein design involves learning the re-
lations between a protein conformation and an amino acid
sequence using big data from the Protein Data Bank [55].
Although deep neural networks have been used to successfully
predict an optimal sequence for a target conformation [49,54],
we still do not theoretically understand the design principles
of machine learning in this context. In the present study, there-
fore, we apply Bayesian learning to protein design to explore
these design principles.

C. Design method by Bayesian learning

In Bayesian learning, one assumes that data D are gener-
ated by conditional probability p(D|θ ) under the parameter
θ . By Bayes’s theorem, the posterior distribution p(θ |D) is
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given by

p(θ |D) = p(D|θ )p(θ )∫
p(D|θ )p(θ )dθ

, (6)

where p(θ ) is the prior distribution of θ if θ is a continuous
random variable. One estimates θ and predicts unobserved
data from the posterior given by Eq. (6). The basic procedure
of Bayesian learning is as follows: Starting from a highly ar-
bitrary prior p(θ ), the posterior p(θ |D) is repeatedly updated
with the highly objective likelihood function p(D|θ ) using
Eq. (6); thus we can finally obtain a precise value of θ .

Here we apply the above procedure to protein design. Let
the appearance probability of the given target conformation R
for data D be the target probability p(R|σ), and let the prior
of the HP sequence σ be the parameter θ , p(σ ). Then the
posterior of the sequence p(σ|R) is given by

p(σ|R) = p(R|σ)p(σ )∑
σ p(R|σ)p(σ )

, (7)

where
∑

σ denotes summation over all sequences.
Furthermore, as with previous studies considering the ef-

fect of water [42–46], we consider the interactions between
two amino acids [Eq. (1)] as well as the interactions between
amino acids and water molecules for the energy of a lattice
protein. Nevertheless, we do not simply add the solvation
term to the energy of a lattice protein [Eq. (1)]; in fact, we
suppose the grand canonical situation. Thus, we propose a
design method controlling the number of water molecules that
combine with a protein by adjusting its chemical potential.

We therefore consider the following target probability as a
grand canonical distribution:

p(R, Nw|σ) = exp [−β(E (R; σ ) − μNw )]

�β,μ(σ)
, (8)

�β,μ(σ) =
∞∑

Nw=0

∑
r

exp [−β(E (r; σ ) − μNw )]. (9)

The definition of the energy E (R; σ) of the target R for a given
sequence σ is given by Eq. (1), and μ is the chemical potential
of water. We assume that one water molecule combines with
one P residue, hence Nw = NP(σ), where NP(σ) is the num-
ber of all P residues. Therefore, Eqs. (8) and (9) denote the
canonical distribution of the Hamiltonian E (R; σ ) − μNP(σ)
with external field μ. Consequently, we rewrite Eqs. (8) and
(9) as follows:

p(R|σ ) = exp {−β[E (R; σ) − μNP(σ)]}
�β,μ(σ)

, (10)

�β,μ(σ) =
∑

r

exp {−β[E (r; σ ) − μNP(σ)]}, (11)

where NP(σ) is obtained by the conditions N = NH + NP and∑
i σi = NH − NP as

NP = 1

2

(
N −

∑
i

σi

)
. (12)

In order to obtain an optimal sequence σ that maximizes
p(R|σ), we have to repeat the exhaustive conformational
search in Eq. (11) for each trial sequence σ. In general, this
calculation takes an enormous amount of time.

One of the new ideas of the present study is that the prior
distribution p(σ ) is given by

p(σ ) = �β,μ(σ)

�β,μ

, (13)

�β,μ =
∑

σ

∑
r

exp {−β[E (r; σ ) − μNP(σ)]}, (14)

where �β,μ is the partition function of both conformation and
sequence space. The expression of the prior Eq. (13) is based
on the following hypothesis: As a result of evolution, the prob-
ability p(σ ) is proportional to its partition function �β,μ(σ)
so that the free energy Fβ,μ(σ) := −(1/β ) ln �β,μ(σ) takes a
minimum. Note that Kurosky and Deutsch [21] assumed the
equal a priori weights p(σ ) = 1/Ns, where Ns is the number of
all HP sequences. By contrast, our method considers the above
postulation for the weight of the appearance of sequences,
which is reasonable from the viewpoint of thermodynamics
and protein evolution. We obtain posterior distribution p(σ|R)
by substituting Eqs. (13) and (10) into Eq. (7) and by cancel-
ing �β,μ(σ) out as follows:

p(σ|R) = exp {−β[E (R; σ ) − μNP(σ)]}
�β,μ(R)

, (15)

�β,μ(R) =
∑

σ

exp {−β[E (R; σ ) − μNP(σ)]}, (16)

where �β,μ(R) is a partition function of the sequence space
corresponding to the given target conformation R. An im-
portant point regarding Eq. (15) is that it no longer includes
�β,μ(σ). Thus, we can efficiently obtain an optimal sequence
using Eq. (15) simply by summation over σ. This design
method without �β,μ(σ) is essentially same as a proce-
dure used previously to obtain more realistic protein designs
[3–10].

The final step is to obtain an optimal HP sequence using
Eq. (15). Nevertheless, the exact calculation of Eq. (16) is
difficult if the number of residues N is large. We thus uti-
lize one of the simplest Markov-chain Monte Carlo (MCMC)
methods, Gibbs sampling. In this method, the sampling prob-
ability of σi of each Monte Carlo step (MCS) is a conditional
probability of σi given other random variables. We thus obtain
the following sampling probability by substituting Eqs. (1)
and (12) into Eq. (15). Accordingly, the sampling probability
of an H residue (σi = 1) or P residue (σi = −1) is given by

p(σi = ±1|R; σ\i ) = 1

1 + e±β{�Ei (R;σ )+μ} , (17)

where σ\i := {σ1, . . . , σi−1, σi+1, . . . , σN }, a vector of all
random variables of residues except for the ith residue
σi, and the double signs correspond. Let �Ei(R; σ ) :=∑

j∈n(i)[U (1, σ j ) − U (−1, σ j )], where n(i) denotes the set of
sites j that are the nearest neighbors of ith site except for those
along the chain ( j �= i − 1, i + 1). The random variables σ\i

have fixed realizations in the denominator and the numerator
of the right-hand side of Eq. (15) at every MCS. Thus, the
random variables that interact with the ith residue σi remain
only on the right-hand side of Eq. (17), because those fixed
realizations, except for the residues that interact with σi, are
canceled out in Eq. (15). We decide whether each residue is
H or P using the expectation 〈σi〉; that is, σi is H if 〈σi � 0
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FIG. 1. Examples of N = 16 maximally compact conforma-
tion (left) and nonmaximally compact conformation (right). The
maximally compact conformation has nine contacts, whereas the
nonmaximally compact conformation has seven contacts.

and P otherwise. We also take the number of MCSs until the
estimated value does not change and let the burn-in be the
leading 1/5 of all MCSs. In this study, the inverse temperature
is set to β = 10 for all conformations of all lattice models.
On the other hand, we heuristically set the chemical potential
μ in order to design a unique ground state by repeating the
design experiment many times. The necessary and sufficient
condition for successful design is that the energy given by
Eq. (1) of the target conformation and the sequence designed
corresponds to a unique ground state of all possible compact
conformations.

The formulation of our design method as described so far
can be derived by assuming a joint distribution given by

p(r; σ ) = exp {−β[E (r; σ ) − μNP(σ)]}
�β,μ

, (18)

where �β,μ is given by Eq. (14). One can derive the prior
[Eq. (13)] and the likelihood function (the target probability)
given by Eq. (10) by a marginalization p(σ ) = ∑

r p(r; σ ) and
a relation p(R|σ) = [p(r; σ)/p(σ )]|r=R, respectively. Thus,
the hypothesis [Eq. (13)] is included in the joint distribution
[Eq. (18)].

III. RESULT

A. Enumerable conformations

First, we tested our design method with comparatively
small lattice protein models, for which all compact confor-
mations were enumerable. We designed 2D N = 3×3, 3×4,
4×4, 5×5, and 6×6 lattice models, and 3D N = 2×2×3 and
3×3×3 lattice models.

Native conformations are not necessarily maximally com-
pact. This is because proteins can have low energy if the
hydrophobic core is compact enough [56]. Therefore, we de-
signed nonmaximally compact conformations of 2D N = 9,
12, and 16 used in the study by Irbäck and Troein [57]
to compare the statistical property between maximally com-
pact and not maximally compact conformations. Following
Ref. [57], we do not design approximately unfolded con-
formations without a core. The examples of both N = 16
maximally compact and nonmaximally compact conforma-
tions are shown in Fig. 1.

The numbers of all conformations Nc including those that
are not maximally compact conformations and the numbers

TABLE I. Number of conformations and HP sequences. N = 9,
N = 12, and N = 16 involves compact 3×3, 3×4, and 4×4 as their
maximally compact conformations, respectively. The numbers in
brackets represent the numbers of maximally compact conforma-
tions, respectively.

Size Nc Ns Conformations designed

N = 9 12 (8) 512 All
N = 12 52 (27) 4096 All
N = 16 518 (62) 65 536 All
5×5 1075 33 554 432 Random 100
6×6 52 667 68 719 476 736 Random 100 and MHDC
2×2×3 69 4096 All
3×3×3 103 346 134 217 728 Random 100 and MHDC

of all HP sequences Ns of these lattice models are shown in
Table I.

The number of maximally compact conformations is the
number of all compact self-avoiding walks from which
all kind of rotational, reflection, and head-tail symmetrical
conformations have been eliminated. The total number of
conformations of these lattice models is enumerable; hence,
one can confirm whether or not the designed sequence folds
into the target conformation as a unique ground state.

Note that not every conformation always has a solution to
the design problem.

The number of sequences that fold into the target con-
formation as a unique ground state differs among target
conformations and is called designability. In general, a con-
formation with higher designability is easier to design. This
is because high designability means a large solution space in
sequence space.

Designability is a significant quantity that relates to the
thermodynamic stability of proteins; however, we do not
address issues of designability in depth here. In order to
calculate the exact success rate (SR) of the overall confor-
mation, one needs to select designable target conformations
with designability greater than zero; however, to enumerate
the designabilities of each conformation, one would need to
enumerate the energy of every combination of conformations
and sequences. This would require vast computation time for
models with comparatively large size, such as the 5×5, 6×6,
and 3×3×3 models (Table I), even though they are com-
pact. Therefore, in this study, we carried out the enumeration
of designabilities only for the N = 9, N = 12, N = 16, and
2×2×3 lattice models.

For the models with N = 5×5, 6×6, and 3×3×3, the
number of conformations was too large. Thus, we randomly
chose 100 target conformations and determined the SR, that is,
the number of successfully designed conformations (Table II).
For the models with N = 6×6 and 3×3×3, we moreover
identified the most highly designable conformation (MHDC)
(Figs. 1, 2, and 3), in which designabilities were exactly
enumerated [58], to test whether our method could be used
to design the easiest instance.

The results of the application of our method are summa-
rized in Table II. All designed sequences were classified into
three types: good, medium, and bad sequences. The good
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TABLE II. Design results and the optimal chemical potential μ∗.

Size N (g)
c N (m)

c N (b)
c SR dav μ∗ (ε1, ε2, ε3)

N = 9 7 1 0 87.5 1.25 0.55
N = 12 29 11 0 72.5 1.475 0.6
N = 16 393 89 0 81.5 1.26 0.62 (−1, 0, 0)
5×5 68 32 0 68 1.48 0.74
6×6 63 37 0 63 1.58 0.8
2×2×3 17 30 1 35.4 2.94 1.7 (−2.3, −1, 0)
3×3×3 8 80 12 8 10.67 2.33

sequences had the target conformation as a unique ground
state, medium sequences had the target conformation as one
of the degenerated ground states, and bad sequences had
ground-state conformation(s) that did not include the target
conformation. In the table, SR, N (g)

c , N (m)
c , and N (b)

c , denote
the percentage of good sequences and the number of con-
formations that were designed with good, medium, and bad
sequences, respectively. We also calculated the average degen-
eracy, dav, for all N (g)

c + N (m)
c ground states. We repeated the

calculations with various values of μ and obtained the optimal
value μ∗ that gave the maximum success rate. The values of
μ∗ for each lattice size are listed in Table II. The values of
the energy parameters are also listed in Table II. The energy
parameters (ε1, ε2, ε3) = (−2.3,−1, 0) were also used for a
3×3×3 lattice model in previous work [58] in order to avoid
the degeneracy of ground states. We used the same energy
parameters for 3D lattice models for the same reason. The
total MCSs were set to 105 for all target conformations listed
in Table II. The N = 9 and 2×2×3 lattices included several
nondesignable conformations; we excluded such conforma-
tions when calculating SR.

According to the results shown in Table II, the SRs
were relatively high for small 2D HP models, but they

FIG. 2. Designed sequence of the MHDC of 6×6 HP model with
(ε1, ε2, ε3) = (−1, 0, 0), β = 10, and μ∗ = 0.8. The white and black
balls denote H and P residues, respectively (the same applies in the
following figures.

FIG. 3. Designed sequence of the MHDC 3×3×3 HP model
with (ε1, ε2, ε3) = (−2.3, −1, 0), β = 10, and μ∗ = 2.33.

decreased as N increased. Nevertheless, in the case of N =
16, the SR is higher than that for the smaller case, N =
12. The N = 16 case has an extremely high percentage of
nonmaximally compact conformations than the N = 12 one
(Table I). Hence, this result shows that the proposed de-
sign method is more efficient for nonmaximally compact
conformations.

The average degeneracy dav was low for 2D models. By
contrast, the success rate for 3D models was low compared
with that of 2D models. For 2×2×3, dav was low, but for
3×3×3, it was comparatively high. Thus, designed sequences
did not appear to be likely to fold into the target conformations
for the 3×3×3 cubic lattice. In addition, μ∗ increased as the
number of residues increased for both the 2D and 3D lattices.

Nevertheless, to design the 3D lattice conformations of
the HP model efficiently is difficult because the logarithm
of the number of types of the amino acid (alphabet size) is
smaller than the conformational entropy of a residue [59, Sec.
IV]. Therefore, for N = 2×2×3 and 3×3×3, design accuracy
would be low when using the HP model. We thus show the
design results by increasing the alphabet size for the 3D lattice
cases in the next subsection.

Note that we did not enumerate designabilities of all con-
formations for the 5×5, 6×6, and 3×3×3 models; hence,
there may have been nondesignable conformations among the
100 randomly chosen conformations. However, it is likely
that this was not the case for the 5×5 and 6×6 models,
because the smaller N = 9 HP model did not lead to any
nondesignable conformation. On the other hand, the fraction
of nondesignable conformations out of all conformations for
the 2×2×3 model was 21/69; the fraction for the 3×3×3
model is expected to be less than that because the fraction
decreased as the size increased in the 2D cases. Thus, there
may have been a considerable number of nondesignable con-
formations among the randomly chosen 100 conformations
for the 3×3×3 model; hence, the real success rate of the
3×3×3 model increased when nondesignable conformations
were excluded.

Concerning the MHDC of the 6×6 and 3×3×3 HP models,
we obtained a good sequence (Figs. 2, 3, and 4). This is the
first example of design of a 6×6 MHDC without enumerating
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FIG. 4. Designed sequence of the MHDC of 3×3×3 HP model
with (ε1, ε2, ε3) = (−1, 0, 0), β = 10, and μ∗ = 1.0.

all HP sequences [58]. For the MHDC of the 3×3×3 HP
model, we successfully designed a good sequence for the
energy parameters (ε1, ε2, ε3) = (−2.3,−1, 0) (Fig. 3) and
(−1, 0, 0) (Fig. 4). We executed 104 MCSs for these three
cases. The results obtained here demonstrate the features of
general globular proteins, with H residues on the inside of the
protein and P residues on the surface exposed to the surround-
ing water molecules. We observed four residues (surrounded
by dotted black circles in Figs. 3 and 4) that were different
from each other, possibly owing to the presence or absence of
H-P (P-H) contact energies.

The larger μ∗ of the MHDC of 3×3×3 HP model
with (ε1, ε2, ε3) = (−2.3,−1, 0) compared with the case of
(ε1, ε2, ε3) = (−1, 0, 0) could have been due to the lower
H-H interaction ε1 = −2.3, leading to a greater increase in
the number of H residues than in the case of (ε1, ε2, ε3) =
(−1, 0, 0). Therefore, one needs to increase μ∗ in order for
the surface residues to be P residues.

B. Enumerable 3D conformations with increasing alphabet size

In the results shown in Table II, the SRs of 3D cases are
quite low. As mentioned above, this is because the logarithm
of the alphabet size is smaller than the conformational entropy
of a residue in the case of 3D lattice models [59, Sec. IV].

Therefore, we show the design results of the 3D lattice
conformations with increasing alphabet size here. The 3D
lattice target conformations designed here are the same as
those given in the previous subsection. The alphabet size is
20, and we use the original Miyazawa-Jernigan (MJ) matrix
[60, upper half of Table V] for the contact energy of all the
pairs of amino acids. For simplicity, we set all interactions
between water molecules and polar amino acids to be equal.
The procedure of optimizing μ is identical to the case that of
the HP model. We assume that the amino acids Y, F, W, L, V.
I, A, P, and M are hydrophobic [61].

It is impossible to calculate the expectation value 〈σi〉 in
the same way as the HP model because the 20 types of amino
acids cannot be represented using the Ising variables. The
optimal 〈σi〉, therefore, is given by the type sampled the most
after the burn-in period.

TABLE III. Design results of small 3D compact lattice con-
formations with Miyazawa-Jernigan matrix [60] and the optimal
chemical potential μ∗ with the results of HP model in Table II.

Size Alphabet size N (g)
c N (m)

c N (b)
c SR dav μ∗

2×2×3 20 (MJ) 16 18 14 33.3 1.60 1.1
2 (HP) 17 30 1 35.4 2.97 1.7

3×3×3 20 (MJ) 19 63 18 19 5.74 1.55
2 (HP) 8 80 12 8 10.67 2.33

Table III depicts the obtained results. To obtain the precise
results, one has to calculate the designablities of all confor-
mations using the MJ matrix. This is computationally difficult
because calculating the 20N energy patterns for all confor-
mations is necessary. Nevertheless, the designability of the
20-letter model correlates with the designability of the 2-letter
model [62]. Hence, in the case of N = 2×2×3, as given in
Table II described in previous subsection, we excluded 21
nondesignable conformations when we assumed the energy
parameter (ε1, ε2, ε3) = (−2.3,−1.0, 0) of the HP model.

According to results summarized in Table III, for N =
2×2×3, the value of SR of the 20-letter is a slightly less
than the SR of the HP model. By contrast, in the case of
N = 3×3×3, SR of the 20-letter is more than twice as large as
the SR of the 2-letter. The ground-state degeneracy typically
breaks on increasing the alphabet size. We believe that an in-
crease in SR for N = 3×3×3 is a result of the aforementioned
degeneracy breaking. The difference in the changing of SR
between the above two cases is, we consider, because of the
presence or absence of the core residue.

We discuss how the presence or absence of the
core residue affects the above difference. In Fig. 5, we
represent the change in the number of contacts for the three

h- h h- p(p- h) p- p

0

2

4

6

2×2×3

HP
MJ

h- h h- p(p- h) p- p
0

5

10

15

3×3×3

HP
MJ

FIG. 5. The number of contacts for the three types, hydrophobic-
hydrophobic (h-h), hydrophobic-polar (polar-hydrophobic) (h-p,
p-h), and polar-polar (p-p) contacts, for the two types of energy
parameters, the HP model with (ε1, ε2, ε3) = (−2.3, −1, 0) and MJ.
The value of each bar is an average of the number of contacts for
each type of all the designed conformations. The each error bar
represents a standard deviation. The total number of contacts is 9
for N = 2×2×3, and 28 for 3×3×3.
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TABLE IV. We carried out the exact calculations of Z (σ) for the dual MC method because the target conformations are all enumerable.
We designated the name the dual MC method for the sake of convenience. For the dual MC method, the temperature of kth MC step is given
by Tk = T0/(1 + αk2) where T0, k, Tk , and α > 0 denotes the initial temperature, MC step, temperature of a MC step k, and the controlling
parameter, respectively. For all the lattice protein sizes, the initial temperature is represented by T0 = 10, and α is the value of the above
equation in which we substitute the terminal temperature T = 0.1 for Tk and the MCSs for k. DT and DE denote the design time and the design
efficiency, respectively. The MCSs of the Bayesian method are set as low as possible to achieve the same SR value as reported in Table II as
described in the main text. The last MCS, which is mentioned in the last column of the dual MC method, denotes the average last MC step for
all conformations. All MCSs values for the dual MC method range from 500 to 70 000. These MCSs differ depending on the lattice protein
size as well as the conformations of the same size.

Bayesian method Dual Monte Carlo method

Size SR (%) DT (s) DE (%/s) MCSs SR (%) DT (s) DE (%/s) Last MCS

N = 9 87.50 0.02615 3103 1000 100.0 1.043 96.12 492
N = 12 72.50 0.04356 1670 2000 90.00 4.300 23.53 2509
N = 16 81.53 0.1422 5708 5000 92.74 167.6 0.7182 17924
5×5 68.00 1.179 577.3 30000 92.00 477.5 0.2281 19842
2×2×3 35.42 0.2513 136.9 10000 85.41 40.77 6.407 10169

types, hydrophobic-hydrophobic, hydrophobic-polar (polar-
hydrophobic), and polar-polar contacts, when the energy
parameter changes from (−2.3, −1, 0) (HP model) to the MJ
matrix. However, in the case of N = 2×2×3, the number of
hydrophobic-polar contacts almost vanishes while changing
the energy parameter from (−2.3, −1, 0) (HP model) to the
MJ matrix, as shown in Fig. 5. In contrast, in the case of
N = 3×3×3, even though the number of polar-polar contacts
also increases, the balance among the distribution of the three
types of contacts does not significantly change. We consider
that this difference in the distribution of the three types of
contacts shown in Fig. 5 is the reason for a difference in the
change in SR between the two cases. In the MJ matrix [60,
upper half of Table V], contact energy increases in the follow-
ing order: of hydrophobic-hydrophobic, hydrophobic-polar
(polar-hydrophobic), and polar-polar contacts. Thus, using
the MJ matrix, a conformation with no hydrophobic-polar
contacts rarely becomes a ground state. The value of SR for
N = 2×2×3 is almost constant because this vanishing of the
polar-polar contacts and the degeneracy breaking offset each
other.

In addition, N (b)
c (the number of conformations designed

by bad sequences) increase on increasing the alphabet size
in the cases of both N = 2×2×3 and 3×3×3. The degen-
eracy breaking affects this result as well as increases N (g)

c .
Additionally, one of the reasons for an increase in N (b)

c is
that the designabilities of the 20-letter model are less than the
designabilities of the 2-letter model for many conformations
[62].

The average degeneracies dav of the two cases decrease
with increasing the alphabet size. Thus, this is an evidence
of the degeneracy breaking.

C. Comparison to previous method

In this subsection, using the lattice HP model, we present
the results of a comparison between our Bayesian design
method and a conventional method involving the exhaus-
tive conformational search. We choose the dual MC method

by Seno et al. [26] as aforementioned conventional design
method.

The dual MC method maximizes the target probability as
given by Eq. (4); hence, one can intuitively predict that the
SR of the dual MC method is larger. The dual MC method
calculates Zβ (σ), which corresponds to the exhaustive con-
formational search; therefore, the calculation time becomes
typically longer.

We compare the SR, calculation time (design time), and the
SR per design time (design efficiency). Using design methods
based on the MTP criterion, one can solve the design problem
if design time is as long as possible. Therefore, comparing
only the SR is unreasonable if the design time is not limited.
Therefore, in this study, we compare the SR as well as the
design efficiency. This viewpoint is especially significant for
real applications.

The enumerable conformations shown in Table I are the
ones which were designed for this comparison. Nevertheless,
we did not design the 2D N = 6×6 and the 3D N = 3×3×3
conformations except for the MHDC of 3×3×3, because their
sequence spaces are extremely large to be be designed using
the dual MC method. The design time of a conformation of
N = 6×6 and 3×3×3 is about 10–30 days using a normal PC
(1.2-GHz dual-core Intel Core m3 and 8 GB memory) by our
estimation. Note that we carried out the exact calculation of
Z (σ) for the dual MC method because all the target conforma-
tions are enumerable. Thus, we carried out the MC sampling
(simulated annealing) of the sequence spaces only (therefore,
we name this method the dual MC method for convenience).

The conditions for the design calculations are as follows.
For our Bayesian method, for each size, μ∗ is identical to the
value in Table II, and the number of MCSs is set as low as
possible to achieve the same SR as reported in Table II. For
the simulated annealing of the dual MC method, the terminal
temperature is T = 0.1; hence, it equals the terminal temper-
ature of our Bayesian method, β = 10. The cooling schedule
of T is not the linear function used in Ref. [26] but is an
inverse power function of the Monte Carlo step because the
latter function avoids getting trapped into a metastable state
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FIG. 6. Designed sequence of the N = 32 2D HP model with
(ε1, ε2, ε3) = (−1, 0, 0), β = 10, and μ∗ = 0.7.

in the amino acid sequence space as compared to the linear
function (we show the equation of this cooling schedule in the
caption of Table IV below).

As shown in Table IV, for all the cases, the SRs of the
dual MC method surpass the SRs of the Bayesian method,
especially for the 3D N = 2×2×3. On the contrary, the DTs
of the Bayesian method are all significantly less than the DTs
of the dual MC method: the former ones are of the order of
1/100 to 1/1000 of the latter ones. Thus, each DE of the
Bayesian method is about 100 or 1000 times each DT in the of
the dual MC method. Our Bayesian method is quite efficient
compared to the dual MC method. Furthermore, the DT of the
MHDC of the 3D N = 3×3×3 using the Bayesian method
is 0.9244 s, but it is about 434 600 s (about five days) for the
dual MC method. It indicates that the DTs’ difference between
the Bayesian method and the design methods that have Z (σ)
increases as the number of residues increases.

D. Large 2D conformations

Here we chose 2D HP models with comparatively large
size (N = 32, 50) models studied by Irbäck et al. [28,29].
This confirmed that the designed sequence was likely to fold
into the target conformation with simulated tempering. For the
model with N = 32 (respectively 50), the parameters were
set to μ∗ = 0.7 (0.85) and the MCSs were 104 (105). The
energy parameters were set to (ε1, ε2, ε3) = (−1, 0, 0) in both
cases. The simulation was executed by a normal PC with
1.2-GHz dual-core Intel Core m3 and 8-GB memory, and
the calculation time was approximately 0.5–1 s (11–12 s) for
N = 32 (50). Thus, our method ran faster than those used in
previous studies. As a result, we successfully designed the
same sequences reported by Irbäck et al. (Figs. 6 and 7). Our
method also demonstrates the features of globular proteins.

E. Optimal μ∗ and number of surface residues

We represent the relation between the optimal μ∗ and the
number of surface residues Nsur in Fig. 8. We show only the

FIG. 7. Designed sequence of the N = 50 2D HP model with
(ε1, ε2, ε3) = (−1, 0, 0), β = 10, and μ∗ = 0.85.

results for (ε1, ε2, ε3) = (−1, 0, 0) because the optimal μ∗
varies depending on the energy parameters for a given con-
formation. We therefore plotted the results for all 2D models
and the 3×3×3 MHDC model with (ε1, ε2, ε3) = (−1, 0, 0)
The residues that were bent 90 degrees inward (indicated by a
dashed black circle in Figs. 6 and 7) were not counted for Nsur

because a water molecule is unlikely to combine with such
residues (see Fig. 8).

We observed noticeable linearity between μ∗ and Nsur. The
outlier (μ∗, Nsur ) = (0.70, 20) was obtained in the 2D N = 32
case (Fig. 6), in which the target conformation was not fully
compact and the number of surface residues was much larger
than those of other target conformations tested. According to
these results, the optimal μ∗ can be estimated by the number
of surface residues of a target conformation.

F. Probability of a P residue

Finally, in order to clarify why 3D models performed
less well than 2D models, we consider the probability PP

that a residue is P for all residues of the 3×3×3 and 6×6
MHDC models (Figs. 9 and 10). We use p(σi = −1|R; σ\i ) in

0.5 0.6 0.7 0.8 0.9 1.0
0

5

10

15

20

25

FIG. 8. Relation between μ∗ and number of surface residues, Nsur .
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FIG. 9. PP of each residue of 3×3×3 MHDC with (ε1, ε2, ε3) =
(−2.3,−1, 0) and μ = 2.33 (Fig. 3). The residue number starts from
the center residue of the front side of Fig. 3.

Eq. (17) as PP. Each PP in Figs. 9 and 10 is the average of
1/(1 + exp[−β{�Ei(R; σ ) + μ}]) over the last 1/5 MCSs in
both cases. In the case of the 3D 3×3×3 lattice, the values of
PP for residues 2, 16, 22, and 24 were not very high. These
residues were located in the center of each cube side. By
contrast, all PP values greater than 0.5 were almost equal to
1 in the case of the 2D 6×6 lattice. Accordingly, it can be
seen that the clear division of all PP values into 1 or 0 is an
index of successful design. Thus, the 3D models are difficult
instances for our design method.

IV. DISCUSSION

Our method is similar to the SG method proposed by
Shakhnovich and Gutin [20], which did not include Z (σ). The
difference between the SG method and ours is the minimiza-
tion function. The SG method minimizes E (R; σ ) directly,
keeping NP(σ) a constant value determined a priori, but our
method minimizes E (R; σ ) − μNP(σ). Therefore, our method
can minimize E (R; σ ), maintaining the general features of
globular proteins, that is, H residues on the inside and P

0 10 20 30
0.00

0.25

0.50

0.75

1.00

FIG. 10. PP of each residue of 6×6 MHDC with (ε1, ε2, ε3) =
(−1, 0, 0) and μ = 0.8 (Fig. 2). The residue number starts from the
bottom left residue of Fig. 2.

residues on the surface exposed to the surrounding water
molecules. Thus, one can minimize E (R; σ ) while reducing
the diversity of conformations into which a designed HP
sequence can fold by minimizing E (R; σ) − μNP(σ). This
corresponds, in a sense, to negative design [11].

On the other hand, as discussed above, our method failed
in the cases of 3D HP models and comparatively large com-
pact 2D HP models because it failed to reduce the diversity
of the foldable conformations of the designed sequence in
these cases. The diversity—or, more simply, the total number
of self-avoiding walks—increases for 3D lattices compared
with 2D lattices. Such diversity is expected to increase as N
increases even in the case of 2D lattices. Thus, the success
rates decrease in these cases.

In addition, the numbers of core residues in the 3D models
used in this study were low, e.g., the 3D 2×2×3 model had no
core residue and the 3D 3×3×3 model had only one; hence,
it was difficult to design globular protein-like conformations
using these models. Given that our design method finds an
optimal sequence by controlling μ, such small numbers of
cores may explain the lower performance of our method in the
case of the 3D models. If our design method works in a given
instance, the posterior [Eq. (15)] should show a sharp peak at
the optimal μ∗. This is equivalent to the case where the PP of
every residue is almost equal to 1 or 0. For the 3D 3×3×3 lat-
tice, however, there were several comparatively low PP values
(close to 0.5), even in the case of the highly designable confor-
mation. Thus, our design method was not appropriate for those
conformations.

The greatest advantage of our method is that it skips the
exhaustive calculation of Z (σ) by assuming the prior dis-
tribution given in Eq. (13). As already stated, the form of
the prior means that the lower the free energy Fβ,μ(σ) :=
−(1/β ) ln �β,μ(σ), the higher the prior distribution. The prior
[Eq. (13)] states the hypothesis that sequences rich in P
residues are, in general, more likely to be evolutionarily se-
lected than sequences with unique stable conformations. The
result of 2D N = 16 mentioned in Sec. III, the higher SR
of the nonmaximally compact conformations, is proves this
hypothesis. This hypothesis is consistent with recent findings
that organisms have many intrinsically disordered proteins
[63–66]; these proteins do not have unique native confor-
mations and are composed of sequences rich in P residues.
Recent work [67] has shown that such proteins form “droplets
(that function as membraneless organelles)” and have various
biologically important roles (e.g., spatiotemporal regulation
of gene expression, signaling, and stress response). This indi-
cates that organisms make good use of the physical property
given by Eq. (13).

In addition to the biological validity of the prior, the fact
that it enabled fast protein design without the calculation of
Z (σ) is significant because it suggests that Eq. (13) is not a
unique solution for protein design without exhaustive calcu-
lation of Z (σ). As all information about the thermodynamic
profile of a protein is evolutionarily embedded solely in the se-
quence, it is in principle possible to search for a sequence that
stabilizes a given target conformation if the code connecting
σ and the thermodynamic profile is broken. The prior given
by Eq. (13) may be one such code.
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Finally, we discuss a simple comparison between our
Bayesian design method, which introduces the chemical
potential μ using the grand canonical approach, and the con-
ventional method using the explicit solvent [41–46] described
in Sec. II. If we consider, for instance, the exact positions of
residues that interact with water molecules or the individual
value of the chemical potential for each amino acid, the SR
of our Bayesian method is highly expected to increase. Our
method only captures the essence of the solvation of proteins
using the grand canonical picture. Therefore, it presumably
shows a baseline result for the above detailed implementations
of the explicit solvent. The studies with direct solvent eluci-
date a relationship between protein aggregation and solvation
[41–43,45,46], and an effect of solvation on the evolution
of proteins [44]. These are significant studies in biological
physics. Especially, Bianco et al. [44] elucidated that the
segregation (the hydrophobic residues are in the core, and
the polar residues are on the surface of a protein) causes
instability of proteins. It gives an inspiration to our method.
Therefore, a comparison study between our Bayesian design
method and these studies will be an interesting future work.

V. CONCLUSION

The simple conclusion from these results is that it is pos-
sible to design many conformations without an exhaustive
conformational search by taking the water effect into account.
This approach is more successful with 2D HP models than
with 3D models; however, our method is expected to cor-
rectly design 3D target conformations given a sufficiently
high designability of the target conformation. This approach
is more successful for the nonmaximally compact conforma-
tions. When using 20-letter model, for the 3D N = 3×3×3,

this Bayesian design method is more successful than the
2-letter (HP) model. According to the comparison with the
design method using the MTP criterion by Seno et al. [26],
the design accuracy of the proposed Bayesian method is lower
than the design accuracy achieved by Seno et al. By contrast,
the design efficiency, i.e., the design accuracy per the calcula-
tion time of the former significantly exceeds that of the latter.

Our Bayesian protein design method using the grand
canonical approach is consistent with conventional protein
design software, e.g., Rosetta. Hence, our method based on
statistical mechanics may enable future studies on more real-
istic protein design.

Future work could consider an additional parameter re-
flecting the specific topological information of a target
conformation. In addition, setting different numbers of water
molecules to combine with each P residue would help to
more closely model realistic globular proteins. As Bayesian
learning is simple and flexible, such modifications could be
easily implemented.

Extending our Bayesian design method for designable off-
lattice proteins [39,68–71] is also an important future work.
Significantly, the caterpillar model proposed by Coluzza [39]
is an updated model of conventional off-lattice model [68].
Therefore, extending our Bayesian design method proposed
in this study to apply to the caterpillar model is promising.
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