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Social distancing in pedestrian dynamics and its effect on disease spreading
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Nonpharmaceutical measures such as social distancing can play an important role in controlling the spread
of an epidemic. In this paper, we use a mathematical model combining human mobility and disease spreading.
For the mobility dynamics, we design an agent-based model consisting of pedestrian dynamics with a novel
type of force to resemble social distancing in crowded sites. For the spreading dynamics, we consider the
compartmental susceptible-exposed-infective (SEI) dynamics plus an indirect transmission with the footprints
of the infectious pedestrians being the contagion factor. We show that the increase in the intensity of social
distancing has a significant effect on the exposure risk. By classifying the population into social distancing
abiders and nonabiders, we conclude that the practice of social distancing, even by a minority of potentially
infectious agents, results in a drastic change in the population exposure risk, but it reduces the effectiveness of
the protocols when practiced by the rest of the population. Furthermore, we observe that for contagions for which
the indirect transmission is more significant, the effectiveness of social distancing would be reduced. This study
can help to provide a quantitative guideline for policy-making on exposure risk reduction.
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I. INTRODUCTION

The ongoing COVID-19 pandemic has had severe conse-
quences on nations worldwide. It has been considered to be
one of the costliest disasters after WWII, and it has imposed
many costs to local, regional, and global markets, including
hundreds of billions to the global insurance industry, tourism,
and other businesses. Facing these difficulties, governments
have turned to nonpharmaceutical measures such as social
distancing to limit the transmission of the disease and to
hinder the growth of the spreading dynamics [1]. Motivated
by this situation, we mathematically study the effectiveness of
social distancing and how it can be implemented in order to
reduce the risk of spreading.

Following the early work of Kermack and McKendrick
[2] researches have implemented compartmental models, i.e.,
categorizing the population into collectively exhaustive com-
partments, meaning that every agent is a member of one and
only one compartment, to describe and predict the epidemic
dynamics. While the initial studies in this field were mostly
focused on mean-field approximations [3], later on, a large
body of work was concentrated on network studies with either
analytical or computational approaches [4,5]. And then due to
the greater access to agent level interaction data, the role of
temporality of interactions got more attention in the studies
[6–10].

Mobility of agents has been studied with different ap-
proaches, including pedestrian dynamics introduced in [11].
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While this model has been widely implemented and studied,
only recently was it used to model transmission processes.
For example, Refs. [12] and [13] study the level of exposure
of individuals to the infection, while Refs. [14–16] develop
population level equations, and Refs. [17–19] introduce agent-
based models to study the spreading in pedestrian dynamics.

In this work, we define a novel type of social distancing
(keeping distance from other agents to avoid infection) based
on the pedestrian dynamics. We also study the indirect trans-
mission by taking into account the role of the environment as
a vehicle of spreading [20]. We will investigate the system for
different scenarios and a range of parameters. We show where
social distancing is executable and how it can be effective
for decreasing the exposure risk, however in some parameter
regimes, the increase in indirect transmission may cancel the
effectiveness of social distancing. As we will discuss, our
results can help in devising a quantitative guideline for policy-
making on reducing the exposure risk for many contagions,
including SARS-CoV-2.

II. MODEL

A. Mobility of the agents

We simulate the walking patterns of people in a closed
environment. For this purpose, we implement a formulation
of the pedestrian dynamics introduced in [11], including a
novel type of social distancing force. Agents aim to reach
randomly chosen destinations while trying to keep distance
from other agents and physical barriers (e.g., walls). Although
the actual Newtonian forces do not have a direct impact on the
dynamics, as humans rarely have physical contact with each
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FIG. 1. A schematic illustration of the model. (a) The mobility
model: three types of forces exerted on agent i, described in Sec. II A.
Each agent chooses a random target and moves toward it (F(pers)

i )
while keeping distance from other agents (F(soc)

i j ) and physical barri-

ers (F(bar)
iw ) [see Eq. (4)]. (b) The spreading model: the two types of

contagion spreading described in Sec. II B as direct transmission (due
to person to person contact of the agents) and indirect transmission
(due to the polluted environment). Circles represent agents, while
S, E , I denote the compartments to which they belong. Squares repre-
sent tiles of the environment, with C and P, respectively, representing
clean and polluted tiles. The figure in Appendix A 3 depicts snap-
shots of the simulation for different values of σ . An mp4 animation
demonstrating a sample realization of the dynamics can be found in
Appendix A 3.

other/barriers while moving, taking into account the social
pseudoforces governing a person’s movement patterns enables
us to study this issue in a physical framework. This method
has achieved realistic results confirmed with experimental
data [21].

As depicted in Fig. 1(a), in this dynamics each agent’s
movement is governed by three forces:

(i) Personal force F(pers)
i : Each agent i has a tendency to

move with a velocity vector v0
i = v0

i v̂0
i , with v0

i being the
preferred walking speed and v̂0

i the normal vector toward its
chosen destination. This tendency is expressed in Eq. (1) as
follows:

F(pers)
i = mi

vi
0 − vi

τ
, (1)

where vi denotes the agent’s current velocity, mi is its mass,
and τ refers to the reaction time. The preferred walking speed

v0
i will be set to 1.3 in agreement with empirical studies [22]

as well as previous simulations of pedestrian dynamics [11].
Reaction time τ has also been calibrated in [11] and will be
set to 0.5 for our study.

(ii) Social force F(soc)
i j : Every agent i tries to keep distance

from every other agent j. This tendency can be modeled by
a decreasing force, a function of their relative distance ri j ,
with the direction of the force being the normalized vector
r̂i j pointing from agent j to i. In this research, we consider the
exponential force as in Eq. (2), introducing σi as a measure
for agent i’s tendency to abide by social distancing. We also
consider rc as the cutoff distance for the simulation purposes,
i.e., agents do not exert any force on other agents beyond
rc = 3,

F(soc)
i j = κσie

− ri j
σi r̂i j . (2)

In real-life situations, the values for σi and κ would be
determined by the behavior of the agents in different envi-
ronments. For example, people tend to walk closer together in
a shopping mall and farther apart when taking an afternoon
walk in a park. σi can be used to represent the idea of social
distancing in a community of agents. With a higher value
for σi, agent i would tend to stay farther apart from other
agents. For simplicity, we consider κ to be a constant and set
κ = 7. This conforms with the previous research on pedestrian
dynamics [11].

(iii) Barrier avoidance force F(bar)
iw : Agents avoid barriers in

the same manner that they avoid other agents as expressed in
Eq. (3), with σw being the uniform tendency to keep distance
from physical barriers, and κw as the force constant. In our
study, the only barriers would be the walls surrounding the
environment,

F(bar)
iw = κwσwe− riw

σw r̂iw. (3)

Although, as stated, these are not Newtonian forces, we can
obtain the equation of motion for each agent i as expressed in
Eq. (4),

mi
dvi

dt
= F(pers)

i + F(soc)
i j + F(bar)

iw . (4)

Here we consider all the agents to be of the same mass m,
so without loss of generality we set m = 1. Upon reaching
their destination, agents are assigned with new random desti-
nations as practiced in [13] to display a continuous motion of
the agents resembling the movement in a closed environment,
e.g., a mall, office, etc. Agents are also not allowed to exceed
the speed limit vmax = 2.

With these assumptions, we simulate the mobility of the
agents in different environments and scenarios according to
Eqs. (1)–(4) using the Euler method [23] with time steps equal
to �t = 0.1 s. These numerical simulations are similar to the
methods commonly used in molecular dynamics. The robust-
ness of the simulation with respect to the algorithm and �t
size has been validated in Appendix A 4. Agents are initially
positioned randomly and uniformly across the environment.
To ensure realistic initial distancing between the agents, the
spreading dynamics begins four time-units after the mobility
dynamics start.
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FIG. 2. Mobility quantities of agents as a function of social dis-
tancing intensity σ . The results for two different cases of N = 100
(blue squares) and N = 180 (orange circles) are presented. (a) The
ensemble average of mean neighbor distance 〈Li,Ni 〉 as a distance-
based indicator between the agents. (b) The ensemble average of the
agents’ speeds 〈v〉 [subject to Eq. (4)]. (c) The ensemble average
distance 〈ro〉 from the origin for different values of social distancing
intensity. The results show an initial slight decrease and a later
increase in 〈ro〉 explained in Fig. 4. The dotted and dashed lines,
respectively, correspond to the baseline values of σ< and σ>. Please
note the discrepancy in the range of values for the three panels. Error
bars are smaller than the marker size.

Social distancing

To go further with Eq. (2), first we set all the σi = σ for
all i. This parameter quantifies social distancing. As we intu-
itively expect, higher values of σ exhibit both faster reaction
to nearby agents (stronger force) and larger perceived personal
space (higher range).

To validate this intuition, we proceed by defining 〈Li,Ni 〉
as the ensemble average of the mean of minimum distance
between agents while Li, j is the pairwise distances of all
agents i and j, and we define Ni = arg min j (Li, j ) as agent i’s
nearest neighbor, and Li,Ni as agent i’s minimum distance with
any other agent. 〈Li,Ni 〉 is depicted as an increasing function
of σ in Fig. 2(a), therefore this average provides us with an
intuition about σ since it is a good observable quantity.

B. Spreading model

To model the spreading dynamics, we use a compartmental
model, categorizing the population into three compartments: S

TABLE I. Model parameters and constants.

N Total number of agents

σ Social distancing intensity (m−1)
L = 30 Environment size (m)
σw = 5 Barrier avoidance constant (m−1)
v0

i = 1.3 Agents’ preferred speed (m/s)
vmax = 2 Agents’ maximum speed (m/s)
κ = 7 Social force constant (kg m2 s−2)
κw = 1 Barrier avoidance force constant (kg m2 s−2)
rc = 3 Social force cutoff (m)
rs = 1 Direct infection maximum distance (m)
τ = 0.5 Agents’ reaction time (s−1)
αp Direct infection probability
αe Indirect infection probability

(Susceptible), E (Exposed), and I (Infectious). Agents in state
S will become E upon getting into contact with the infection.

The time duration agents spend in a crowded environment
is relatively shorter than the latent period for most infectious
diseases [24]; therefore, E agents are not expected to become I
and infect others. I agents are also not expected to recover and
move to a fourth compartment R (Recovered or Removed).

Infections can occur in one of the following ways:
(i) Direct Transmission (Person-to-Person Infection): Infec-

tious agents (I) infect susceptible agents (S) in their vicinity
with radius rs, turning them to exposed E agents by the prob-
ability αp at each time step as depicted in Fig. 1(b).

(ii) Indirect Transmission (Environmental Infection): Al-
though the mobility model is formulated in a continuous
manner, in order to account for the environmental pollution,
the environment is discretized into a lattice of size L × L.
Agents in state I contaminate the tile on which they are
standing, with probability αp→e at each time step; on the other
hand, S agents stepping on contaminated tiles get infected and
turn E , with probability αe→p as depicted in Fig. 1(b). For
simplicity, we consider αp→e = αe→p = αe. Since the dura-
tion of the simulations conducted in this study (10 min) is
assumed to be much shorter than the lifetime of the virus, we
can neglect the decay of the virus in the environment, i.e.,
the contaminated environment stays contaminated throughout
the simulation. This is also in agreement with findings on the
lifetime of COVID-19, which is more than a day on average
[25].

While in most circumstances αp �= αe, the frequency of
checking the possibility of infection via both methods using
a rejection-based algorithm [26] should be the same for the
model to be consistent.

In this study, for the sake of simplicity and to achieve more
generic results, the number of initial agents in state I will
always be set equal to 1 and the rest of the agents (N − 1)
will be initially in state S. The environment is considered to
be fully sanitized prior to the simulations.

A summary of model parameters is presented in Table I,
and we will explain how we fix some parameters in the next
section.
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FIG. 3. The proportion of the population able to maintain a 1 m
distance from each other in environments with different sizes (L2).
The markers correspond to empirical data from real-world sites:
a shopping mall, a post office, the Vahdat concert hall in Tehran,
Shahid Beheshti high school in Zanjan (Iran), and the Grand Mos-
alla mosque of Tehran (Iran) at peak hours. These data points have
been normalized by different factors to only resemble the population
density, not the actual size and populations. Further discussion about
these data is presented in Appendix A 5. The two crosses represent
the chosen data points for our simulations (L = 30; N = 100, 180).

III. RESULTS

We study each parameter and its effect on the exposure risk
factor E defined as the fraction of agents exposed to the in-
fection. We choose parameters in ways that reflect real-world
scenarios.

A. Population density

Population density is a significant factor determining the
possibility of abiding by social distancing measures. To quan-
tify this factor, we define the social distancing limit n as the
proportion of the total population that are able to maintain a
fixed distance from each other in a room. We can calculate
n by considering an area of l2 (l being the desired physical
distancing) for each agent. n = 1 indicates a room in which
total social distancing is executable, whereas n < 1 implies
otherwise. Figure 3 demonstrates the curve separating two
regimes n < 1 and n = 1. Some real-world locations are also
depicted in our parameter space, based on their size and pop-
ulation.

For our simulation, we assume l = rs = 1 m, which cor-
responds to the high-risk distance for COVID-19 and some
other similar diseases [27]. We set L = 30 and choose two
different scenarios for the population density where the room
is filled at 0.44 and 0.8 of its maximum capacity. This would
enable us to study the effectiveness of social distancing in

FIG. 4. The effect of swarm on agents’ speed for N = 180. Color
code indicates σ values. Left panel: A schematic illustration of the
mobility of a single agent i, facing an area of high density (swarm)
clustered in the center of the environment (dashed circle). With σ =
0, agent i moves directly toward its target without interacting with
the other agents. With σ = 1.5 the agent moves around the swarm,
increasing 〈ro〉 of the system compared to σ = 0. With σ = 0.5
the agent moves through the swarm while making several “brakes”
and minor detours from the direct path of free movement, resulting
in lower speed in the central high density area. This qualitative
description can be supported by the ensemble average depicted in
the right panel. Right panel: The ensemble average speed for agents
with ro distance from the origin. The ro values have been rounded
to integers. For σ = 0 and σ = 1.5, 〈v〉 |ro→0 > 〈v〉 |ro�0 while for
σ = 0.5, 〈v〉 |ro→0 < 〈v〉 |ro�0 Error bars are smaller than the marker
size.

the region where it is executable (n = 1). These two cases,
respectively, refer to N = 100 and 180 and would resemble a
mildly crowded and a heavily crowded environment.

B. Social distancing intensity

As discussed earlier in Sec. II A 1, we use the parameter
σ to control the intensity of social distancing. To get a better
real-life intuition of the parameter σ , we measure the aver-
age distance that agents keep from their nearest agent while
moving in the environment in this model. The results for both
population densities are provided in Fig. 2. As mentioned,
the ensemble average of the agents’ neighboring distances
〈Li,Ni〉 monotonically increases as a function of σ [Fig. 2(a)].
This increase is, however, not without a cost. To stay farther
apart from other agents, each agent would have to lower their
average speed and “brake” more often, resulting in a lower
average speed [Fig. 2(b)] and subsequently lower efficiency
of the agents in reaching their targets. Therefore, the tradeoff
between social distancing and efficiency should be taken into
account to set an intensity for social distancing. Near σ = 0.3
we observe that the value of 〈v〉 for the two environments
begins to diverge. Based on these results, we use σ< = 0.3 for
the social force among agents in regular walking (no social
distancing), as in [11], and we set σ> = 1.5 for the case of
social distancing applied by agents as an example case, in
which a distance greater than rs is maintained between the
agents while leaving enough room for them to move around
the environment (〈v〉 > 0.7). These choices are made without
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FIG. 5. The average E for different values of social distancing
intensity. (a) Ep, the exposure due to direct infection. (b) Ee, the
exposure due to environmental infection. The results for two different
cases of N = 100 (blue squares) and N = 180 (orange circles) are
presented. The dotted and dashed lines, respectively, correspond to
the baseline values of σ< and σ>. Please note the discrepancy in the
range of values for the two panels. Error bars are smaller than the
marker size.

the loss of generality and in order to set parameters closer to
real-life situations.

In Fig. 2(c), we study 〈ro〉, the ensemble average distance
from the origin, as an indicator of the concentration of the
agents. For σ → 0, increasing σ results in a higher condensa-
tion of agents, i.e., a lower average distance from the origin,
while for higher values of σ we observe the opposite effect.
This counterintuitive behavior can be explained considering
three different scenarios of an agent interacting with a highly
dense area (swarm), as illustrated in the left panel of Fig. 4. In
the σ = 0 scenario, the agent moves through the swarm with-
out losing speed, while in the σ = 1.5 case it moves around
the swarm resulting in a higher 〈ro〉 of the system compared
to σ = 0, and in the case of σ = 0.5 the agent moves through
the swarm, albeit at a lower speed. This behavior results in
spending more time in dense areas and effectively decreases
〈ro〉. This analysis can be supported by Fig. 4, right panel.
For σ = 0 and 1.5, the average speed of agents located at a
distance ro from the origin is a decreasing function of ro. This
decrease is due to the fact that the center of the environment
(ro → 0) acts as a corridor for reaching their targets, and
agents often move through this area with a higher speed. In
comparison, agents move slower when they are farther away
from the center of the environment, as they brake and redirect
their velocity more often. For σ = 0.5 the opposite is true,
and agents have relatively lower speed in the center of the
environment, resulting in a lower 〈ro〉 in comparison to σ = 0
and subsequently the initial decrease in Fig. 2(c).

We run the pedestrian and the spreading dynamics for both
population regimes discussed in Sec. III A. For simplicity,

FIG. 6. The average E as a function of ρ(σ>), the proportion
of the agents abiding by social distancing in an environment with
N = 100. (a) Ep, the exposure due to direct infection. (b) Ee, the
exposure due to environmental infection. The results for two different
cases in which the initial infectious agent obeys social distancing
(σ ∗ = σ>, in khaki) and does not obey it (σ ∗ = σ<, in dark green) are
presented. The dotted and dashed circles, respectively, correspond to
the baseline values of σ< and σ>. These values signify the scenar-
ios in which all of the population ignores (σ = σ<) and abides by
(σ = σ>) social distancing. Please note the discrepancy in the range
of values for the two panels. Error bars in (a) are smaller than the
marker size.

we choose αe = 2 × 10−3 and αp = 10−2, and later on in
Sec. III D we analyze the behavior of the model for different
spreading parameters. In this section we set σ uniform across
all agents (σi = σ ). The fraction of the exposed population
over time is presented in Fig. 9 in Appendix A 1.

The average proportion of the exposed population is cal-
culated after 10 min (600 SI time-units) of simulation time
and plotted against the values of σ in Fig. 5. The first obser-
vation based on this result is that for this set of parameters,
the total risk, E = Ep + Ee, gets reduced by the increase in
social distancing. For example, for σ< and σ>, the value of
this reduction is E (σ<) − E (σ>) = 0.207 for N = 180 and
E (σ<) − E (σ>) = 0.181 for N = 100 (the effect of social
distancing in other infection parameter sets will be presented
in Fig. 7). We can observe that the increase in the strength
of this parameter monotonically reduces the risk of getting
infected through direct infection [Fig. 5(a)].

TABLE II. Baseline parameter values.

Sign Schematic σ αp αe t

dotted · · · σ< = 0.3 10−2 2 × 10−3 6 × 103 s
dashed — σ> = 1.5 10−2 2 × 10−3 6 × 103 s
dash-dotted — · — N.A. 10−2 2 × 10−3 6 × 103 s
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FIG. 7. The difference in the exposure risks of the two scenarios
for social distancing intensity, varying αp and αe values. The color
code indicates E (σ<) − E (σ>). The dash-dotted pixel corresponds
to the baseline values of αe = 2 × 10−3 and αp = 10−2. Please note
the discrepancy in the order of magnitude of the axes. Also note that
the case in which αe = 0 corresponds to the case in which there is no
environmental infection.

We can also see that the fraction of agents infected
via environmental contamination slightly increases for both
population regimes as we increase σ , but it decreases
monotonically afterwards and more intensively for N = 180
[Fig. 5(b)]. This is partly due to the competition between
the two methods of infection. The probability of an S agent
getting indirectly infected increases when the number of sus-
ceptible agents is higher (as a result of the weakness of the
direct infection). Another reason for this increase and later
decrease in the value of Ee is the similar variations in the
concentration of agents as a function of σ [Fig. 2(c)]. The
higher concentration of agents in the central area of the envi-
ronment causes higher indirect transmission. The central tiles,
traversed more often by S agents, will be more likely to be
contaminated as they are more often walked upon by the I
agent.

C. Social distancing commonness

In this section, we study the effect of the fraction of people
who abide by social distancing on the total risk factor. For
this goal we divide the population into two groups, a nonabid-
ing group with σ = σ< = 0.3 and a social distancing group
with σ = σ> = 1.5, and we run the simulation for different
proportions of people in each group. The parameter ρ(σ>)

TABLE III. Real-world locations data.

Shopping mall [33]

Vahdat concert hall Measured by the authors
High school Measured by the authors
Grand Mosalla mosque Measured by the authors
Post office Measured by the authors

would represent the proportion of the agents who abide by
social distancing. We analyze this matter in two different
scenarios, in which the initial infectious agent is always in the
former (σ ∗ = σ<) or the latter (σ ∗ = σ>) group. The results
are presented in Fig. 6, which shows the strong effect of the
behavior of the initial infectious agent on the risk factor E . In
both cases, the risk of direct infection, depicted in panel (a),
drops linearly as the percentage of people who abide by social
distancing increases but the slope and the intercept of this
linear behavior differ based on the social distancing intensity
of the initial infectious agent. In other words, the risk drops by
a significant factor if only the infectious agent abides by social
distancing. The risk of exposure due to indirect infection,
depicted in panel (b), increases as more people abide by social
distancing, similar to the situation explained in Sec. III B.

D. Infection parameters

To see the behavior of the dynamics in other regimes of the
parameter space and in order to get a more general perspective
of the model, we implement the simulations for various values
of infection probabilities αp and αe.

In Fig. 7, we compare the overall exposure risks for σ<

and σ> scenarios. As shown in this figure, there is a signif-
icant discrepancy for a wide range of infection probabilities,
confirming our previous results on the effectiveness of social
distancing. Due to the increasing role of direct infection and
this type of infection’s sensitivity to social distancing, the
discrepancy increases for higher αp and lower αe (upper left of
the diagram). Please note that for high values of αe (right) even
when αp is high (upper right), social distancing does not play a
major role. This can be explained by the competition between
the direct and indirect transmission methods. In other words,
for these values, even if the agents lower the chance of direct
transmission by following the social distancing guidelines,
most of them will nevertheless be exposed to the infection by
the indirect transmission method.

Furthermore, to investigate the role of direct and indirect
transmission, we calculate Ep − Ee (Fig. 8). We observe two
regimes, Ep and Ee dominated areas, respectively, denoted by
red and blue, and a white area illustrating the border between
the regimes. By comparing the panels, we see that due to
social distancing, the Ep dominated regime has drastically
shrunk in favor of Ee dominance. This observation also agrees
with our previous findings that the person-to-person infection
significantly decreases in the social distancing scenario (σ>),
and the environmental infection’s role increases due to the
higher number of available susceptible agents.

IV. SUMMARY AND DISCUSSION

We have modeled the spreading of infection among mo-
bile agents as a combination of pedestrian dynamics and
the compartmental spreading model (SEI). We defined so-
cial distancing as the intensity of social force in pedestrian
dynamics, and we mapped it to the average value of the
minimum distance between agents and their average speed
and concentration. By taking into account both direct and
indirect transmission methods of infection (Fig. 1), we have

014313-6



SOCIAL DISTANCING IN PEDESTRIAN DYNAMICS AND … PHYSICAL REVIEW E 104, 014313 (2021)

FIG. 8. The effect of social distancing on contagion regimes. Ep − Ee illustrated for αp and αe values. Left and right panels, respectively,
denote σ< and σ> scenarios for social distancing intensity. The red and blue areas, respectively, demonstrate Ep and Ee dominated areas.
The dotted and dashed pixels correspond to the baseline values of αe = 2 × 10−3 and αp = 10−2. Please note the discrepancy in the order of
magnitude of the axes.

systematically evaluated the agents’ exposure risks for a wide
range of spreading and mobility parameters.

We observe that for social distancing to be executable,
the population density of the environment should be under
certain values (Fig. 3). As a side effect, by applying social
distancing, the speed of mobile agents will decrease (Fig. 2).
Although social distancing has a drastic effect on hindering
the direct transmission, some of its effects can be canceled by
the increase in the indirect transmission (Fig. 5), and the ef-
fectiveness of social distancing is dependent on the direct and
indirect transmission probabilities (Fig. 7). We demonstrated
the direct transmission and indirect transmission dominated
regimes in the scenarios of social distancing abidance and
nonabidance (Fig. 8). We also studied the effectiveness of
social distancing when abided only by a fraction of the popu-
lation (Fig. 6), and we found that even though the increase in
abiding by social distancing reduces the risk of direct trans-
mission, the social distancing measures when followed by the
infected agents have the greatest effect.

According to our findings, social distancing does not
always slow down the transmission, and it may counterintu-
itively enhance the transmission in specific regimes of σ for
contagions with relatively high indirect transmission [consider
Fig. 5(b) in the absence of direct transmission]. It is not clear
whether this range of parameters conforms to real-world epi-
demic diseases, and it should be further investigated through
experimental studies.

Our findings can help to determine a guideline for pol-
icymakers on how to decrease the exposure risk at public
locations for many contagions such as SARS-CoV-2. The
proposed model can be used to approximate the risk of expo-

sure in a public environment where people exhibit pedestrian
dynamics, such as metro stations, religious sites, leisure cen-
ters, educational campuses, etc. For example, the management
board of a shopping mall can determine the decrease needed
in population density in order to reduce the risk of exposure by
a desired factor. In the first place, the population density of an
environment should be in the region where social distancing
is executable. Then the risk factor for this environment can be
calculated via the proposed model for different populations.
Now using these results, the corresponding population for a
desired reduced risk factor can be derived. Afterwards, to pro-
pose a specific value for σ by considering the social distancing
force’s exposure risks and also its effect on the population
performance, a desired σ can be proposed for the shopping
mall, and the customers can be advised to keep a distance of
〈Li,Ni 〉 as calculated in Fig. 2 for the corresponding value of σ .
Also, in order to maintain social distancing and overcome the
indirect transmission in the spread of infections that transmit
through the environment, periodic cleaning, ventilation, and
disinfecting of the environment can be conducted. Cleaning
the environment would be most important in contagions with
higher αe (see Fig. 7).

Despite the capabilities mentioned above, this model has
some limitations worth noting. The mobility model is lim-
ited to the environments in which the agents move around
in a random manner and would not give a good approxima-
tion for the environments where the agents are stationary or
have specific mobility patterns (e.g., in a bus or an airplane,
where the agents are stationary most of the time). Also, the
infection probabilities αp an αe are hard to specify for an
infection. Since they are the probability of getting infected
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FIG. 9. The ensemble average of E (t ) over time for σ = 0.3.
(a) Ep(t ) the exposure due to direct infection. (b) Ee(t ) the exposure
due to environmental infection. The results for two different cases of
N = 100 (blue squares) and N = 180 (orange circles) are presented.
The dotted lines correspond to the baseline value of t = 6 × 103, the
duration of the simulation considered in the main part of the paper.
Please note the discrepancy in the range of values for the two panels.
Error bars are smaller than the marker size.

in one time step of the simulation, they should be specified
based on the simulation time step size. It should also be noted
that they are not purely biological parameters. For exam-
ple, talking, shaking hands, and some other social behavior
can alter the value of person-to person-infection probabil-
ity αp. These social factors make the parameters harder
to estimate due to the ethical and technical limitations in
experiments.

For further studies, the compartmental part of the model is
versatile and can be expanded to simulate long-term dynamics
of the spreading by considering the E to I (exposed becoming
infectious) and I to R (infectious becoming recovered) transi-
tions. Also, this model can be combined with other empirical
or random generated networks, e.g., random geometric graphs
[28–30] and mean-field models. Also, in order to more realis-
tically model the spread of airborne infections, one can alter
the indirect transmission to work according to the diffusion
processes to model the effect of ventilation on the spreading
of the disease.

Note that apart from the environmental infection, our
model is theoretically equivalent to the spreading model on
the temporal spatial network of interactions between the
agents where there is a connection between agents closer than
rs. It is also possible to include environmental infection by
considering tiles as another type of stationary nodes, reacting
differently to the infection.

The simulation and analysis is conducted by EPISTERIAN

software written in Python, developed by S.S and A.H., avail-
able at [31] under GPLv3.

FIG. 10. The positioning of N = 100 agents for different σ val-
ues in a 30 × 30 m room. Circles represent agents, with colors
indicating their status. Polluted tiles are depicted by purple squares.
The green diamond indicates the target of the infectious agent at
the time. Targets of other agents are not depicted for illustration
purposes. While the 〈Li,Ni 〉 is an increasing function of σ , the value
of 〈ro〉 decreases from σ = 0 to 0.5 and then increases for higher σ .
An explanation of this behavior is given in Fig. 4.
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APPENDIX

1. Time evolution of the spreading

The time evolution of the exposure risk E for both direct
and indirect transmission methods is depicted in Fig. 9.

2. Baseline parameter values

The dashed, dotted, and dash-dotted lines and areas illus-
trated in Figs. 2, 5, 6, 7, 8, and 9 correspond to the baseline
values specified in Table II.

3. Illustration

Figure 10 depicts snapshots of the simulation for different
values of σ . An mp4 animation demonstrating a sample re-
alization of the dynamics can be found at [32], where circles
represent agents, with colors indicating their status. Polluted
tiles are depicted by purple squares. The green diamond indi-
cates the target of the infectious agent at the time. Targets of
other agents are not depicted for illustration purposes.

4. Computation robustness

Our model is composed of two parts:
(i) Mobility update (Sec. II A): at each time step of size

�t , the positions and velocities of agents are updated based
on Eq. (4) via the Euler method.
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FIG. 11. Mobility quantities of agents as a function of social
distancing intensity σ for different numerical methods and step-sizes.
(a) The ensemble average of mean neighbor distance 〈Li,Ni 〉 as a
distance-based indicator between the agents. (b) The ensemble av-
erage of agents’ speeds 〈v〉 [subject to Eq. (4)]. (c) The ensemble
average distance 〈ro〉 from the origin for different values of social
distancing intensity. We observe that the mobility quantities of the
dynamics are in strong agreement. Please note the discrepancy in the
range of values for the three panels. Error bars are smaller than the
marker size.

(ii) Spreading update (Sec. II B): at each time step of size
˜�t , S agents prone to indirect transmission (agents standing
on polluted tiles) or direct transmission (closer than rs to
an infectious agent) become E by probabilities αe and αp,
respectively. This scheme is known to be a rejection-based
algorithm [26], meaning that at each step, the proposal to
update the system state (here S → E ) is either accepted by
its corresponding probability or it is rejected.

Throughout the main part of the paper, we have considered
�t = ˜�t = 0.1 s.

To check the robustness of the dynamics for different algo-
rithms and time step-sizes, we consider both the Euler and the
fourth-order Runge-Kutta [23] numerical methods with time
step-sizes, �t = 0.1 and 0.02 s for the mobility dynamics

FIG. 12. The average E as a function of social distancing inten-
sity σ for different numerical methods and step-sizes. (a) Ep, the
exposure due to direct infection. (b) Ee, the exposure due to envi-
ronmental infection for different numerical methods and step-sizes.
The dotted and dashed lines, respectively, correspond to the baseline
values of σ< and σ>. We observe that the infection results of the
dynamics are in strong agreement. Please note the discrepancy in the
range of values for the two panels. Error bars are smaller than the
marker size for the top panel.

of the agents. In Figs. 11 and 12, respectively, we observe
the mobility and infection results of the dynamics for these
methods of integration in strong agreement.

Note that we still preserve the value of ˜�t to be equal to
0.1 s, as altering this parameter would obviously change the
exposure results, e.g., halving ˜�t would double the exposure
opportunities in the same time interval.

5. Sources of the real-world data

The estimated population densities presented in Fig. 3 are
obtained from the sources specified in Table III. The area and
average resident population have been empirically estimated
or calculated based on the data from sample locations in Iran.
Since the actual numbers are not essential for the purpose of
this study and they are just presented as arbitrary examples,
we have avoided specific discussion about each one. Please
note that the values are normalized in order for the densities to
be comparable to each other (e.g., comparing a large mosque
with a classroom).
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