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The origin of non-Poissonian or bursty temporal patterns observed in various data sets for human social
dynamics has been extensively studied, yet its understanding still remains incomplete. Considering the fact that
humans are social beings, a fundamental question arises: Is the bursty human dynamics dominated by individual
characteristics or by interaction between individuals? In this paper we address this question by analyzing the
Wikipedia edit history to see how spontaneous individual editors are in initiating bursty periods of editing, i.e.,
individual-driven burstiness, and to what extent such editors’ behaviors are driven by interaction with other
editors in those periods, i.e., interaction-driven burstiness. We quantify the degree of initiative (DoI) of an editor
of interest in each Wikipedia article by using the statistics of bursty periods containing the editor’s edits. The
integrated value of the DoI over all relevant timescales reveals which is dominant between individual-driven
and interaction-driven burstiness. We empirically find that this value tends to be larger for weaker temporal
correlations in the editor’s editing behavior and/or stronger editorial correlations. These empirical findings are
successfully confirmed by deriving an analytic form of the DoI from a model capturing the essential features of
the edit sequence. Thus our approach provides a deeper insight into the origin and underlying mechanisms of
bursts in human social dynamics.
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I. INTRODUCTION

Since the seminal paper by Barabási [1], the origin of
bursty temporal patterns in human dynamics has been exten-
sively debated for the last few decades (see the review book
[2] and references therein). Here the bursts indicate the rapidly
occurring events in short time periods that are separated by
long periods of low activity. In his paper, Barabási argued
that non-Poissonian or bursty patterns observed in the email
communication data set can be understood by considering
how individuals manage the incoming emails according to
their priorities. In contrast, Malmgren et al. [3] suggested
that bursty patterns in the same email data set can be largely
explained by cyclic behaviors such as daily and weekly cycles
of humans. Later Jo et al. [4] showed that deseasoning daily
and weekly cycles from the time series of mobile phone com-
munication cannot entirely remove the burstiness in the time
series, implying that the remaining burstiness might be due to
various other factors affecting the human dynamics.
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Note that the above studies have focused on the individual
time series. However, considering the fact that humans are
social beings, the effects of social interaction on the bursty
human dynamics should not be ignored. Here a fundamental
question arises: Are bursts in human dynamics more likely
to be the consequences of intrinsic bursty characteristics of
individuals or more driven by the interaction between individ-
uals? Borrowing the terms in the network science [5–7] we
refer to this question as node burstiness versus link burstiness.
Karsai et al. [8] addressed a similar question by analyzing
the time series of individuals (nodes) and their ties (links) in
the mobile phone communication data set. They found that
the bursty behavior of nodes is dominated by that of links
incident to the nodes, hence concluded that “burstiness is
a property of the links rather than of the nodes.” Here we
remark that the mobile phone communication data set consists
of interaction events only. In particular, each mobile phone
call can be described by a tuple (i, j, t ) in that a caller i
makes a call to a receiver j at time t [8–11]. Therefore the
mobile phone communication data set has also been studied
in the framework of temporal networks [12–14], because the
temporal network can be defined as a set of interaction events
or tuples (i, j, t ). We note that a temporal network model
has recently been suggested to reconcile node burstiness and
link burstiness [15] rather than to contrast one with the other.
However, such a temporal-network approach may systemati-
cally preclude individual activities that are not described by
tuples (i, j, t ), such as watching a movie alone or posting
to a personal blog spontaneously. These events that do not
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necessarily imply interaction between individuals are referred
to as stand-alone events and denoted by (i, t ); they can also
be important in understanding the origin of bursty human
dynamics.

As for an illustrative case study regarding the origin
of bursty human dynamics, one can analyze the edit his-
tory of the self-organized online collaborative encyclopedia,
Wikipedia [16,17], among others such as the online forum
data set [18] and Twitter data set [19]. It is well known
that the temporal patterns of edit sequences of Wikipedia
articles as well as those of editors are bursty [17,20–27].
Unlike mobile phone communication, in which every event is
a call or a message between users, editing Wikipedia articles
is not evidently a communicational act between editors and
thus could be described as a collection of stand-alone events.
Nevertheless, it has been repeatedly shown that interaction
between editors does exist and in fact plays an important role
in revising articles. Such interaction can be inferred, e.g., by
comparing different versions (or revisions) of the article that
were modified by different editors [17,28–31], by considering
the orders of editors who edited the same article [32–35], and
by relating all the active editors who edited the same article
to each other [36]. Other works considered the interaction
between editors not only in articles but also in their talk pages
[37,38]. Using the definition of the pairwise interaction be-
tween editors, social networks of editors were constructed and
analyzed [28,32,35,36]. Finally, bipartite networks between
articles and editors have also been studied [29,39–41].

In this paper, by analyzing the edit sequences of Wikipedia
articles we aim to understand the role of individuals in the
bursty collective dynamics by looking at how spontaneous
individual editors are in initiating bursty periods of editing
and to what extent such editors’ behaviors are driven by in-
teraction with other editors in those periods. These questions
can be formulated in terms of individual-driven burstiness
versus interaction-driven burstiness, which can be seen as an
elaboration of the issue on node burstiness versus link bursti-
ness. To infer the interaction between editors we detect bursty
periods for a given timescale [42] from the edit sequence of
each Wikipedia article. Here the editors who edited the same
article during the same bursty period are assumed to have in-
teracted with each other, irrespective of the contents modified
by editors. Our approach is similar to that by Karsai et al. [8]
as bursty periods are detected from a sequence of calls or edits,
but different in the sense that we focus on the information on
who initiates the bursty periods, i.e., who makes the first edit
of the bursty period.

As human activities are sometimes spontaneous and other
times interaction-driven, the individual human behavior might
not be understood only by one of individual-driven bursti-
ness and interaction-driven burstiness. Therefore, we take an
approach of quantifying the degree of initiative (DoI) of the
editor of interest in a given article using the statistics of bursty
periods containing the editor’s edits. Since the bursty periods
are detected for a given timescale [42], the DoI is also a
function of the timescale. By scanning the entire range of
the timescale, we obtain the DoI curve, from which the area
under the curve (AUC) is calculated. A large value of the
AUC can be interpreted as the dominance of individual-driven
burstiness over interaction-driven burstiness and vice versa.

To investigate features in the edit sequences that are relevant
in understanding the observed AUC values, we correlate the
AUC value with several measures for temporal and editorial
correlations. Finally, we confirm the empirical findings by de-
vising and analyzing a model capturing the essential features
of edit sequences.

The paper is organized as follows. In Sec. II we describe
our approach for analyzing the edit sequences of Wikipedia
articles by means of bursty periods, the degree of initiative,
and the area under the curve. In Sec. III we devise and analyze
a model capturing the essential features of the edit sequences
to confirm the empirical findings in Sec. II. Finally, we con-
clude our work with some remarks on future works in Sec. IV.

II. EMPIRICAL ANALYSIS

A. Data set

To scrutinize the issue on individual-driven burstiness
versus interaction-driven burstiness for the origin of bursts
in human dynamics, we analyze a data set of the English
Wikipedia dump on October 2, 2015 [43]. The data set orig-
inally contains 11 994 178 general articles, which we call
articles in our paper. Among them, we analyze articles that
have not been merged with other articles, the number of which
is 4 978 964. The number of editors who contributed those
articles is 40 057 921. The preprocessed data for each article
contain the temporal and editorial information of edits; each
edit is recorded with the editor ID and the time stamp in the
resolution of seconds. See the sample of the data in Figs. 1(a)
and 1(b). The data analyzed in our work are available in the
public repository [44]. We remark that we do not take any
other information on edits, such as the size and content of
edits, into account for the analysis.

B. Degree of initiative

An edit sequence of each Wikipedia article is given as
a time-ordered set of edits. For the article with n edits, the
ith edit for i = 1, . . . , n is associated with the editor ci and
timing ti. Among the editors of the article, a particular editor
is chosen to be called ego, while all other editors are called
alters. For simplicity we do not distinguish alters; each edit is
made either by the ego or by the alter, i.e., ci ∈ {E, A}, where
E and A stand for the ego and the alter, respectively. Note that
from the sequence of edit timings, i.e., {ti}i=1,...,n, one obtains
the sequence of inter-edit times (IETs) by the definition of
τi ≡ ti − ti−1.

To define the interaction between editors, we assume that
editors who edited the same article within the same chunk
of time period have interacted with each other. Precisely,
we adopt the notion of bursty trains or bursts [2,42]: For a
given timescale �t , a burst is defined as a set of consecutive
edits such that the IET between any two consecutive edits
in the burst is smaller than or equal to �t , while edits in
different bursts are separated by IETs larger than �t . See
Fig. 1(c) for an illustrative example. Then we categorize the
detected bursts, whose number is denoted by m, into three
groups according to the editorial information: (i) A burst of
which the first edit is made by the ego is called an initiated
burst. (ii) A burst that is not initiated by the ego but contains
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FIG. 1. Diagram for the data analysis procedure. (a) Part of the
preprocessed data of Wikipedia edit history. Each line contains the
time stamp, article ID, and editor ID of the edit. (b) Part of the edit
sequence of a given article (e.g., article 5 042 951) containing the
time stamp and the editor ID per edit. (c) Visualization of part of
the edit sequence for article 5 042 951. Each edit is denoted by a
vertical line in the horizontal time axis. Among editors who edited
the article, we choose a particular editor or ego (e.g., editor 13 014),
while all other editors are called alters. Edits by the ego and alters
are denoted by red solid lines and blue dotted lines, respectively. For
a given timescale �t , bursts are detected and categorized into three
groups: initiated (red area), uninitiated-but-involved (orange area),
and uninvolved bursts (blue area). (d) The degree of initiative (DoI),
r in Eq. (1), for editor 13 014 in article 5 042 951, with �t in seconds.
See the text for the definitions of �t1 and �t2. (e) The DoI curve as a
function of the normalized timescale �t ′ in Eq. (2), from which the
area under the DoI curve is calculated as ≈0.45.

ego’s edits is called an uninitiated-but-involved burst. (iii) A
burst without ego’s edits is called an uninvolved burst. The
numbers of initiated bursts, uninitiated-but-involved bursts,
and uninvolved bursts are respectively denoted by minit, minv,
and mother, satisfying m = minit + minv + mother. Using the first
two numbers we define the degree of initiative (DoI) for the
ego in the given article as follows:

r ≡ minit

minit + minv
, (1)

which essentially quantifies how often the ego initiates bursts
while being active in editing.

For a fixed timescale �t , a larger value of r implies more
initiative behavior of the ego at that timescale. However, it is
not obvious which timescale is the most relevant for under-
standing the initiative behavior. Therefore, we study the DoI

for the entire range of the timescale for systemic investigation.
If �t is smaller than the minimum IET of the edit sequence,
each edit constitutes a burst of size one on its own, implying
that minv = 0, hence r = 1. As �t increases, bursts are merged
with each other, and the total number of bursts, m, decreases.
In particular, minit either decreases or remains the same, but
never increases, which is the main driving force for the overall
decreasing r. The increasing behavior of r is found only when
minv decreases. Precisely, minv decreases by one whenever an
uninitiated-but-involved burst is merged either with the pre-
ceding initiated burst or with another uninitiated-but-involved
burst. However, if the number of ego’s edits is much smaller
than the total number of edits, as is the case in our work, it is
more common to find a merger of an uninvolved burst and
its following initiated burst into an uninitiated-but-involved
burst, leading to the overall increasing minv, hence the overall
decreasing r. Finally, if �t is equal to or larger than the
maximum IET in the edit sequence, all edits belong to a single
burst. This burst is either an initiated burst or an uninitiated-
but-involved burst, ending up with r = 1 or 0, respectively,
depending on who made the first edit to the article. Such
dependence on the initial condition is somewhat excessive and
makes the further analysis less robust. For the edit sequences
where the ego makes the first edit, to ensure r = 0 for �t
equal to or larger than the maximum IET in the edit sequence,
we add a dummy edit by an alter before the beginning of the
edit sequence; we suppose the zeroth edit made by an alter
c0 = A at time t0 = t1 − τ1 for some IET τ1 (to be discussed).

To guarantee the statistical significance of the analysis,
we first choose articles with more than 104 edits from the
Wikipedia data set, leaving us with 697 articles. For each
article we choose human editors who have made at least 1%
of edits to the article [45]. In total there are 3099 such editors,
each of whom is designated as the ego. As a result we are left
with 4634 article-ego pairs to be analyzed. As an example, we
plot in Fig. 1(d) the DoI curve for editor 13 014, who edited
559 times the article 5 042 951 with n = 20 683. As expected,
the DoI curve overall decreases with the timescale �t .

In each of the DoI curves obtained from the data set, we
observe two characteristic timescales: At the first timescale,
denoted by �t1, the DoI curve starts to deviate from r = 1 as
uninitiated-but-involved bursts appear, i.e., minv > 0. At the
second timescale, denoted by �t2, the DoI curve reaches zero
as all initiated bursts disappear, i.e., minit = 0. The timescale
�t1 is equal to the minimum IET between the ego’s edit and its
preceding edit by the alter, provided that the alter’s edit is not
part of an initiated burst detected at the timescale �t1. This
may indicate a tendency that the ego makes edits only after
�t1 since the edits by the alters. If editing by different editors
in the same burst may imply the interaction between those
editors, �t1 could be interpreted as the minimal timescale
for the ego’s interaction with other editors. Similarly, the
timescale �t2 can be a good proxy for the maximum IET
between the ego’s edit and its preceding edit by the alter.
That is, the ego tends to make edits within �t2 since the
edits by the alters, implying that �t2 could be interpreted as
the maximal timescale for the ego’s interaction with other
editors. We find in Fig. 2(a) that the population of editors
can be well described by some typical values of �t1 and �t2.
Here �t1 turns out to be shorter than the order of one day
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FIG. 2. (a) Heat map of the number of article-ego pairs having
the same characteristic timescales �t1 and �t2. (b) Heat map of the
averaged value of the area under the DoI curve, denoted by 〈AUC〉,
for the pairs having the same characteristic timescales �t1 and �t2.
In panels (a) and (b), log-binned �t1 and �t2 have been used for the
calculation. Both horizontal and vertical dashed lines denote one day.
(c)–(e) Heat maps of the number of article-ego pairs in the spaces
of (BE , AUC) (c), (BA , AUC) (d), and (Mc, AUC) (e). See the text
for the definitions of BE , BA , and Mc. In each of panels (c)–(e), we
also present the value of the Pearson correlation coefficient (PCC).
(f) Heat map of 〈AUC〉 for the pairs having the same values of BE

and Mc. In all panels the gray color means no data in the area.

in almost all article-ego pairs, possibly due to the fact that
we have chosen article-ego pairs with relatively active editors.
We also find 14 article-ego pairs (for three distinct egos) with
�t1 = �t2, because these pairs have the editorial structure of
A · · · AE · · · EA · · · A. This implies that r drops from 1 to 0 at
the timescale �t1 (=�t2); hence these pairs will be excluded
for the further analysis in the next subsection.

Finally, we remark that the number of article-ego pairs to
which we have added the dummy zeroth edit by the alter is
quite small (14 among 4634 pairs) and that the IET between
the zeroth and first edits, τ1, has been set to be �t1 not to affect
the empirical results for �t1 and �t2.

C. Area under the DoI curve

To fully characterize the DoI curves, we also look at the
overall decreasing behavior of each of those curves in the
range of [�t1,�t2]. From the empirical results of the DoI
curves, we find various decreasing patterns such as in con-
vex, concave, and linear manners. To quantify such diverse
behaviors by a single value, we calculate the area under the

DoI curve (AUC) in a normalized range of the timescale. For
�t ∈ [�t1,�t2], we define a normalized timescale as

�t ′ ≡ log �t − log �t1
log �t2 − log �t1

. (2)

Note that 0 � �t ′ � 1. The DoI curve as a function of �t ′
is used to calculate the AUC, e.g., as shown in Fig. 1(e).
The value of AUC represents the overall initiative behavior of
the ego for the entire range of relevant timescales. Using the
AUC one can also compare different article-ego pairs more
conveniently irrespective of their characteristic timescales of
�t1 and �t2. In sum, each DoI curve for the article-ego pair
can be characterized in terms of three quantities, namely, �t1,
�t2, and the AUC.

Empirical results of �t1, �t2, and the AUC obtained for
4620 article-ego pairs are summarized in Fig. 2(b), where we
take the average of AUC values, denoted by 〈AUC〉, for the set
of article-ego pairs having the same values of �t1 and �t2, and
plot 〈AUC〉 in the space of (�t1,�t2). The value of 〈AUC〉
turns out to be overall independent of �t1 and �t2.

We investigate features in the edit sequences that are rel-
evant in understanding the observed AUC values. For this,
we characterize the edit sequences by two types of features,
i.e., temporal correlations and editorial correlations. As for
the features of the first type, we consider the set of IETs
followed by the ego’s edits, i.e., TE ≡ {τi|ci = E}, as well as
the set of IETs followed by alters’ edits, i.e., TA ≡ {τi|ci = A}.
Each IET in TE indicates how long the ego waits for the next
edit since the latest edit, whether it was made by the ego or
by the alter. Thus heterogeneity of IETs in TE can reveal the
temporal property of the ego’s editing behavior. In general,
heterogeneity of inter-event times in event sequences has been
extensively discussed to show the temporal correlations in var-
ious empirical time series [2]. To quantify the heterogeneity
of IETs in TE , we adopt the burstiness measure suggested for
finite event sequences [46]:

BE ≡
√

nE + 1σE − √
nE − 1μE

(
√

nE + 1 − 2)σE + √
nE − 1μE

, (3)

where nE is the number of IETs in TE . σE and μE denote the
standard deviation and average of IETs in TE , respectively.
The range of BE is [−1, 1]. The positive BE indicates a bursty
temporal pattern in the ego’s editing behavior, while BE = 0
if the ego’s editing behavior can be described by a Poisson
process. The negative BE is observed for relatively regular
temporal patterns. We also consider the burstiness measure
for the alters obtained from TA , denoted by BA , in a similar
manner.

The second type of feature we consider is the correlation
between two consecutive editors in the editor sequence, which
can be quantified in terms of the Pearson correlation coeffi-
cient (PCC):

Mc ≡ 1

n − 1

n−1∑
i=1

[h(ci ) − μ1][h(ci+1) − μ2]

σ1σ2
, (4)

where the editorial information is transformed to the nu-
merical value by the function h, namely, h(ci = E) = 1 and
h(ci = A) = 0. μ1 (μ2) and σ1 (σ2) denote the average and
standard deviation of h values except for the last (the first)
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FIG. 3. (a) Part of time series for the article-ego pair that is characterized by small BE and large Mc (hence, individual-driven burstiness).
(b) Part of time series for the article-ego pair that is characterized by large BE and small Mc (hence, interaction-driven burstiness). Red (blue)
vertical lines denote the ego’s (the alter’s) edits. Time intervals have been chosen to contain 20–30 edits by the ego in both cases.

editor, respectively. Positive Mc implies a tendency of the
ego’s edit (alter’s edit) to be followed by the ego’s edit (alter’s
edit). The opposite tendency is implied by the negative Mc,
while Mc = 0 indicates the absence of correlations between
two consecutive editors.

For each article-ego pair we calculate the values of BE , BA ,
and Mc to correlate them with the AUC value for the pair.
Figures 2(c)–2(e) show heat maps of the number of article-ego
pairs in the spaces of (BE , AUC), (BA , AUC), and (Mc, AUC),
respectively. Then for each case, we calculate the value of
PCC ρ: We observe (i) a negative correlation between BE and
AUC values (ρ = −0.15), (ii) a slightly positive correlation
between BA and AUC values (ρ = 0.063), and (iii) a strongly
positive correlation between Mc and AUC values (ρ = 0.68).

Observation (i) implies the tendency that the stronger tem-
poral correlation in the ego’s editing behavior (i.e., larger
BE ) leads to the smaller AUC values. This can be intuitively
understood by the following argument: The larger burstiness
measure indicates a more heterogeneous IET distribution, typ-
ically with a higher peak at small IETs and a heavier tail
at large IETs. As �t increases, small IETs followed by the
ego’s edits enhance the merger of initiated bursts and their
preceding bursts, resulting in the fast-decaying minit and DoI
curve. On the other hand, for the range of large �t , large IETs
followed by the ego’s edits slow down the merger of initiated
bursts and their preceding bursts, resulting in the slow decay-
ing minit and DoI curve. Combining these two effects, one
gets the initially fast-decaying and then slow-decaying DoI
curve, hence the overall convex DoI curve. The more convex a
curve is, the smaller the AUC value is calculated from it. This
argument explains the observed negative correlation between
BE and AUC values.

Observation (ii), i.e., the slightly positive correlation be-
tween BA and AUC values, can be explained similarly but
in an opposite manner to the case with observation (i). More
importantly, we find that the effect of BA on the AUC is not as
significant as that of BE on the AUC. It is probably because
the majority of edits in the article are made by the alters,
implying that most of IETs followed by the alters’ edits have
only marginal effects on the statistics of minit and minv.

Finally, observation (iii), i.e., a strongly positive correlation
between Mc and AUC values, allows us to argue that as the
ego’s edits become more segregated from the alters’ edits due

to stronger editorial correlation (i.e., larger Mc), the number
of uninitiated-but-involved bursts, minv, would be smaller than
otherwise. The overall smaller minv leads to the more elevated
DoI curve [see Eq. (1)], hence the larger AUC value.

Let us briefly discuss implications of the empirical results.
For the sake of simplicity, we assume that the temporal proper-
ties of the alters’ edits, characterized by BA , are given or fixed.
This assumption allows us to focus on the effects of the ego’s
temporal pattern and the editorial correlation on the AUC
value. On the one hand, a large AUC value would be achieved
for a small BE and large Mc, corresponding to the top left
area in Fig. 2(f). Let us consider an edit sequence where the
ego’s edits are well segregated from those of alters (i.e., large
Mc), while the ego’s temporal pattern is largely homogeneous
(0 � BE � 1). This implies that the ego is rarely affected by
interaction with other editors and more likely to be described
by the individual behavior. Therefore, the ego’s editorially
correlated but temporarily random behavior can be interpreted
as the individual-driven burstiness. See Fig. 3(a) for an exem-
plary time series corresponding to the case dominated by the
individual-driven burstiness.

On the other hand, a small AUC value can be found for
a large BE and small Mc, corresponding to the bottom right
area in Fig. 2(f). One can consider an edit sequence where
the ego’s edits are well mixed with the alters’ edits (small
Mc), and the IETs between the ego’s edits and their preceding
edits by alters are mostly small but often very large (large BE ).
Therefore, the ego seems to interact with other editors so that
the ego’s such behavior can be described by the interaction-
driven burstiness. See Fig. 3(b) for an exemplary time series
corresponding to the case dominated by the interaction-driven
burstiness.

In conclusion, by correlating the observed AUC value with
the burstiness measures for the IETs followed by the ego
and by the alters and the Pearson correlation coefficient be-
tween two consecutive editors, we find that weaker (stronger)
temporal correlations in the ego’s (alters’) editing behavior
and/or stronger editorial correlations tend to result in the
larger values of AUC. These empirical findings are explained
in terms of individual-driven burstiness and interaction-driven
burstiness. For more systematic investigation of the mecha-
nisms behind such tendencies we study a model with tunable
temporal and editorial correlations in the next section.
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III. MODEL

To investigate the mechanisms behind the empirical obser-
vation for the DoI curves and corresponding AUC values, we
devise and analyze a model that generates edit sequences with
tunable temporal and editorial correlations. For the temporal
correlations, we consider the distribution of the IETs followed
by the ego’s edits, denoted by PE (τ ). We also consider the
IET distribution for the alter, denoted by PA (τ ), in a similar
manner. For the editorial correlations, we consider the condi-
tional probability p(ci|ci−1), namely, qE|E , qA|E , qE|A , and qA|A .
For example, qE|A denotes the probability that the ego’s edit
follows the alter’s edit, irrespective of the timings of edits.
These probabilities are not independent of each other but
satisfy the following conditions:

qE|E + qA|E = 1, (5)

qE|A + qA|A = 1, (6)

qA|E qE = qE|A qA , (7)

where qE (qA = 1 − qE ) denotes the fraction of the ego’s edits
(alter’s edits) in the edit sequence. The condition in Eq. (7)
indicates the asymptotic balance between the frequency of the
sequence “EA” and that of “AE” in the editor sequence. As
a result, we are left with two independent parameters, i.e., qE

and qE|E .
To generate an edit sequence, we begin with an alter’s edit

at the initial time, i.e., c0 = A and t0 = 0. Then the ith edit for
i = 1, . . . , n is generated as follows:

(1) The editor of the ith edit, i.e., ci ∈ {E, A}, is de-
termined using p(ci|ci−1), conditioned by the editor of the
(i − 1)th edit, i.e., ci−1.

(2) If ci = E (A), the preceding IET τi is randomly drawn
from PE (τ ) [PA (τ )] to determine the timing of the ith edit as
ti = ti−1 + τi.

Once the edit sequence of n + 1 edits is generated, it is
analyzed to obtain the DoI curve and its corresponding AUC
value.

We analyze our model by deriving the analytic form of
the DoI, r, in terms of qE and qE|E as well as the arbitrary
functional forms of the IET distributions PE (τ ) and PA (τ ).
Let us consider an edit sequence of n + 1 edits, i.e., n IETs.
The distribution of these IETs, denoted by Pall(τ ), is related to
PE (τ ) and PA (τ ) as

Pall(τ ) = qE PE (τ ) + qA PA (τ ). (8)

We denote by m the number of bursts detected from the edit
sequence for a given timescale �t . We define the fractions of
bursts of different types discussed in the previous section as
follows:

pinit ≡ minit

m
, (9)

pinv ≡ minv

m
, (10)

pother ≡ mother

m
. (11)

Then the DoI in Eq. (1) is rewritten as

r = pinit

1 − pother
. (12)

First, we derive the analytic form of pinit . Since each IET
larger than �t separates two consecutive bursts detected at the
timescale �t , the number of IETs larger than �t , denoted by
n′, is related to m as

n′ = m − 1. (13)

Further, n′ can also be written in terms of the cumulative IET
distribution as

n′ = n[1 − F (�t )], (14)

where

F (�t ) ≡
∫ �t

0
Pall(τ )dτ. (15)

Therefore, one gets for m 	 1 [47,48]

m 
 n[1 − F (�t )]. (16)

Each initiated burst is detected whenever an ego’s edit follows
any previous edit after an IET larger than �t . Precisely,

minit = n Pr[ci = E ∩ τi > �t] = nqE [1 − FE (�t )], (17)

where

FE (�t ) ≡
∫ �t

0
PE (τ )dτ. (18)

We drop �t from now on for the sake of simplicity. From
Eqs. (16) and (17) we obtain pinit as

pinit = qE (1 − FE )

1 − F
. (19)

Second, for the derivation of pother one needs to know the
fraction of bursts only consisting of the alter’s edits among
bursts whose first edit is made by the alter. For this, we define
the fraction of bursts only with the alter’s edits as

f ≡ mother

minv + mother
(20)

to get

pother = (1 − pinit ) f . (21)

Here f can be explicitly written as

f =
∑∞

b=1 Pr[c2 = · · · = cb = A|c1 = A]∑∞
b=1

∑
c2∈{E,A} · · ·∑cb∈{E,A} Pr[c2, · · · , cb|c1 = A]

.

(22)

To calculate the numerator on the right-hand side of Eq. (22),
we consider the probability that once an alter’s edit is made,
the next event is also made by the alter within an IET smaller
than or equal to �t . This probability is given by qA|A FA , where

FA (�t ) ≡
∫ �t

0
PA (τ )dτ. (23)

Provided that a burst is initiated by an alter (c1 = A), the
probability that this burst becomes an uninvolved burst of size
b is given by the product of (qA|A FA )b−1 and the probability that
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an IET is larger than �t . The latter probability is to guarantee
that the burst size is exactly b. Therefore, the numerator on the
right-hand side of Eq. (22) is calculated as

∞∑
b=1

(qA|A FA )b−1(1 − F ) = 1 − F

1 − qA|A FA

. (24)

The denominator on the right-hand side of Eq. (22) can be
calculated by enumerating all possible combinations of E and
A following the first edit in the burst made by the alter. Let us
rewrite each term in the summation over b as kb(1 − F ), i.e.,

kb ≡
∑

c2∈{E,A} · · · ∑cb∈{E,A} Pr[c2, . . . , cb|c1 = A]

1 − F
. (25)

One gets the following results,

k1 = Pr[∅|A] = 1, (26)

k2 = Pr[A|A] + Pr[E|A] = qA|A FA + qE|A FE , (27)

and for b � 3,

kb = qA|A FA kb−1 + qE|A qA|E FE FA

b−3∑
l=0

(qE|E FE )l kb−l−2

+ qE|A qb−2
E|E FE

b−1. (28)

In Eq. (28) the first term on the right-hand side contains all
cases with c2 = A, while the final term accounts for the case
with c2 = · · · = cb = E. The second term includes all other
cases. Summing up kb over all b’s, we get the denominator on
the right-hand side of Eq. (22) as

∞∑
b=1

kb(1 − F ) = (1 − qE|E FE + qE|A FE )(1 − F )

(1 − qA|A FA )(1 − qE|E FE ) − qE|A qA|E FE FA

.

(29)

Then by using Eqs. (12), (19), (21), (24), and (29), for a given
timescale �t we finally obtain the analytic result of the DoI
for the entire range of qE and qE|E as well as for arbitrary
functional forms of PE (τ ) and PA (τ ):

r = qE (1 − FE )(1 − qA|A FA )(1 − qE|E FE + qE|A FE )

(1 − F )qE|A FE (1 − qA|A FA + qA|E FA ) + qE (1 − FE )[(1 − qA|A FA )(1 − qE|E FE ) − qE|A qA|E FE FA ]
. (30)

We demonstrate our analytic result in Eq. (30) by adopting
the power-law IET distributions with the power-law exponent
α, lower bound τmin, and exponential cutoff τc:

P(τ ) = τα−1
c

�(1 − α, τmin/τc)
τ−αe−τ/τcθ (τ − τmin), (31)

where �(·, ·) is the upper incomplete Gamma function and
θ (·) is the Heaviside step function. This choice is based on
empirical results in the literature [2]. For denoting the pa-
rameters for the IET distribution of the ego (the alter) we
add the subscript E (A) to those parameters, such as αE (αA ).
The analytic results of the DoI curve for various combinations
of parameter values of αE , αA , and qE|E are shown as solid
curves in Figs. 4(a)–4(c), where in all cases we use qE = 0.1,
τmin = 22, and τc = 210 for the ego, and τmin = 1 and τc = 215

for the alter. These analytic results are successfully confirmed
by the simulation results with 100 generated edit sequences of
up to n = 223 edits, as depicted by symbols in Figs. 4(a)–4(c).

Next, we numerically calculate the AUC value from the an-
alytic result of the DoI curve in Eq. (30), for which we identify
the values of �t1 and �t2. Since �t1 is the maximum value of
�t satisfying minv = 0, i.e., f = 1 in Eq. (20), �t1 turns out
to be the same as τmin for the ego’s IET distribution. �t2 is
determined as the minimum value of �t satisfying minit = 0 or
pinit = 0, i.e., FE = 1 by Eq. (19). However, since FE (�t ) = 1
can be achieved only when �t → ∞, we instead obtain �t2
satisfying the condition FE (�t2) = 1 − 10−6, which is essen-
tially of the order of τc for PE (τ ).

Figures 4(d)–4(f) shows how the AUC value depends on
the parameter values for temporal and editorial correlations.
We observe in Fig. 4(d) that the smaller αE and/or larger αA

lead to the larger AUC values. To compare this finding with
the empirical observation in Sec. II C, one needs to understand

the relation between the shape of the IET distribution and
the burstiness parameter derived from it. Once the functional
form of the IET distribution P(τ ) is given as in Eq. (31), the
standard deviation σ and the mean μ of the IET are calculated
to obtain the value of the burstiness parameter [49]:

B ≡ σ − μ

σ + μ
, (32)

which can also be derived from Eq. (3) in the case with n →
∞. As a result, we observe the nonmonotonic dependence of
B on the power-law exponent α for fixed values of τmin and τc,
as depicted in Fig. 5(a). This implies that a heavier tail of the
IET distribution with a smaller value of α does not necessarily
lead to the larger value of B, in particular, in the presence
of the exponential cutoff to the power-law tail. For the IET
distributions with τmin = 1 and various values of τc, we find
an increasing behavior of B as a function of α for the range
of α � 1.5. Assuming that the empirical IET distributions of
the ego and the alters follow the functional form in Eq. (31),
we roughly estimate values of the power-law exponent of the
empirical IET distribution for the ego and for the alters to find
them within the range of α � 1.5, as shown in Figs. 5(b) and
5(c). Conclusively, the analytic result that the smaller αE and
larger αA lead to the larger AUC value is consistent with the
empirical finding of the negative correlation between BE and
AUC values and of the positive correlation between BA and
AUC values.

In Fig. 4(e) we observe that the larger qE|E for a fixed qE

leads to the larger AUC values, which indeed confirms the
empirical tendency that the larger AUC values are observed
for the stronger editorial correlations as shown in Fig. 2(e).
Finally, Fig. 4(f) shows how the AUC value varies when the
effects of αE and qE|E interplay with each other.
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FIG. 4. (a)–(c) Analytic results of the DoI curve of the model in Eq. (30) using PE (τ ) and PA (τ ) both in a form of the power-law distribution
with exponential cutoff in Eq. (31) (solid curves). In all cases we use qE = 0.1, τmin = 22, and τc = 210 for PE (τ ), and τmin = 1 and τc = 215

for PA (τ ). We plot the DoI curves for several values of αE when qE|E = 0.1 and αA = 1.5 (a), for several values of αA when qE|E = 0.1 and
αE = 1.5 (b), and for several values of qE|E when αE = αA = 1.5 (c). These analytic results are confirmed by the simulation results from 100
generated edit sequences of up to n = 223 edits (symbols). The error bars denote the standard deviations. (d)–(f) Numerical results of the
AUC value calculated from the analytic result of the DoI curve in Eq. (30) for various combinations of the parameter values, i.e., in the space
of (αA , αE ) when qE = qE|E = 0.1 (d), in the space of (qE , qE|E ) when αE = αA = 1.5 (e), and in the space of (αE , qE|E ) when qE = 0.1 and
αA = 1.5 (f). In all cases we use τmin = 22 and τc = 210 for PE (τ ) and τmin = 1 and τc = 215 for PA (τ ). The gray area in panel (e) shows the
nonexistent parameter space due to conditions in Eqs. (5)–(7).

By devising and analyzing the model we could un-
derstand the underlying mechanisms behind the empirical
results more rigorously in terms of the effects of tempo-
ral and editorial correlations on the DoI curves and their

corresponding AUC values. Thus our modeling approach
helps us to better understand the issue on individual-driven
burstiness versus interaction-driven burstiness in human
dynamics.

FIG. 5. (a) Nonmonotonic dependence of the burstiness parameter B in Eq. (32) on the power-law exponent α for the IET distribution given
by Eq. (31) with τmin = 1 and various values of τc. (b) The aggregate distribution of IETs followed by the ego’s edits over all article-ego pairs
(red circles), with the estimated values of power-law exponent αE = 1.15(1) (depicted by a dashed line) and burstiness measure BE ≈ 0.69.
(c) The aggregate distribution of IETs followed by the alters’ edits over all article-ego pairs (red circles), with the estimated values of power-law
exponent αA = 1.11(2) (depicted by a dashed line) and burstiness measure BA ≈ 0.74.
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IV. CONCLUSION

Although the origin of bursty temporal patterns observed
in various human behaviors has been extensively investigated,
its understanding still remains incomplete [2]. Consider-
ing the fact that humans are social beings, one can ask
the fundamental question of whether the bursty human
dynamics is dominated by the characteristics of individu-
als or by the interaction between them. In this paper we
have addressed this question by analyzing the Wikipedia
edit history to see how spontaneous individual editors are
in initiating bursty periods of editing and to what ex-
tent such editors’ behaviors are driven by interaction with
other editors in those periods. This question is referred
to as individual-driven burstiness versus interaction-driven
burstiness.

After detecting the bursty periods or bursts [42] from the
edit sequence of each Wikipedia article, we quantify the de-
gree of initiative (DoI) of an individual editor or ego using
the statistics of the bursts containing the ego’s edits. All other
editors are called alters. Since the bursts are detected for a
given timescale, the DoI is also a function of the timescale.
Then scanning the entire range of timescale in the article, we
obtain the DoI curve, from which the area under the curve
(AUC) is calculated. The large value of AUC for an article-ego
pair implies the dominance of individual-driven burstiness
over interaction-driven burstiness and vice versa. By corre-
lating the AUC value with several measures for temporal and
editorial correlations, we find the tendency of the AUC values
to be larger for weaker (stronger) temporal correlations of the
ego (the alters) and/or stronger editorial correlations in the
edit sequences. We also successfully confirm these empirical
findings by devising and analyzing a model capturing the
essential features of edit sequences. Our approach enables us
to better understand the origin and underlying mechanisms of
bursts in human social dynamics. We also remark that our
approach can be applied to any other time series that can
be characterized by a sequence of events with both temporal
and contextual information. Here the context of the event
indicates a situation in which the event occurs, or any other
attributes of the event [50,51], such as editors of editing events

in our case and discussion topics of posted messages in online
forums [18].

Finally, we discuss possible future works. For the compre-
hensive description of the temporal and editorial correlations,
one can consider higher-order temporal and editorial corre-
lations than those used in our work, e.g., by means of a
burst-tree decomposition method for characterizing arbitrary-
order temporal correlations in event sequences [27] and
ε-machine for detecting patterns in the sequence of symbols
(e.g., editors in our case) [52,53]. In our work we have focused
only on whether the editor of interest initiated bursts or got
involved in bursts initiated by other editors. In addition to
such initiative behaviors the organization of edits in each burst
may also be important to understand the interaction dynamics
within bursts, e.g., as studied in Refs. [8,54]. In addition,
considering that an editor can edit multiple articles, the same
editor may show different initiative behaviors when editing
different articles, which can be studied in the future. Further,
beyond the article-editor pairs one can extend our approach to
encompass the entire web of articles and editors in terms of
bipartite temporal networks [29,41,55,56]. The bipartite tem-
poral network for Wikipedia edit history can consist of editing
events, denoted by a tuple (i, u, t ), indicating that an editor i
makes an edit to an article u at time t . Finally, one can also
consider information on the interaction between editors from
other types of Wikipedia pages, e.g., talk pages [37,38,57],
or by means of development tools such as Editor Interaction
Analyser [58]. One can gain a much deeper insight into the
issue on individual-driven burstiness versus interaction-driven
burstiness in the context of collective dynamics; thus one can
better understand the origin and underlying mechanisms of
bursts in human social dynamics.
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