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Effect of individual differences on the jamming transition in traffic flow
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The individual difference, particularly in drivers’ distance perception, is introduced in the microscopic one-
dimensional optimal velocity model to investigate its effect on the onset of the jamming instability seen in traffic
systems. We show analytically and numerically that the individual difference helps to inhibit the traffic jam at
high vehicle densities while it promotes jamming transition at low vehicle densities. In addition, the jamming
mechanism is further investigated by tracking how the spatial disturbance travels through traffics. We find that
the jamming instability is uniquely determined by the overall distribution of drivers’ distance perception rather
than the spatial ordering of vehicles. Finally, a generalized form of the optimal velocity function is considered to
show the universality of the effect of the individual difference.
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I. INTRODUCTION

One of the most fascinating features of interacting self-
driven many-particle systems (i.e., active systems) is that they
may exhibit a spontaneous phase transition from a uniform
state into an inhomogeneous state [1,2]. The traffic system
as one of the well-studied active systems, of which the study
dates back to the early 20th century, has perfectly illustrated
the dynamical transition to a jammed state even before the
road capacity is reached, as everyone experiences on a daily
basis [3,4]. The jamming transition could be attributed to vari-
ous factors such as car accidents, traffic bottlenecks, etc. And,
sometimes, the traffic jam could also occur for no apparent
reasons, which is known as the “phantom traffic jam.”

To understand the dynamics of traffic systems, mathemati-
cal models from different perspectives, such as microscopic
particle-based models [5–13], mesoscopic Boltzmann-like
models [14,15], and macroscopic continuum models [16–18],
have been developed. One of the microscopic models, the
so-called optimal velocity model, was proposed by Bando
et al. [9], where a headway-dependent optimal velocity is
introduced in the equation of motion, and the individual differ-
ence of drivers is discarded for simplicity. Bando et al. showed
analytically and numerically that traffic congestion is spon-
taneously induced as the relaxation time of drivers is slower
than the rate of change in the optimal velocity as the distance
to the vehicle in the front changes. In addition, Bando et al.
showed that the inhomogeneous state formed in the model is
composed of two different states: a free flow state and a con-
gested state with two specific propagation velocities, which
is consistent with the observation of highway traffic [19–21].
Nevertheless, it is worth noting that simplifications such as
a closed-loop single-lane traffic are employed in this model.
Besides the headway-dependent optimal velocity, there are
other realistic factors considered in different traffic models,
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such as the relative-velocity dependent optimal velocity [12],
the lane-changing effect in a multilane traffic system [22,23],
the size effect due to multispecies vehicles [24–27], spatial
inhomogeneities in roads [28,29], the temperament of drivers
[30,31], etc.

Nonetheless, the assumption of identical drivers is com-
monly employed in traffic models for simplicity. However,
recent researchers show that the complexity of human behav-
iors could have significant effects on the stability of active
systems. For instance, the physical and psychological abilities
of drivers may vary over time, which can be described as
a stochastic process, and the influence of stochasticity on
the stability of traffic systems has been investigated [32–34].
In addition, drivers are expected to perceive the change of
surroundings differently, as one would expect for biological
beings in general. Previous research shows that heterogeneous
traffic flow that is composed of different groups of vehi-
cles also influences the stability of traffic systems [35,36].
Other heterogeneous traffic systems have also been studied
[37–41]. Furthermore, it is shown that a wide scattering of
synchronized states seen in the fundamental diagram can be
reproduced for a traffic model considering a mixture of dif-
ferent vehicle types like cars and trucks, which indicates the
importance of the individual difference [26]. Recent study by
Tang et al. incorporated the individual difference of drivers’
perception ability in the macroscopic continuum model to
show that scattered data seen in the fundamental diagram
could be partly attributed to the individual difference [42].

In this study, we investigate the effect of the individ-
ual difference, particularly in drivers’ distance perception,
on jamming transition using Bando’s microscopic model.
We show analytically and numerically that the individual
difference affects the phase transition significantly, and the
individual difference always suppresses traffic jams at high
vehicle densities in our discussion. Furthermore, we find,
interestingly, by tracking the propagation of the distance dis-
turbance through traffics, that the spatial ordering of drivers is
irrelevant to the jamming transition.

2470-0045/2021/104(1)/014311(8) 014311-1 ©2021 American Physical Society

https://orcid.org/0000-0003-3878-2936
https://orcid.org/0000-0001-8614-0730
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.104.014311&domain=pdf&date_stamp=2021-07-23
https://doi.org/10.1103/PhysRevE.104.014311


YI-CHIEH LAI AND KUO-AN WU PHYSICAL REVIEW E 104, 014311 (2021)

This paper is organized as follows: In Sec. II we briefly
review the optimal velocity model by Bando et al. In Sec. III
the individual difference in drivers’ distance perception is
introduced using Gaussian random fields, and a linear stability
analysis together with a perturbation theory are employed
to investigate the effect of the individual difference on the
jamming transition quantitatively. To further understand the
jamming mechanism, we take a closer look at how a headway
disturbance travels through the traffic. We find that the jam-
ming transition is closely related to the overall distribution of
drivers’ distance perception rather than the spatial ordering
of vehicles. Finally, we extend the optimal velocity model to
show the universality of the effect of the individual difference
in Sec. IV.

II. OPTIMAL VELOCITY MODEL

In 1995 Bando et al. proposed a well-known optimal ve-
locity model involving N vehicles in a closed loop of length
L, in which the driver of the nth vehicle adjusts its velocity
vn according to its distance to the vehicle in front, �xn =
xn+1 − xn, where xn is the location of the nth vehicle [9]. In
this model, a single-lane traffic is considered, and vehicles are
not allowed to pass others. The acceleration rule is based on
the relaxation dynamics,

ẍn = V (w�xn) − ẋn

τ
, (1)

where V (w�xn) is the so-called optimal (desired) velocity
function, and τ is the relaxation time. A simple optimal ve-
locity function introduced by Bando et al. is

V (w�xn) = tanh(w�xn − h) + tanh(h). (2)

It is clear that the desired velocity of the driver approaches
zero as �xn → 0, so as to avoid car accidents. On the other
hand, if there is no vehicle in front, the desired velocity satu-
rates to a certain maximum value. Two parameters, w and h,
are chosen to describe desired behaviors of drivers. The shift
of the hyperbolic tangent function, h, is used to set the general
dependence of the optimal velocity on the interval between
vehicles. The parameter w characterizes the perception of
spatial distance of drivers, and it is set to be unity in Ref. [9].
It is evident that drivers with a larger value of w (poor distance
perception) change their desired velocity more abruptly than
those with a smaller value of w (good distance perception)
when the distance to the vehicle in front decreases by the same
amount, and w is always positive.

The dynamical behavior of the optimal velocity model is
readily obtained by employing the linear stability analysis
around the homogeneous steady state. For identical drivers,
the homogeneous steady state is

x(0)
n (t ) = nb + V (wb)t, (3)

where b = L/N is the distance between vehicles, and V (wb)
is the homogeneous steady-state velocity. Now by assuming
a small perturbation around the steady state, xn(t ) = x(0)

n +
yn(t ), and substituting it into Eq. (1), a linearized equation of
yn(t ) is obtained straightforwardly,

ÿn + 1

τ
ẏn = f0

τ
w�yn, (4)

where

f0 ≡ 1

w

∂V (w�xn)

∂�xn

∣∣∣∣∣
�xn=b

. (5)

Due to the periodic boundary condition of a closed loop, the
perturbation is expanded in a Fourier series,

yn(t ) =
N/2∑

k=−N/2+1

ỹk (t )eiαk n, (6)

where αk = 2πk/N . Together with Eq. (4), we get N indepen-
dent equations,

¨̃yk + 1

τ
˙̃yk = f0

τ
wỹk[exp(iαk ) − 1], (7)

of which the eigenvalue with the largest real part determines
the onset of the instability. Bando et al. showed that the
homogeneous steady state is unstable when

f0 >
1

2τw cos2(α1/2)
, (8)

which is reduced to f0 > (2τw)−1 in the thermodynamic
limit.

The physical interpretation of the instability condition is
associated with two competing timescales, τ and 1/(2 f0w),
respectively, in this model. The first timescale is τ , which is
the relaxation time. The second timescale is 1/(2 f0w), which
characterizes how fast the desired velocity changes as the
distance varies. When the relaxation time τ is larger than
1/(2 f0w), one cannot adjust the velocity fast enough to match
one’s desired velocity, which is when the jamming instability
occurs.

III. INDIVIDUAL DIFFERENCE

In the original optimal velocity model, one assumes that all
drivers obey the same acceleration rules. However, in reality,
drivers exhibit different levels of distance perception, hence
different degrees of abruptness for drivers to adjust the veloc-
ity are to be expected. In this section, we introduce individual
difference, specifically the difference in distance perception,
to the optimal velocity model. We show that individual differ-
ence in distance perception helps to prevent traffic jams in the
heavy traffic regime as discussed in detail below.

A. Linear stability analysis

The individual difference is introduced into the optimal
velocity model by assigning a different value of w to each
driver. Therefore, Eq. (1) becomes

ẍn = V (wn�xn) − ẋn

τ
, (9)

where

V (wn�xn) = tanh(wn�xn − h) + tanh(h). (10)

It is apparent that even if �xn’s are the same, drivers would
still have different desired velocity V (wn�xn) due to different
distance perception. Although drivers are different from one
another, it does not seem too far-fetched to assume a simple
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Gaussian distribution for wn. For simplicity, we assume a
Gaussian distribution for wn with mean w̄ = 1 and standard
deviation σ . The steady state of the system is obtained by
requiring ẍn = 0 in Eq. (9). That is, all drivers are moving with
the same velocity but with a different distance to the vehicle
in front. We obtain

x(0)
n =

n∑
i=1

�x(0)
i + v(0)t, (11)

where we set the location of the first vehicle to be at the origin
of the moving frame, and

�x(0)
i = L

wi

(∑
j

1

w j

)−1

, (12)

v(0) = V (wn�x(0)
n ). (13)

Similarly, we assume a perturbation yn(t ) around the steady
state, hence the location of the nth vehicle is xn(t ) = x(0)

n +
yn(t ). Then the linearized equation of yn(t ) is readily obtained,

ÿn + 1

τ
ẏn = f1

τ
wn�yn, (14)

where

f1 = 1

wn

∂V (wn�xn)

∂�xn

∣∣∣∣
�xn=�x(0)

n

= sech2(wn�x(0)
n − h). (15)

Substituting the Fourier expansion of yn(t ), Eq. (6), into
Eq. (14), we obtain

¨̃yk + 1

τ
˙̃yk = f1

τ

∑
�

ỹ�w̃k−�[exp(iα�) − 1], (16)

where w̃m is the mth Fourier amplitude of the Fourier trans-
form of wn’s,

wn =
N/2∑

m=−N/2+1

w̃meiαmn. (17)

It is interesting to note that Eq. (16) shows an intricate
coupling between the dynamics of perturbations and the spa-
tial distribution of different distance perception of drivers. It
becomes an eigenvalue problem of coupled equations with
N degrees of freedom. The eigenvalues clearly depend on
how wn’s are distributed. To generate spatially random and
uncorrelated wn’s, we employ the Gaussian random field with
mean w̄ and standard deviation σ . The Gaussian random
field is much easier to be produced in the Fourier space (see
Ref. [43]); the ensemble average of the squared magnitude of
the Fourier amplitude of the individual difference w̃k (k �= 0)
is associated with w̄ and σ ,

〈|w̃k �=0|2〉 =
∫

w̃kw̃
∗
k

∏
i

exp

[
− (wi − w̄)2

2σ 2

]
dwi

/∫ ∏
i

exp

[
− (wi − w̄)2

2σ 2

]
dwi = σ 2

N
. (18)

It shows that the Fourier amplitude of the nonzero wave num-
ber mode would be much smaller than that of the zero wave
number mode as N gets larger. Therefore, we can analyze the
system perturbatively by separating the coupling terms into an

unperturbed part which is associated only with w̃0 (note that
w̃0 = w̄) and a perturbed part which is associated with w̃k �=0.
By defining ỹT = (ỹ−N/2+1, ỹ−N/2+2, . . . , ỹN/2), Eq. (16) can
be rewritten as

d2

dt2
ỹ + 1

τ

d

dt
ỹ = f1

τ
(H0 + H1)ỹ, (19)

where

H0
k� = w̃0[exp(iα�) − 1]δk�,

H1
k� = w̃k−�[exp(iα�) − 1](1 − δk�). (20)

Obviously, H0 is treated as the unperturbed diagonal matrix,
while H1 is treated as the perturbed off-diagonal matrix.
The eigenvalues of the unperturbed matrix are exactly the
eigenvalues for the original optimal velocity model where the
individual difference is absent. Note that, for each realiza-
tion of the Gaussian random field, f1 = sech2(wn�x(0)

n − h)
would be slightly different due to the finite size effect. How-
ever, if the variance of the Gaussian distribution is small, we
can approximate Eq. (12) as

wn�x(0)
n = L

(∑
j

1

w j

)−1

≈ Lw̃0

N[1 + (σ/w̃0)2]
, (21)

which always leads to a smaller value compared to the case
of identical drivers (σ = 0). Therefore, a different value of f1

is expected, and the neutral stability boundary of the system
would differ from that for identical drivers.

Next, we proceed to discuss the correction to eigenvalues
due to H1. The stability analysis for the original optimal
velocity model shows that the most unstable Fourier mode
occurs for the longest finite wavelength mode; see Eq. (8).
Since the perturbation does not affect the system dramati-
cally, the stability of the system can be determined once the
correction to the eigenvalue for the longest finite wavelength
mode is known. The first-order correction vanishes, since
〈φ1|H1|φ1〉 = 0 due to the fact that H1 is an off-diagonal
matrix and |φ1〉 is an eigenvector composed solely of ỹ1. The
second-order correction to the eigenvalue is λ

(2)
1 ,

λ
(2)
1 =

∑
k �=1

|w̃1−k|2(eiαk − 1)(eiα1 − 1)

w̃0(eiα1 − eiαk )
	 − iσ 2

w̃0
sin α1. (22)

Hence, the governing equation of ỹ1 [see Eq. (19)] up to
second-order perturbation is

¨̃y1 + 1

τ
˙̃y1 	 f1

τ
w̃0

[
cos α1 − 1 + i

(
1 − σ 2

w̃2
0

)
sin α1

]
, (23)

and the instability condition is modified accordingly,

f1 >
1

2τ w̃0(1 − σ 2/w̃2
0 )2 cos2 (α1/2)

, (24)

which is reduced to f1 > [2τ w̃0(1 − σ 2/w̃2
0 )2]−1 in the ther-

modynamic limit. Note that f1 also depends on σ 2/w̃2
0 since

it is a function of wn�x(0)
n ; see Eq. (21). Therefore, it is ex-

pected that the neutral stability boundary varies as a function
of σ 2/w̃2

0 according to the above perturbation calculation.
Figure 1 shows how the phase boundary changes with the
individual difference. The threshold value of the relaxation
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FIG. 1. Phase diagram of the traffic system. Note that τ0 is the
threshold value of the relaxation time when the individual difference
is absent (i.e., σ = 0). The black line plots the neutral stability
boundary of Eq. (24). Solid green squares and solid blue triangles
represent the jammed and unjammed state, respectively, predicted
from Eq. (24). Red circles are the simulation results of Eq. (9), which
is consistent with the prediction obtained by solving the eigenvalue
problem (not shown) of the coupled Eqs. (16). One hundred realiza-
tions of Gaussian random fields are carried out for each simulation
data point. The phase diagram is obtained for N/L = 1, h = 2, and
N = 512.

time τ of drivers increases as σ/w̃0 increases for a specific
vehicle density N/L = 1. At this vehicle density and for a
nonvanishing value of σ/w̃0, a higher threshold of relaxation
time of drivers is expected, which means the traffic system
would remains unjammed even if it takes a longer time for
drivers to adjust their velocities. In other words, the variation
of distance perception of drivers helps to inhibit the onset of
the traffic jam. As shown in Fig. 1, the area of the jammed
state on the phase diagram reduces with σ/w̃0, and the phase
boundary is shown to vary quadratically with σ/w̃0. A quan-
titative analysis is shown in detail in the following section.

Note that the simulation results are obtained using Eq. (9)
with a fourth-order Runge-Kutta method. To ensure the simu-
lation accuracy, we employ an adaptive time step which is one
hundredth of the minimal value of �xn/vn at each instant. The
initial condition of position of vehicles used in simulations
is set to be their equilibrium positions along with a small
perturbation.

The physical mechanism of the traffic jam can be analyzed
by tracking how a spatial disturbance of the location of a
vehicle, yn, propagates through traffics. Since drivers adjust
their speed according to the distance to the vehicle in front,
the spatial disturbance of the location of one vehicle would
give rise to a wave of disturbances traveling backward. Drivers
with poor distance perception (larger w) tend to accelerate (or
decelerate) more abruptly and overcorrect their speed. There-
fore, the amplification of the spatial disturbance is expected if
more poor distance perception drivers are in the traffic, which
eventually leads to a traffic jam. On the other hand, the drivers
with good distance perception (smaller w) would reduce the

disturbance and keep the system stable. A quantitative analy-
sis is given as follows.

B. Propagation of disturbances

Now consider a system composed of N drivers with dif-
ferent wn in a closed loop. All drivers are initially at their
equilibrium locations, except the nth driver whose location
is slightly off by the amount of yn. Since all vehicles are in
a closed loop, the spatial disturbance is expected to travel
back to itself repeatedly. Therefore, one can assume yn =
An(t )ei�t + c.c., where An(t ) is the amplitude of the distur-
bance wave and � characterizes the angular frequency of the
wave; see Ref. [6].

Since we are looking for the stability of the system near the
neutral stability boundary, An is expected to vary on a much
slower timescale compared to 1/�. Therefore, by assuming
a negligible time derivative of An on the timescale 1/�, we
readily obtain, from Eq. (14), the disturbance propagation
relation between An−1 and An,

An−1 = f1wn−1

Rn−1
e−iθn−1 An, (25)

where

Rn−1 =
√

( f1wn−1 − �2τ )2 + �2, (26)

θn−1 = tan−1

(
�

f1wn−1 − �2τ

)
. (27)

After the disturbance propagates through the traffic and come
back to the nth vehicle, the amplitude An is amplified by a
factor of z ≡ ∏N

j=1( f1w j/Rj ). Note that we have employed
the fact that the sum of the phase difference θ j over all vehicles
is simply 2π . If z is greater than unity, the traffic jam occurs.
Since the angular frequency of the wave decreases as the
number of vehicles increase, in the thermodynamic limit, z
can be well approximated by an expansion in terms of �2 to
the lowest order,

z =
∏

n

f1wn√
( f1wn − �2τ )2 + �2

	 1 − N

2( f1w̃0)2

[(
1 + 3

σ 2

w̃2
0

)
− 2τ ( f1w̃0)

(
1 + σ 2

w̃2
0

)]
�2.

(28)

By requiring z > 1, it gives the criterion for the instability to
occur,

f1 >
1

2τ w̃0

(
1 + 2

σ 2

w̃2
0

)
+ O

(
σ 4

w̃4
0

)
, (29)

which is consistent with Eq. (24) to the lowest order of
(σ/w̃0)2 in the thermodynamic limit. To further explore the
individual difference effect on the instability quantitatively,
we expand f1 in terms of (σ/w̃0)2. The neutral stability
boundary is readily obtained to the lowest order of (σ/w̃0)2,

1

τ
= 2sech2(γ ) + β

σ 2

w̃2
0

, (30)
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FIG. 2. A log-log plot of simulation results of the deviation of
1/τ from 1/τ0 as a function of σ/w̃0 for various global vehicle den-
sities ranging from N/L = 0.2 to N/L = 1. The simulation results
are well fitted by a power-law relation with an exponent of 2. The
simulation results are obtained with parameters h = 2 and N = 512.

where

γ = Lw̃0

N
,

β = 4sech2(γ − h)[γ tanh(γ − h) − 1]. (31)

The inverse of the threshold value of the relaxation time τ is
expected to exhibit a power-law relation with (σ/w̃0). Simu-
lation results for 512 vehicles of various densities are shown
in Fig. 2; the inverse of the threshold value of τ is shown to be
well fitted by a quadratic relation of σ/w̃0 for σ/w̃0 < 0.2. It
is interesting to note that the individual difference inhibits the
onset of jamming instability at high vehicle densities where
β < 0. Below a critical density where β > 0, the individual
difference promotes the jamming transition instead.

Figure 3 shows how β changes with the inverse of the vehi-
cle density. The value of β is always negative at high vehicle
densities and positive at low vehicle densities regardless of
the shift h of the velocity function, which can be understood
as follows. The steady-state velocity of vehicles for drivers
with different distance perception is a bit smaller than that for
identical drivers; see Eq. (21). Since the onset of the instability
comes down to the competition of driver’s relaxation time
and how fast the desired velocity changes as distance to the
front varies, at high vehicle densities, the rate change of the
desired velocity is less sensitive to the distance change which
inhibits the traffic jam. On the other hand, at low vehicle
densities, drivers tend to brake or accelerate more abruptly
as the distance to the front changes, which makes the traffic
system more vulnerable to the traffic jam.

C. Irrelevance of spatial ordering of vehicles

In the above analysis of disturbance propagation, the stabil-
ity of a traffic system depends on the amplifying factor z [see
Eq. (28)], which involves a product of w j/Rj of each vehicle.
Since the product is invariant as one switches the spatial or-
dering of vehicles, the jamming transition of traffic systems is

FIG. 3. Plot of the coefficient β as a function of γ for different
values of h. β is always negative at high vehicle densities, which
inhibits the jamming transition, while β becomes positive at low
vehicle densities, which promotes the jamming transition. The value
of h characterizes the rate change of the velocity function as the
headway changes, which uniquely determines the critical vehicle
density at which β = 0.

uniquely determined for the same group of drivers regardless
of their spatial ordering. One could reach the same conclusion
by solving the eigenvalue problem formulated before; see
Eq. (14). For a given set of wn’s, the characteristic equation
remains invariant as one reshuffles the spatial ordering of
vehicles.

Figure 4 shows the simulation results of the amplitude for
the slowest decaying eigenvector over time for 16 vehicles.
The numerical simulations are carried out in the unjammed
region that is close to the neutral stability boundary, and six
different configurations of the spatial ordering of vehicles

FIG. 4. The amplitude of the slowest decaying eigenvector over
time for simulations of 16 vehicles, N/L = 1, σ/w̃0 = 0.176, and
τ = 1.096 in the unjammed region. Six different spatial configura-
tions are generated by reshuffling the ordering of vehicles. Different
symbols represent different configurations. Note that the amplitude
oscillates with time, and only the peak values are shown.
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generated by random reshuffling are employed. In the linear
regime, simulations show that dynamical behaviors for the
slowest decaying eigenvector are identical for all six configu-
rations. It is interesting to note that our calculation indicates
that the stability of the traffic systems would be the same even
for traffic systems that allow vehicles to switch order.

IV. UNIVERSALITY OF THE EFFECT
OF INDIVIDUAL DIFFERENCE

It is intuitive that, in addition to the relative distance, the
relative velocity to the vehicle in the front would also in-
fluence drivers’ action to accelerate or decelerate. Based on
the concept shown in Refs. [12,44], we propose a generalized
traffic model incorporated with the individual difference,

ẍn = 1

τ
[V1(wn�xn) + λV2(gn�vn)e−wn�xn/R − ẋn], (32)

where V1 is the same optimal velocity function introduced
before, V1(wn�xn) = tanh(wn�xn − h) + tanh(h). And the
second term is the additional acceleration due to the relative
velocity, where

V2(gn�vn) = tanh(gn�vn), (33)

so that the driver slows down (speeds up) when its velocity
is faster (slower) than the vehicle in the front. Note that
wn’s and gn’s are populated with Gaussian random fields with
mean w̄ and ḡ, and standard deviation σw and σg, respectively.
The exponential decay term describes the distance-dependent
interaction to the vehicle in the front, and R characterized
the interaction length. It is clear that, at higher vehicle den-
sities, the acceleration due to the relative velocity is more
pronounced since wn�xn/R is relatively smaller. Finally, λ

represents the relative strength of the influence of the second
term to the first term.

We employ the same disturbance propagation analysis to
calculate the neutral stability boundary of this system. In the
thermodynamic limit, and to the lowest order expansion of
(σw/w̃0)2 and (σg/g̃0)2, the onset of the instability occurs
when

f1 >
1

2τ w̃0

(
1 + 2σ 2

w

w̃2
0

)
+ λg̃0

τ w̃0

[
1 + 2σ 2

w

w̃2
0

− 2Cov(w, g)

w̃0g̃0

]

× e−wn�x(0)
n /R, (34)

where Cov(w, g) is the covariance of wn and gn. In the limit
λ → 0, Eq. (34) simply rediscovers the instability criterion
derived in Eq. (29). First, let us consider the case where
wn and gn are independent from each other, which means
individual’s distance perception is uncorrelated to individual’s
relative velocity perception, hence, Cov(w, g) = 0. The neu-
tral stability boundary as a function of (σw/w̃0)2 is shown
in Fig. 5. At high vehicle densities, the individual difference
further inhibits the jamming transition as the relative veloc-
ity dependent acceleration rule is considered. The unjammed
phase space opens up while the jammed phase space is further
suppressed as the variation of distance perception increases;
see the comparison of Fig. 1 and Fig. 5. It is quite intuitive
since, if the distance to the vehicle in the front is close, the
relative velocity dependent acceleration would slow down the

FIG. 5. Phase diagram of the traffic system shown in Eq. (32).
The black line plots the neutral stability boundary of Eq. (34) for
Cov(w, g) = 0, and solid green squares and solid blue triangles
represent the jammed and unjammed states, respectively. Numerical
simulations of Eq. (32) for Cov(w, g) = 0 are shown in red circles.
Orange diamonds and dotted line represent the result of simulations
and analytical results, respectively, for the scenario where wn = gn.
One hundred realizations of Gaussian random fields are carried out
for each simulation data point. The phase diagram is obtained for
R = 1, λ = 1, N/L = 1, h = 2, and N = 256.

vehicle as the vehicle in the front is slower. This mechanism
helps to maintain distance between vehicles effectively; there-
fore, it suppresses the jamming transition. In addition, let us
consider the other case where wn equals to gn, which means
the driver who accelerates abruptly due to the change of the
relative distance would also accelerate abruptly due to the
change of relative velocity, hence, Cov(w, g) = σ 2

g = σ 2
w. A

similar trend of the neutral stability boundary is observed; see
Fig. 5. However, the correlation between wn and gn shrinks the
unjammed phase space a little bit, since more abrupt change
in the desired velocity makes the system easier to be jammed.
On the contrary, it is expected that an anticorrelated wn and gn

would help to inhibit traffic jam.

V. SUMMARY AND DISCUSSION

We investigate how the individual difference of drivers
affects the jamming instability by implementing different dis-
tance perception using Gaussian random fields in Bando’s
optimal velocity model. Both simulation results and pertur-
bation calculations show that, at high vehicle densities, the
onset of the jamming instability is effectively suppressed if
the individual difference is introduced. On the other hand,
the instability is promoted at low vehicle densities. To further
understand the physical mechanism of jamming instability, we
analyze how the spatial disturbance in the relative distance
propagates through the traffic. We find that drivers with good
distance perception reduce the disturbance, while drivers with
poor distance perception amplify it. Therefore, we show that
whether the instability occurs depends on the overall distribu-
tion of the distance perception rather than the detail of the
spatial ordering of vehicles. It indicates that the individual
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difference of drivers would also suppress the traffic jam for
traffic systems that allow vehicles to pass each other.

The universality of individual difference-induced jamming
suppression can be further elucidated by considering a more
general form of the desired velocity. We get

ẍn = V (wn�xn, gn�vn) − ẋn

τ
, (35)

where V (wn�xn, gn�vn) is the generalized desired velocity
which monotonically increases as the distance to the vehicle
in the front increases or as the relative velocity increases. The
parameter gn is employed to characterize the relative velocity
perception of the nth driver. Employing the disturbance prop-
agation analysis, the onset of the instability occurs when

Vx >
1

w̃0τ

[(
1 + 2σ 2

w̃2
0

)(
1

2
+ Vv g̃0

)
− 2VvCov(w, g)

w̃0

]
, (36)

where Vx = (∂V /∂�xn)/wn and Vv = (∂V /∂�vn)/gn, both
evaluated at �xn = �x(0)

n and �vn = 0. It is clear that the
jamming instability is influenced by the individual difference
in several different aspects. First, the slight decrease in the
steady-state velocity due to the variation of individual distance
perception gives rise to a relatively slow change in the desired
velocity as the distance changes at high vehicle densities and
vice versa, which inhibits and promotes the jamming tran-
sition at high and low vehicle densities, respectively. This
conclusion is universal since the desired velocity function
has to saturate to certain values at both ends of the vehicle
density, which warrants an inflection point (density) for the
desired velocity function. Therefore, the rate of the change
in the desired velocity due to variation of distance perception

would be either smaller or larger depending on the vehicle
density. Past work has shown that the inflection point is crucial
in analyzing nonlinear wave in the jammed state [13,45–48].
Second, the term Vv g̃0 always inhibits the jamming transition,
since the relative velocity dependent acceleration would ef-
fectively help to maintain proper distance between vehicles.
Furthermore, the correlation between the distance perception
and relative velocity perception of drivers is shown to affect
the jamming transition as well, since the correlation could
further enhance the abruptness of the velocity change.

In this study, we show that the individual difference has
a pronounced effect on the onset of the jamming instability
in the optimal velocity model. It is of interest to extend the
current discussion to explore how the individual difference
affects the traffic flow in a more realistic system that in-
cludes lane changing, traffic bottlenecks, etc. [49]. For a more
realistic system, one can investigate whether the individual
difference has an effect on the relation between the traffic flow
and the vehicle density (i.e., the fundamental diagram). Since
we have shown that the variation of distance perception leads
to changes in the steady-state velocity, therefore, the individ-
ual difference could be responsible for the wide scattering
nature of the fundamental diagram.
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