
PHYSICAL REVIEW E 104, 014310 (2021)

Scaling behavior of information entropy in explosive percolation transitions
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An explosive percolation transition is the abrupt emergence of a giant cluster at a threshold caused by a
suppression of the growth of large clusters. In this paper, we consider the information entropy of the cluster-size
distribution, which is the probability distribution for the size of a randomly chosen cluster. It has been reported
that information entropy does not reach its maximum at the threshold in explosive percolation models, a result
seemingly contrary to other previous results that the cluster-size distribution shows power-law behavior and the
cluster-size diversity (number of distinct cluster sizes) is maximum at the threshold. Here, we show that this
phenomenon is due to the fact that the scaling form of the cluster-size distribution is given differently below and
above the threshold. We also establish the scaling behaviors of the first and second derivatives of the information
entropy near the threshold to explain why the first derivative has a negative minimum at the threshold and the
second derivative diverges negatively (positively) at the left (right) limit of the threshold, as predicted through
previous simulation.
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I. INTRODUCTION

Percolation is a phenomenon in which a giant (percolating)
cluster emerges as the link occupation probability between
individuals exceeds a finite threshold [1]. The sol–gel transi-
tion [2] and metal–insulator transition [3] provide examples
of percolation phenomena in physical systems. Apart from
the giant cluster, the distribution of finite-sized clusters also
changes as the link occupation probability increases. The un-
certainty of the distribution of finite-sized clusters has been
studied using percolation models in various aspects [4–10].
In some of these results, it has been reported that the cluster-
size diversity, or information entropy [11], of the cluster-size
distribution reaches its maximum value at the threshold in
(ordinary) random percolation models [4–8].

Specifically, in Ref. [4], the information entropy of the
cluster-size distribution in the Erdös–Rényi (ER) model [12]
and in explosive percolation (EP) models [13–16] was studied.

In the ER model, N nodes are isolated at the beginning
with t = 0. At each time step t → t + 1/N , a pair of randomly
selected nodes are connected by a link. Then, a giant cluster
emerges at t = tc = 0.5 continuously. On the other hand, in
each EP model, a rule that suppresses the growth of large clus-
ters is applied when a pair of nodes to be connected by a link
is selected for each time step [13,17–24]. As a result, a giant
cluster emerges abruptly (explosively) at a delayed threshold,
t = tc > 0.5. Numerous studies have clarified the transition
nature of the EP models [25–28], and as a result, it has
been concluded that an abrupt but continuous transition oc-
curs when a local suppression rule is applied [14–16,29–33],
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whereas a discontinuous transition occurs when a global sup-
pression rule is applied [31–35].

In these models, the cluster-size distribution ps(t ) =
A(t )ns(t ) for ns(t ) = Ns(t )/N and A(t ) = 1/[

∑∞
s=1 ns(t )] has

been considered, where Ns is the number of clusters of size
s. Therefore, ps is the probability that the size of the ran-
domly selected cluster is s. We note that

∑∞
s=1 ps = 1. Then,

the information entropy of the cluster-size distribution ps is
given by

H (t ) = −
∞∑

s=1

ps(t )log2 ps(t ). (1)

Interestingly, in Ref. [4], it was reported that the maximum
point of H (t ) is equal to tc in the ER model, whereas that of
H (t ) is less than tc in the EP models. These contrasting results
are presented in Fig. 1, where the rule developed by da Costa
et al. (CDMG) [14,15] is used as the EP model. We note that
the giant cluster emerges more abruptly at a delayed threshold
in the case of CDMG [Fig. 1(b)] compared to ER [Fig. 1(a)].

In the current paper, we use CDMG, which is an ana-
lytically tractable EP model, to understand the origin of the
negative slopes of H at tc in EP models. Using CDMG, we
are also able to understand why Ḣ (t ) is minimum at t = tc
and why Ḧ (t ) diverges at t = tc in EP models, as reported in
Ref. [4].

The rest of this paper is organized as follows. In Sec. II,
we briefly introduce the CDMG we study. In Sec. III, we
explore why Ḣ (tc) < 0, meaning that H is not maximum at
tc using scaling forms of ns. In Sec. IV, we establish the
scaling behaviors of H , Ḣ , and Ḧ , and in Sec. V, we discuss
the potential for the demonstrated theory using CDMG to be
applied to various EP models.
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FIG. 1. G (lower line) and H (upper line) vs t in (a) the ER
model and (b) the CDMG model with m = 2 (see Sec. II for model
definition) obtained by simulation with N = 1.024 × 107, where G
is the fraction of nodes belonging to the largest cluster. In both plots,
the location of the dotted line is tc.

II. EXPLOSIVE PERCOLATION MODEL

In this section, we introduce the CDMG studied in this
paper. In this model, N nodes are isolated (t = 0) at the begin-
ning. For each link attachment (t → t + 1/N ), the following
process (i)–(ii) is repeated twice to select a pair of nodes to
attach the link. (i) We choose m number of nodes randomly.
(ii) Among the m randomly chosen nodes, a node belonging
to the smallest cluster is selected.

In this model, as m becomes larger, suppression effects on
the growth of large clusters increase such that a giant cluster
emerges more abruptly but continuously at the threshold for
finite m [14–16,29–33]. Otherwise, the giant cluster emerges
discontinuously at the threshold when m → ∞ [31–35]. We
note that CDMG with m = 1 is equal to the ER model.

The rate equation for ns in this model is given by

∂ns(t )

∂t
=

∑
u+v=s

quqv − 2qs, (2)

where

qs(t ) =
m∑

k=1

(
m

k

)
(sns)k

[
1 −

s∑
u=1

unu

]m−k

.

Here, qs is the probability that the size of the smallest cluster
among the clusters to which m randomly chosen nodes belong
is s [15]. In this paper, we perform simulation or solve Eq. (2)
numerically to get data for CDMG depending on the situation.

III. ORIGIN OF THE NEGATIVE SLOPE OF H AT tc IN THE
EXPLOSIVE PERCOLATION MODEL

We first briefly discuss why H in the CDMG model is
decreasing at t = tc [Ḣ (tc) < 0] whereas H in the ER model
is maximum at t = tc through consideration of the distinct
scaling behaviors of ps between the two models. In the ER
model, the scaling form of ns is given by

ns = 1√
2π

s−τ exp(−2|t − tc|1/σ s) (3)

for both t < tc and t > tc, where τ = 5/2 and σ = 1/2. Then,
the scaling form of ps(t ) = A(t )ns(t ) = ns(t )/[

∑∞
s=1 ns(t )]

with Eq. (3) should satisfy ps(tc − δt ) = ps(tc + δt ) for 1 �
s < ∞. Therefore, H (t ) calculated using this scaling form of
ps is symmetric with respect to t = tc such that it would have
a (local) minimum or (local) maximum at t = tc. We check
numerically that H (t ) calculated using the scaling form of ps

is indeed maximum at t = tc (not shown here).
In CDMG, the scaling form of ns is given differently for

t < tc and t > tc. Specifically, it is known that the scaling form
of ns in CDMG is given by

ns =
⎧⎨
⎩

s−τ f1[(tc − t )1/σ s] for t � tc,

s−τ f2[(t − tc)1/σ s] for t � tc,
(4)

satisfying f1(0) = f2(0), where σ = 1 − (2m − 1)(τ − 2)
with τ ≈ 2 + exp(−1.43m) for m � 2 [15]. We remark that
(τ − 1)/σ − 1 > 0 and (τ − 1)/σ − 2 < 0.

From now on, we use a0 to denote a0 = f1(0) = f2(0)
in common, and thus a0 is the amplitude of ns at t = tc,
whose value depends on m. Then, the scaling form of ps(t ) =
A(t )ns(t ) = ns(t )/[

∑∞
s=1 ns(t )] with Eq. (4) satisfies ps(tc −

δt ) �= ps(tc + δt ) if δt > 0. Consequently, H (t ) calculated us-
ing this scaling form of ps is not symmetric at t = tc. We can
briefly understand why the maximum of H does not appear at
t = tc in this way.

In Fig. 2, we present ps and H obtained by simulation to
support the brief discussion presented above on the different
behavior of H in ER and CDMG based on the different scaling
forms of ps in the two models. In Fig. 2(a), ps obtained by
simulation in the ER model looks almost symmetric with
respect to t = tc, as shown in the insets, such that the assump-
tion ps(tc − δt ) = ps(tc + δt ) (1 � s < ∞) derived using the
scaling form of ns [Eq. (3)] is reasonable. As expected from
this assumption, H obtained by simulation in the ER model
looks almost symmetric with respect to t = tc, leading to H
having its maximum at t = tc. In Fig. 2(b), ps obtained by
simulation in CDMG has a bump in the large s region for
t < tc, whereas it does not have a bump for t > tc, as shown in
the insets, evidencing that ps(tc − δt ) �= ps(tc + δt ) if δt > 0
as derived using the scaling form of ns [Eq. (4)]. Therefore, H
obtained by simulation is not symmetric at t = tc such that it
is not maximum at t = tc.

We show that the estimated Ḣ (tc) in the N → ∞ limit
denoted by Ḣ∞(tc) is negative and finite. For this purpose,
we obtain Ḣ∞(tc) by substituting t = tc after differentiating
both sides of Eq. (1) with respect to t and deleting the term∑∞

s=1 ṗs(t ) by the normalization condition
∑∞

s=1 ps(t ) = 1.
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FIG. 2. Simulation results with N = 1.024 × 107. (a) H (solid
line) vs t near tc = 0.5 (dotted line) in the ER model. Left inset: ps

vs s for t = 0.4, 0.42, 0.44, 0.46, 0.48, and 0.5 from the left. Right
inset: ps vs s for t = 0.5, 0.52, 0.54, 0.56, 0.58, and 0.6 from the
right. In both insets, the slope of the dashed line is −2.5. H (t ) at
the values of t used in both insets are shown in the main panel as �
symbols. (b) H (solid line) vs t near tc = 0.923207508 (dotted line)
in the CDMG model with m = 2. Left inset: ps vs s for t = 0.85,
0.87, 0.89, 0.91, 0.92, and 0.923208 from the left. Right inset: ps

vs s for t = 0.923208, 0.927, 0.935, 0.95, 0.97, and 0.99 from the
right. In both insets, the slope of the dashed line is −2.04762. H (t )
at the values of t used in both insets are shown in the main panel as
� symbols.

Then, we calculate

Ḣ∞(tc) = −
∞∑

s=1

ṗs(tc)log2 ps(tc), (5)

using the scaling form of ns, where ps(tc) = A(tc)ns(tc)
and ṗs(tc) = Ȧ(tc)ns(tc) + A(tc)ṅs(tc) with A(tc) =
1/[

∑∞
s=1 ns(tc)] and Ȧ(tc) = −A(tc)2 ∑∞

s=1 ṅs(tc).
For small x = (tc − t )1/σ s � 1 [x = (t − tc)1/σ s � 1], ex-

pansion of the scaling function f1(x) [ f2(x)] up to O(x2σ )
is given by f1(x) ≈ a0 + a1xσ + a2x2σ [ f2(x) ≈ a0 − a1xσ +
a2x2σ ], where a1, a2 are analytic functions of a0, m, τ [15].
We check these behaviors of f1(x) and f2(x) for small
x in Figs. 3(a) and 3(b), respectively. By inserting x =
0 for t = tc, we can obtain ns(tc) = a0s−τ and ṅs(tc) =
−a1sσ−τ such that A(tc) = 1/(a0

∑∞
s=1 s−τ ) and Ȧ(tc) =

A(tc)2a1
∑∞

s=1 sσ−τ . Substituting ps(tc) and ṗs(tc) expressed

using these results in Eq. (5), Ḣ∞(tc) can be written as

Ḣ∞(tc) = − τa1

a0
(∑∞

s=1 s−τ
)2

[( ∞∑
u=1

uσ−τ log2u

)( ∞∑
v=1

v−τ

)

−
( ∞∑

u=1

uσ−τ

)( ∞∑
v=1

v−τ log2v

)]
. (6)

We remark that Ḣ∞(tc) is negative and finite irrespective of m
because a1 > 0 and τ − σ > 1 [15].

In Fig. 3(c), we calculate H with the ps (1 � s < ∞)
estimated using the scaling functions f1(x) and f2(x) obtained
numerically in Figs. 3(a) and 3(b), respectively. Here, it can be
seen that H (t ) calculated with this method and H (t ) obtained
by simulation show similar decreasing curves near t = tc.
In Fig. 3(d), Ḣ obtained by numerically computing the first
derivative of H in Fig. 3(c) seems to decrease to Ḣ∞(tc) as
t → tc. In particular, we show that the minimum of Ḣ (t )
obtained by simulation decreases to Ḣ∞(tc) with N . These
results support that the exact value of Ḣ (tc) as N → ∞ is
approximately the same as Ḣ∞(tc). In Fig. 3(e), Ḧ obtained by
numerically computing the second derivative of H in Fig. 3(c)
seems to diverge negatively (positively) at the left (right) limit
of the threshold. To support this expectation, we show that the
minimum (maximum) of Ḧ obtained by simulation diverges
negatively (positively) with N .

IV. SCALING BEHAVIORS OF H , Ḣ , AND Ḧ NEAR tc IN
THE EXPLOSIVE PERCOLATION MODEL

In the previous section, we showed that H decreases at tc
with a negative slope, where the estimated Ḣ (tc) in the N →
∞ limit is Ḣ∞(tc) [Eq. (6)]. Ḧ (t ) seems to diverge to negative
(positive) infinity as t approaches tc from the left (right). In
this section, we analyze the scaling behaviors of H (t ) − H (tc),
Ḣ (t ) − Ḣ∞(tc), and Ḧ (t ) as |t − tc| → 0 for t < tc and t > tc
separately.

For ease of analysis, H is simplified by using an approxi-
mation that holds for |t − tc| � 1. When a link is attached, it
connects two nodes belonging to either distinct clusters or the
same cluster. Up to the emergence of the giant cluster (for t �
tc), the first event among the two events occurs dominantly at
each link attachment. Therefore,

∑∞
s=1 ns decreases by 1/N

as t → t + 1/N up to t = tc, such that
∑∞

s=1 ns = 1 − t holds
for t � tc. This allows us to use the approximation

∑∞
s=1 ns ≈

1 − t , which is equal to A(t ) ≈ 1/(1 − t ) for |t − tc| � 1
where the scaling behaviors are studied. Applying this H
approximation, Eq. (1) with ps = Ans becomes

H = log2(1 − t ) + 1

(1 − t )

[
−

∫ ∞

1
nslog2nsds

]
(7)

for |t − tc| � 1 after being approximated by
∑∞

s=1 nslog2ns ≈∫ ∞
1 nslog2nsds, where the normalization condition∑∞

s=1 Ans = 1 is used consistently.
We can then also obtain an approximated Ḣ as

Ḣ = − 1

ln2

[
1

(1 − t )
+ 1

(1 − t )2

∫ ∞

1
nslnnsds

+ 1

(1 − t )

{ ∫ ∞

1
ṅslnnsds +

∫ ∞

1
ṅsds

}]
(8)
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FIG. 3. We use the CDMG model with m = 2 for this figure. (a) Data collapse of sτ ns vs s(tc − t )1/σ for t = 0.9 (�), 0.91 (•), 0.92 (◦),
0.922 (�), and 0.923 (�) obtained by solving Eq. (2) numerically. The dashed line is the scaling function f1(x) and the solid line is a0 +
a1xσ + a2x2σ . f1(x) is obtained by connecting the adjacent points of sτ ns vs s(tc − t )1/σ for t = 0.923 (�). (b) Data collapse of sτ ns vs
s(t − tc )1/σ for t = 0.9235 (�), 0.924 (�), 0.925 (◦), 0.926 (•), and 0.927 (�) obtained by solving Eq. (2) numerically. The dashed line is
the scaling function f2(x) and the solid line is a0 − a1xσ + a2x2σ . f2(x) is obtained by connecting the adjacent points of sτ ns vs s(t − tc )1/σ

for t = 0.9235 (�). (a, b) We use τ = 2.04762, σ = 0.857, tc = 0.923207508, a0 = 0.04618, a1 = 0.165563, and a2 = 0.27041. (c–e) H , Ḣ ,
and Ḧ near tc (dotted line). (c) The solid line is H obtained from simulation with N = 1.024 × 107, and the dashed line is H calculated with
ps (1 � s < ∞) estimated using the scaling functions f1(x) and f2(x) for t � tc and t � tc, respectively. Left inset: Solid lines are H obtained
from simulation with N/104 = 32, 64, 128, 256, 512, and 1024 from below, and the dashed line is the same line in the main panel. Right
inset: H (tc ) obtained by simulation for various values of N . H (tc ) seems to saturate at approximately 2.2 as N increases. (d) Solid lines are Ḣ
obtained from simulation with N/104 = 32, 64, 128, 256, 512, and 1024 from above, and the dashed line is Ḣ for H represented by the dashed
line in (c) with the theoretical value Ḣ∞(tc ) ≈ −161.2332 at tc. Inset: min(Ḣ ) for Ḣ obtained from simulation converges to Ḣ∞(tc ) with N
as min(Ḣ ) − Ḣ∞(tc ) ∼ N−0.10. The solid line is a guide to the eye. (e) Solid lines are Ḧ obtained from simulation with N/104 = 32, 64, 128,
256, 512, and 1024 from above (below) for t < tc (t > tc ). Dashed lines are Ḧ for H represented by the dashed line in panel (c). Left inset:
Enlarged plot of the lines for t < tc in the main panel. Right inset: |min(Ḧ )| (�) and |max(Ḧ )| (◦) for Ḧ obtained by simulation diverge with
N as N0.35 and N0.54, respectively. Solid lines are guides to the eye.

by differentiating H (t ) in Eq. (7) with respect to t .

A. Below the threshold t < tc

For t < tc, we use ns = (tc − t )τ/σ x−τ f1(x) with x = (tc −
t )1/σ s such that H in Eq. (7) can be written as

H = log2(1 − tc + εσ )

+ 1

(1 − tc + εσ )

{
− ε (τ−1)log2ε

τ

∫ ∞

ε

x−τ f1(x)dx

− ε (τ−1)
∫ ∞

ε

x−τ f1(x)log2[x−τ f1(x)]dx

}
, (9)

where ε = (tc − t )1/σ � 1. We divide the interval of integra-
tion [ε,∞] of Eq. (9) into two intervals, [ε, α] and [α,∞] for
some α � 1, and use the approximation f1(x) ≈ a0 + a1xσ +
a2x2σ for the first interval [ε, α] [see Sec. III and Fig. 4(a)].
Then, the expansion of H up to O(εσ ) = O(tc − t ) is given
by

H ≈ 1

ln2

[
ln(1 − tc) + τa0

(1 − tc)(τ − 1)2
− a0lna0

(1 − tc)(τ − 1)

]

+ 1

ln2

[
1

(1 − tc)
+ τa1

(1 − tc)(τ − σ − 1)2

− a1(1 + lna0)

(1 − tc)(τ − σ − 1)
− τa0

(1 − tc)2(τ − 1)2

+ a0lna0

(1 − tc)2(τ − 1)

]
(tc − t ), (10)

by using expansions∫ ∞

ε

x−τ f1(x)dx ≈ a0

(τ − 1)
ε1−τ + a1

(τ − σ − 1)
ε1+σ−τ

and∫ ∞

ε

x−τ f1(x)log2[x−τ f1(x)]dx

≈ 1

ln2

[
− τa0

(τ − 1)
ε1−τ lnε +

(
a0lna0

(τ − 1)
− τa0

(τ − 1)2

)
ε1−τ

− a1τ

(τ − σ − 1)
ε1+σ−τ lnε

+
(

a1(1 + lna0)

(τ − σ − 1)
− a1τ

(τ − σ − 1)2

)
ε1+σ−τ

]
.

We find that H (t ) − H (tc) ∝ (tc − t ) as t → t−
c in Eq. (10).

Similarly for Ḣ , we can derive the scaling behavior of Ḣ as

Ḣ ≈ 1

ln2

[
− 1

(1 − tc)
− a0lna0

(1 − tc)2(τ − 1)
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FIG. 4. Scaling behaviors of the CDMG model with m = 2 for
(a–d) t < tc and (e–h) t > tc. (a–h) We use τ = 2.04762, σ = 0.857,
a0 = 0.04618, a1 = 0.165563, and a2 = 0.27041. (a) For the f1(x)
obtained in Fig. 3(a), if we use the approximation f1(x) ≈ a0 +
a1xσ + a2x2σ for x < α, then the calculated C− is negative, inde-
pendent of α, as shown in the inset. (b) H (t ) − H (tc ) obtained from
simulation with N/104 = 1 (�), 4 (�), 16 (◦), 64 (•), 256 (�), and
1024 (�), as well as from solving Eq. (2) numerically (dashed line).
The slope of the solid line is 1. (c) The symbols and the dashed line
are Ḣ (t ) − Ḣ∞(tc ) for H (t ) in panel (b). The slope of the dotted line
is (τ − 1)/σ − 1 and the solid line is ∝ −(tc − t )(τ−1)/σ−1log2(tc −
t ). (d) The symbols and the dashed line are −Ḧ (t ) for H (t ) in panel
(b). The slope of the dotted line is (τ − 1)/σ − 2 and the solid
line is ∝ −(tc − t )(τ−1)/σ−2log2(tc − t ). (e) For the f2(x) obtained in
Fig. 3(b), if we use the approximation f2(x) ≈ a0 − a1xσ + a2x2σ for
x < α, the calculated C+ is positive, independent of α (inset). (f)
H (tc ) − H (t ) obtained from simulation with N/104 = 1 (�), 4 (�),
16 (◦), 64 (•), 256 (�), and 1024 (�), as well as from solving Eq. (2)
numerically (dashed line). The solid line is the same as that in panel
(b). (g) The symbols and the dashed line are Ḣ (t ) − Ḣ∞(tc ) for H (t )
in panel (f). The solid line is ∝ −(t − tc )(τ−1)/σ−1log2(t − tc ). (h) The
symbols and the dashed line are Ḧ (t ) for H (t ) in (f). The solid line
is ∝ −(t − tc )(τ−1)/σ−2log2(t − tc ).

+ τa0

(1 − tc)2(τ − 1)2
+ a1(1 + lna0)

(1 − tc)(τ − σ − 1)

− τa1

(1 − tc)(τ − σ − 1)2

]

+C−
[

σ

(τ − σ − 1)

]
(tc − t )

(τ−1)
σ

−1log2(tc − t ), (11)

with (τ − 1)/σ − 1 > 0 (see Sec. III) by using ṅs = −(tc −
t )τ/σ−1x1−τ f ′

1(x)/σ and approximations f1(x) ≈ a0 + a1xσ +
a2x2σ and f ′

1(x) ≈ σa1xσ−1 + 2σa2x2σ−1 in ε � x � α for
some α � 1 in Eq. (8), where f ′

1(x) is the differentiation of
f1(x) with respect to x and

C− = τ

(1 − tc)σ 2

(
(τ − 1)

σ
− 1

)[
− a1σα1+σ−τ

(τ − σ − 1)

− 2a2σα1+2σ−τ

(τ − 2σ − 1)
− α1−τ f1(α)

+ (τ − 1)
∫ ∞

α

x−τ f1(x)dx

]
. (12)

From this result derived from approximation, we expect the
scaling behavior Ḣ (t ) − Ḣ∞(tc) ∝ (tc − t )(τ−1)/σ−1log2(tc −
t ) as t → t−

c . Detailed derivation of Eq. (11) is given in
Appendix A.

Finally, we obtain the scaling behavior of Ḧ by differenti-
ating Eq. (11) with respect to t such that

Ḧ ≈ −C−(tc − t )(τ−1)/σ−2log2(tc − t ) (13)

as t → t−
c , where (τ − 1)/σ − 2 < 0 (see Sec. III). In

Fig. 4(a), C− calculated numerically using Eq. (12) has neg-
ative values regardless of α � 1. For this reason, as shown
in Fig. 3(e), Ḧ seems to diverge negatively as t → tc from
the left. We note that the exact value of C− without the
approximation using α � 1 is obtained by substituting the
closed form of f1(x) into Eq. (12) and taking the limit as
α → 0. Moreover, the derivation of the scaling behaviors in
Eqs. (10)–(13) considers the expansion of the scaling function
f1(x) up to the x2σ term for small x to reflect the bump of ns

appearing at t < tc as shown in Fig. 4(a).
In Fig. 4(b), we find that the scaling behavior of H (t ) −

H (tc) fits well with the theory H (t ) − H (tc) ∝ (tc − t ). In
Figs. 4(c) and 4(d), we check the scaling behaviors of Ḣ (t ) −
Ḣ∞(tc) and Ḧ (t ) as t → t−

c using the data (dashed lines and
symbols). Here, the data for Ḣ (t ) − Ḣ∞(tc) and Ḧ (t ) seem to
fit better with (tc − t )(τ−1)/σ−1 and (tc − t )(τ−1)/σ−2 than with
the theoretical curves (tc − t )(τ−1)/σ−1log2(tc − t ) and (tc −
t )(τ−1)/σ−2log2(tc − t ), respectively. To resolve these discrep-
ancies, we obtain that the next dominant term of Ḣ (t ) −
Ḣ∞(tc) for (tc − t ) → 0 is O[(tc − t )(τ−1)/σ−1], where the
coefficient of this term is large enough such that the term
is dominant in the range of (tc − t ) in Fig. 4(c). For similar
reasons, the term O[(tc − t )(τ−1)/σ−2] is dominant for Ḧ (t ) in
the range of (tc − t ) in Fig. 4(d). Therefore, the discrepancy
occurs because (tc − t ) in Figs. 4(c) and 4(d) is not small
enough to reflect the (tc − t ) → 0 limit used to derive the
theoretical curves. Details of this discussion are provided in
Appendix B.

B. Above the threshold t > tc

For t > tc, we use the scaling form ns = (t −
tc)τ/σ x−τ f2(x) for x = (t − tc)1/σ s with the approximations
f2(x) ≈ a0 − a1xσ + a2x2σ and f ′

2(x) ≈ −σa1xσ−1 +
2σa2x2σ−1 in the interval ε � x � α for some α � 1,
where ε = (t − tc)1/σ [see Sec. III and Fig. 4(e)]. For
t > tc, derivations of the scaling behaviors of H (t ) − H (tc),
Ḣ (t ) − Ḣ∞(tc), and Ḧ (t ) are similar to those for t < tc;
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therefore, we present here only the results of these scaling
behaviors.

At first, the expansion of H up to O(εσ ) = O(t − tc) is
equal to Eq. (10), such that H (t ) − H (tc) ∝ −(t − tc) as t →
t+
c . Next, the scaling behavior of Ḣ is derived as

Ḣ ≈ 1

ln2

[
− 1

(1 − tc)
− a0lna0

(1 − tc)2(τ − 1)

+ τa0

(1 − tc)2(τ − 1)2
+ a1(1 + lna0)

(1 − tc)(τ − σ − 1)

− τa1

(1 − tc)(τ − σ − 1)2

]

−C+
[

σ

(τ − σ − 1)

]
(t − tc)

(τ−1)
σ

−1log2(t − tc), (14)

where

C+ = τ

(1 − tc)σ 2

(
(τ − 1)

σ
− 1

)[
a1σα1+σ−τ

(τ − σ − 1)

− 2a2σα1+2σ−τ

(τ − 2σ − 1)
− α1−τ f2(α)

+ (τ − 1)
∫ ∞

α

x−τ f2(x)dx

]
. (15)

Therefore, we expect the scaling behavior to be Ḣ (t ) −
Ḣ∞(tc) ∝ (t − tc)(τ−1)/σ−1log2(t − tc) as t → t+

c . Finally, the
scaling behavior of Ḧ obtained by differentiating Eq. (14) is

Ḧ ≈ −C+(t − tc)
(τ−1)

σ
−2log2(t − tc) (16)

as t → t+
c . In Fig. 4(e), C+ calculated numerically using

Eq. (15) has positive values regardless of α � 1. For this
reason, as seen in Fig. 3(e), Ḧ seems to diverge positively
as t → tc from the right. We note that the exact value of
C+ without the approximation using α � 1 is obtained by
substituting the closed form of f2(x) into Eq. (15) and taking
the limit as α → 0.

In Fig. 4(f), we find that the scaling behavior of H (t ) −
H (tc) fits well with the theory H (t ) − H (tc) ∝ −(t − tc).
Next, we plot the data for Ḣ (t ) − Ḣ∞(tc) and Ḧ (t ) =
|Ḧ (t )| in Figs. 4(g) and 4(h), respectively. Unlike the
t < tc case, here the data fit well with the theoretical
curves (t − tc)(τ−1)/σ−1log2(t − tc) for Ḣ (t ) − Ḣ∞(tc) and
(t − tc)(τ−1)/σ−2log2(t − tc) for Ḧ (t ). To understand this dif-
ference, we first derived that the next dominant terms for
Ḣ (t ) − Ḣ∞(tc) and Ḧ (t ) are O[(t − tc)(τ−1)/σ−1] and O[(t −
tc)(τ−1)/σ−2], respectively, even for t > tc. Then we confirmed
in both cases that the coefficients of the dominant and the next
dominant terms are comparable to each other, unlike the t < tc
case, such that (t − tc) in Figs. 4(g) and 4(h) is small enough
to reflect the (t − tc) → 0 limit used to derive the theoretical
curves.

V. DISCUSSION

In summary, we use the scaling form of ns in the
CDMG model given differently for t < tc and t > tc as
shown in Eq. (4), where the scaling functions f1(x) for
t < tc and f2(x) for t > tc are approximated by f1(x) ≈

a0 + a1xσ + a2x2σ and f2(x) ≈ a0 − a1xσ + a2x2σ for suf-
ficiently small x � 1. Then, we obtain the scaling be-
haviors H (t ) − H (tc) ∝ −(t − tc), Ḣ (t ) − Ḣ∞(tc) ∝ −|t −
tc|(τ−1)/σ−1log2|t − tc|, and |Ḧ (t )| ∝ |t − tc|(τ−1)/σ−2log2|t −
tc| as t → tc from both sides, where Ḣ∞(tc) < 0 is the esti-
mated value of Ḣ (t ) at t = tc. As a result, we find that H (t )
decreases at t = tc [Ḣ (tc) < 0], Ḣ (t ) is minimum at t = tc,
and Ḧ (t ) diverges as expected using the simulation in Ref. [4].

If ns follows the scaling form in Eq. (4) with approxi-
mations f1(x) ≈ a0 + a1xσ + a2x2σ and f2(x) ≈ a0 − a1xσ +
a2x2σ for sufficiently small x � 1 with a1 > 0 and a2 > 0,
then ns(t ) has a bump at the large s region for t < tc, with
the bump disappearing as t exceeds tc. It is known that the
existence of such a bump for t < tc is a general property of
EP models; therefore, we expect that the derivation of the
scaling behaviors in CDMG discussed in this paper could be
applied to general EP models. To demonstrate, we apply it to
the product rule [13], the first discovered EP model. In this
model, we perform simulation to obtain ns for different values
of t near tc, and estimate f1(x) and f2(x) using a data collapse
of sτ ns versus x ≡ s|t − tc|1/σ with different values of t for
t < tc and t > tc, respectively. We assume that f1(x) ≈ a0 +
a1xσ + a2x2σ and f2(x) ≈ a0 − a1xσ + a2x2σ for sufficiently
small x � 1 in the product rule as well. To estimate a0, a1,
and a2, we first take the values of τ and σ reported in Ref. [8],
and then we find a1 by using f1(x) − f2(x) ≈ 2a1xσ in the
range of small x. Finally, we change the value of a0 and adopt
the values of a0 and a2 when f1(x) + f2(x) − 2a0 ≈ 2a2x2σ

shows power-law behavior with a slope of 2σ . With the f1(x),
f2(x), a1, and a2 obtained in this manner, we can predict
the scaling behaviors in the product rule similar to those in
CDMG, as shown in Fig. 5.

For t < tc, as shown in Fig. 5(a), f1(x) ≈ a0 + a1xσ +
a2x2σ using the estimated a0, a1, and a2 is reasonable for
small x, and C− calculated numerically using Eq. (12) has
negative values regardless of α � 1. Then, the scaling behav-
iors of H (t ) − H (tc), Ḣ (t ) − Ḣ∞(tc), and Ḧ (t ) as t → t−

c are
checked using the data as shown in Figs. 5(b), 5(c) and 5(d),
respectively. In Fig. 5(b), the scaling behavior of H (t ) − H (tc)
fits well with the theory H (t ) − H (tc) ∝ (tc − t ). In Figs. 5(c)
and 5(d), the data for Ḣ (t ) − Ḣ∞(tc) and Ḧ (t ) seem to fit
better with (tc − t )(τ−1)/σ−1 and (tc − t )(τ−1)/σ−2 than with the
theoretical curves as observed in CDMG. We show that this
discrepancy occurs for the same reason as in CDMG, namely
that (tc − t ) in Figs. 5(c) and 5(d) is not small enough to reflect
the (tc − t ) → 0 limit used to derive the theoretical curves
(see Appendix B).

For t > tc, as shown in Fig. 5(e), f2(x) ≈ a0 − a1xσ +
a2x2σ using the estimated a0, a1, and a2 is reasonable for small
x, and C+ calculated numerically using Eq. (15) has positive
values regardless of α � 1. Then, the scaling behaviors of
H (t ) − H (tc), Ḣ (t ) − Ḣ∞(tc), and Ḧ (t ) fit well with the the-
ory, as shown in Figs. 5(f), 5(g) and 5(h), respectively. Finally,
we confirmed that the reason why the theoretical curves for
Ḣ (t ) − Ḣ∞(tc) and Ḧ (t ) fit well with the data in Figs. 5(g)
and 5(h), unlike the t < tc case, is the same as mentioned for
CDMG.

In conclusion, we observed the scaling behaviors of H (t ) −
H (tc), Ḣ (t ) − Ḣ∞(tc), and Ḧ (t ) predicted through the theory
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FIG. 5. Scaling behaviors of the product rule for (a–d) t < tc and
(e–h) t > tc, where tc = 0.888449. (a–h) We use τ = 2.06, σ = 0.8,
a0 = 0.064, a1 = 0.22, and a2 = 0.25. (a) Data collapse of sτ ns vs x
obtained from simulation with N = 1.024 × 107 for t = 0.865 (�),
0.87 (•), 0.875 (◦), 0.88 (�), and 0.885 (�). The dashed line is
f1(x) for x > α obtained by connecting the adjacent points of sτ ns

vs s(tc − t )1/σ for t = 0.885 (�). The solid line is f1(x) for x < α

approximated by f1(x) ≈ a0 + a1xσ + a2x2σ . Using this f1(x), the
calculated C− is negative, independent of α, as shown in the inset.
(b) H (t ) − H (tc ) obtained from simulation using N/104 = 1 (�),
4 (�), 16 (◦), 64 (•), 256 (�), and 1024 (�). The slope of the solid
line is 1. (c) The symbols are Ḣ (t ) − Ḣ∞(tc ) for H (t ) in panel (b).
The slope of the dotted line is (τ − 1)/σ − 1 and the solid line is ∝
−(tc − t )(τ−1)/σ−1log2(tc − t ). (d) The symbols are −Ḧ (t ) = |Ḧ (t )|
for H (t ) in panel (b). The slope of the dotted line is (τ − 1)/σ − 2
and the solid line is ∝ −(tc − t )(τ−1)/σ−2log2(tc − t ). (e) Data col-
lapse of sτ ns vs x obtained from simulation with N = 1.024 × 107

for t = 0.92 (�), 0.91 (•), 0.9 (◦), 0.895 (�), and 0.89 (�). The
dashed line is f2(x) for x > α obtained by connecting the adjacent
points of sτ ns vs s(t − tc )1/σ for t = 0.89 (�). Using f2(x) approx-
imated by f2(x) ≈ a0 − a1xσ + a2x2σ for x < α, the calculated C+

is positive, independent of α (inset). (f) H (tc ) − H (t ) obtained from
simulation using N/104 = 1 (�), 4 (�), 16 (◦), 64 (•), 256 (�), and
1024 (�). The solid line is the same as that in panel (b). (g) The
symbols are Ḣ (t ) − Ḣ∞(tc ) for H (t ) in panel (f). The solid line is
∝ −(t − tc )(τ−1)/σ−1log2(t − tc ). (h) The symbols are Ḧ (t ) for H (t )
in panel (f). The solid line is ∝ −(t − tc )(τ−1)/σ−2log2(t − tc ).

derived using CDMG even in the product rule. Accordingly,
we expect this approach to be applicable to various other EP
models.

Finally, we mention the possibility that a discontinuous
percolation transition involves a discontinuous decrease of
entropy, because entropy measures disorder such that it would
decrease discontinuously as the giant cluster emerges discon-
tinuously. This expectation is reminiscent of the discontinuous
entropy change during a discontinuous transition in thermal
equilibrium systems. In Ref. [4], the maximum point of H
approaches the threshold from the left, and the maximum
value of H increases as m increases in CDMG. Therefore,
we expect that the information entropy H would decrease
discontinuously at the threshold when a discontinuous tran-
sition occurs as m → ∞ in CDMG. We anticipate that this
expectation can be clarified by extending the results of the
present paper. Furthermore, we believe that it is important
to demonstrate that this is a general feature of discontinuous
percolation transitions for various definitions of entropy in
percolation [4–6,9,10].
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APPENDIX A: DERIVATION OF EQ. (11)

Here, we present the detailed derivation of Eq. (11) starting
from Eq. (8). In Eq. (8), the first two terms are

− 1

ln2

[
1

(1 − t )
+ 1

(1 − t )2

∫ ∞

1
nslnnsds

]

≈ − 1

ln2

[
1

(1 − tc)
+ 1

(1 − tc)2

∫ ∞

1
(a0s−τ )ln(a0s−τ )ds

]
(A1)

up to O(1). The last term in Eq. (8) is

− 1

(1 − t )ln2

[ ∫ ∞

1
ṅslnnsds +

∫ ∞

1
ṅsds

]

= 1

(1 − tc + εσ )ln2

[
τ

σ
ετ−σ−1lnε

∫ ∞

ε

x1−τ f ′
1(x)dx

+ 1

σ
ετ−σ−1

∫ ∞

ε

x1−τ f ′
1(x)ln(x−τ f1(x))dx

+ 1

σ
ετ−σ−1

∫ ∞

ε

x1−τ f ′
1(x)dx

]
. (A2)

We divide the interval of integration [ε,∞] of Eq. (A2) into
two intervals [ε, α] and [α,∞] for some α � 1, and use
the approximations f1(x) ≈ a0 + a1xσ + a2x2σ and f ′

1(x) ≈
σa1xσ−1 + 2σa2x2σ−1 for the first interval [ε, α] (see Sec. III
and Fig. 4(a)). Then, we expand the integral terms in Eq. (A2)
as∫ ∞

ε

x1−τ f ′
1(x)dx ≈ a1σε1+σ−τ

(τ − σ − 1)
+

[
− a1σα1+σ−τ

(τ − σ − 1)

− 2a2σα1+2σ−τ

(τ − 2σ − 1)
− α1−τ f1(α) + (τ − 1)

×
∫ ∞

α

x−τ f1(x)dx

]
(A3)
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and

∫ ∞

ε

x1−τ f ′
1(x)ln(x−τ f1(x))dx

≈ − τa1σ

(τ − σ − 1)
ε1+σ−τ lnε

+
[
− τa1σ

(τ − σ − 1)2
+ a1σ lna0

(τ − σ − 1)

]
ε1+σ−τ (A4)

up to O(1) and O(ε1+σ−τ ), respectively. Applying
the approximations in Eq. (A1)–(A4) and expanding
Eq. (8) up to O(ετ−σ−1log2ε) for ε = (tc − t )1/σ , we
obtain Eq. (11).

APPENDIX B: DERIVATION OF THE NEXT DOMINANT
TERMS OF Ḣ (t ) − Ḣ∞(tc) AND Ḧ (t ) TO FIT THE DATA FOR

t < tc

In this section, we expand Eq. (8) up to O(ετ−σ−1)
and show that the next dominant term of Ḣ (t ) − Ḣ∞(tc) is
O(ετ−σ−1) for ε = (tc − t )1/σ � 1. We then show that the
theoretical curves for Ḣ (t ) − Ḣ∞(tc) and Ḧ (t ) including the
next dominant terms fit well with the data (dashed lines and
symbols) in Figs. 4(c) and 4(d) for CDMG as well as in
Figs. 5(c) and 5(d) for the product rule.

For the first two terms in Eq. (8), we can again use the
approximation Eq. (A1) here because the next dominant term
in the expansion is O(εσ ), which can be ignored in this case.
For the last term in Eq. (8), the first integral term in Eq. (A2)
can also be approximated using Eq. (A3) here because the next
dominant term in the expansion is O(ε1+2σ−τ ), which can be
ignored. The only part that needs to be corrected is Eq. (A4),
which is the expansion of the second integral term in Eq. (A2).
We expand the second integral term as

∫ ∞

ε

x1−τ f ′
1(x)ln[x−τ f1(x)]dx ≈ − τa1σ

(τ − σ − 1)
ε1+σ−τ lnε +

[
− τa1σ

(τ − σ − 1)2
+ a1σ lna0

(τ − σ − 1)

]
ε1+σ−τ

− σ 3(1 − tc)(2τ − σ − 1)

τ (τ − σ − 1)2
C− + σ 2(1 − tc)ln2

(τ − σ − 1)
C−

1 (B1)

up to O(1), where C− is Eq. (12) and

C−
1 = 1

ln2

[
σ (2τ − σ − 1)

τ (τ − σ − 1)
C− + (τ − σ − 1)

(1 − tc)σ 2

(
− a1σ lna0

(τ − σ − 1)
α1+σ−τ + τa1σ

(τ − σ − 1)
α1+σ−τ lnα

+ τa1σ

(τ − σ − 1)2
α1+σ−τ − 2τa2σ

(1 + 2σ − τ )
α1+2σ−τ lnα + 2τa2σ

(1 + 2σ − τ )2
α1+2σ−τ + 2a2σ lna0

(1 + 2σ − τ )
α1+2σ−τ

+ a2
1σ

a0

α1+2σ−τ

(1 + 2σ − τ )
+ τ f1(α)α1−τ lnα + τ (1 − τ )

∫ ∞

α

f1(x)x−τ lnxdx + α1−τ f1(α) − α1−τ f1(α)ln f1(α)

+ (τ − 1)
∫ ∞

α

x−τ f1(x)ln f1(x)dx +
∫ ∞

α

f1(x)x−τ dx

)]
. (B2)

We note that the last two terms added in Eq. (B1) are O(1). We apply the approximations in Eqs. (A1)–(A3) and (B1) to expand
Eq. (8) up to O(ετ−σ−1), and as a result obtain

Ḣ ≈ 1

ln2

[
− 1

(1 − tc)
− a0lna0

(1 − tc)2(τ − 1)
+ τa0

(1 − tc)2(τ − 1)2
+ a1(1 + lna0)

(1 − tc)(τ − σ − 1)
− τa1

(1 − tc)(τ − σ − 1)2

]

+ C− σ

(τ − σ − 1)
(tc − t )

(τ−1)
σ

−1log2(tc − t ) +
[
C−

1 − σ

(τ − σ − 1)

C−

ln2

]
σ

(τ − σ − 1)
(tc − t )

(τ−1)
σ

−1. (B3)

Finally, the expansion of Ḧ up to O(ετ−2σ−1) can be obtained by differentiating Eq. (B3) as

Ḧ ≈ −C−(tc − t )
(τ−1)

σ
−2log2(tc − t ) − C−

1 (tc − t )
(τ−1)

σ
−2. (B4)

Therefore, the next dominant terms of Ḣ (t ) − Ḣ∞(tc) and Ḧ (t ) for ε = (tc − t )1/σ � 1 are O(ετ−σ−1) and O(ετ−2σ−1),
respectively.

In Fig. 6, we check that the modified theoretical equations,
Eqs. (B3) and (B4), fit well with the data. In the equations,
the exact values of C−, C−

1 without the approximation using
α � 1 should be derived by taking the limit as α → 0 after
substituting the closed form of f1(x) into Eqs. (12) and (B2),
respectively. However, we use f1(x) obtained numerically in-

stead of the closed form of f1(x) in this paper. Therefore,
in Figs. 6(a)–6(c), we estimate the midrange of each of the
calculated C−, C−

1 in the intermediate range of α (10−2 �
α � 10−1), over which the calculated value is relatively flat to
approximate the exact value. This is because the exact values
of C−, C−

1 should be independent of α. Moreover, this is
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FIG. 6. Fitting modified theoretical curves to the CDMG data
for t < tc. (a) C−(α) (�) calculated using Eq. (12) with the nu-
merically obtained f1(x) described in Fig. 3(a). The shaded area
represents the maximum and minimum of C−(α) over 10−2 � α �
10−1 (within the dotted lines), and the straight line represents the
midrange. We estimate that the exact value of C− is within the
y range of the shaded area −0.08 ± 0.04. (b) C−

1 (α) (�) calcu-
lated using Eq. (B2) with the numerically obtained f1(x) described
in Fig. 3(a). The shaded area represents the maximum and min-
imum of C−

1 (α) over 10−2 � α � 10−1 (within the dotted lines),
and the straight line represents the midrange. We estimate that the
exact value of C−

1 is within the y range of the shaded area 61.6 ±
0.4. (c) Enlarged figure of the numerically obtained f1(x) (dashed
line) and the approximation f1(x) ≈ a0 + a1xσ + a2x2σ (solid line)
in Fig. 3(a). (d) The solid line ∝ (tc − t )(τ−1)/σ−1log2(tc − t ) +
[C−

1 /C− − σ/(τ − σ − 1)ln2](tc − t )(τ−1)/σ−1 is drawn to fit the data
in Fig. 4(c). (e) The solid line ∝ −(tc − t )(τ−1)/σ−2log2(tc − t ) −
(C−

1 /C−)(tc − t )(τ−1)/σ−2 is drawn to fit the data in Fig. 4(d). (d, e)
We use C− = −0.08 and C−

1 = 61.6 estimated as the exact values in
panels (a, b) to draw the solid lines.

supported by the argument that f1(x) obtained numerically
may not be exact for x � α due to finite size effects if α <

10−2, and also that f1(x) may not follow the approximation
f1(x) ≈ a0 + a1xσ + a2x2σ for x � α if α > 10−1. Equation
(B3) for Ḣ − Ḣ∞(tc) and Eq. (B4) for Ḧ with the estimated
values of C−,C−

1 fit well with the data as shown in Figs. 6(d)
and 6(e). We note that |C−

1 /C−| � 1 such that the theoretical
curves look almost like straight lines in the figures, as pre-
dicted in Figs. 4(c) and 4(d).

FIG. 7. Fitting modified theoretical curves to the product rule
data for t < tc. (a) C−(α) (�) calculated using Eq. (12) with the
f1(x) obtained from simulation as described in Fig. 5(a). The shaded
area represents the maximum and minimum of C−(α) over 10−2 �
α � 10−1 (within the dotted lines), and the straight line represents
the midrange. We estimate that the exact value of C− is within
the y range of the shaded area −2.0 ± 0.2. (b) C−

1 (α) (�) cal-
culated using Eq. (B2) with the f1(x) obtained from simulation
as described in Fig. 5(a). The shaded area represents the maxi-
mum and minimum of C−

1 (α) over 10−2 � α � 10−1 (within the
dotted lines), and the straight line represents the midrange. We
estimate that the exact value of C−

1 is within the y range of the
shaded area 43.3 ± 1.5. (c) Plot of the f1(x) obtained from sim-
ulation (dashed line) and the approximation f1(x) ≈ a0 + a1xσ +
a2x2σ (solid line) that are described in Fig. 5(a) and extended to
10−3 � x � 1. (d) The solid line ∝ (tc − t )(τ−1)/σ−1log2(tc − t ) +
[C−

1 /C− − σ/(τ − σ − 1)ln2](tc − t )(τ−1)/σ−1 is drawn to fit the data
in Fig. 5(c). (e) The solid line ∝ −(tc − t )(τ−1)/σ−2log2(tc − t ) −
(C−

1 /C−)(tc − t )(τ−1)/σ−2 is drawn to fit the data in Fig. 5(d). (d, e)
We use C− = −2.0 and C−

1 = 43.3 estimated as the exact values in
panels (a, b) to draw the solid lines.

In Fig. 7, we repeat the same analysis for the prod-
uct rule. In Figs. 7(a)–7(c), we estimate the exact value
of C− (C−

1 ) for the product rule by taking the midrange
of the calculated C− (C−

1 ) in the intermediate range of
α (10−2 � α � 10−1), over which the calculated value is
relatively flat. Then, Eq. (B3) for Ḣ − Ḣ∞(tc) and Eq. (B4)
for Ḧ with the estimated values of C−,C−

1 fit well with the
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data as shown in Figs. 7(d) and 7(e). Similar to CDMG,
|C−

1 /C−| � 1 such that the theoretical curves look like al-
most straight lines in the figures, as predicted in Figs. 5(c)
and 5(d).
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[12] P. Erdős and A. Rényi, Publ. Math. Inst. Hung. Acad. Sci. 5, 17

(1960).
[13] D. Achlioptas, R. M. D’Souza, and J. Spencer, Science 323,

1453 (2009).
[14] R. A. da Costa, S. N. Dorogovtsev, A. V. Goltsev, and J. F. F.

Mendes, Phys. Rev. Lett. 105, 255701 (2010).
[15] R. A. da Costa, S. N. Dorogovtsev, A. V. Goltsev, and J. F. F.

Mendes, Phys. Rev. E 90, 022145 (2014).
[16] R. A. da Costa, S. N. Dorogovtsev, A. V. Goltsev, and J. F. F.

Mendes, Phys. Rev. E 89, 042148 (2014).
[17] D. Lee, Y. S. Cho, and B. Kahng, J. Stat. Mech. (2016) 124002.

[18] R. M. D’Souza and J. Nagler, Nat. Phys. 11, 531 (2015).
[19] Y. S. Cho and B. Kahng, Phys. Rev. Lett. 107, 275703 (2011).
[20] R. M. D’Souza and M. Mitzenmacher, Phys. Rev. Lett. 104,

195702 (2010).
[21] W. Choi, S.-H. Yook, and Y. Kim, Phys. Rev. E 84, 020102(R)

(2011).
[22] H. Chae, S.-H. Yook, and Y. Kim, Phys. Rev. E 85, 051118

(2012).
[23] N. A. M. Araújo and H. J. Herrmann, Phys. Rev. Lett. 105,

035701 (2010).
[24] K. J. Schrenk, A. Felder, S. Deflorin, N. A. M. Araújo, R. M.

D’Souza, and H. J. Herrmann, Phys. Rev. E 85, 031103 (2012).
[25] E. J. Friedman and A. S. Landsberg, Phys. Rev. Lett. 103,

255701 (2009).
[26] Y. S. Cho, S.-W. Kim, J. D. Noh, B. Kahng, and D. Kim, Phys.

Rev. E 82, 042102 (2010).
[27] F. Radicchi and S. Fortunato, Phys. Rev. E 81, 036110 (2010).
[28] R. M. Ziff, Phys. Rev. E 82, 051105 (2010).
[29] J. Nagler, T. Tiessen, and H. W. Gutch, Phys. Rev. X 2, 031009

(2012).
[30] P. Grassberger, C. Christensen, G. Bizhani, S.-W. Son, and M.

Paczuski, Phys. Rev. Lett. 106, 225701 (2011).
[31] J. Nagler, A. Levina, and M. Timme, Nat. Phys. 7, 265 (2011).
[32] O. Riordan and L. Warnke, Science 333, 322 (2011).
[33] Y. S. Cho, S. Hwang, H. J. Herrmann, and B. Kahng, Science

339, 1185 (2013).
[34] S. M. Oh, S. W. Son, and B. Kahng, Phys. Rev. E 93, 032316

(2016).
[35] Y. S. Cho, J. S. Lee, H. J. Herrmann, and B. Kahng, Phys. Rev.

Lett. 116, 025701 (2016).

014310-10

https://doi.org/10.1021/ja01856a061
https://doi.org/10.1103/PhysRevLett.94.136401
https://doi.org/10.1140/epjb/e2015-60500-0
https://doi.org/10.1103/PhysRevE.60.2684
https://doi.org/10.1103/PhysRevE.62.6004
https://doi.org/10.1103/PhysRevE.84.010101
https://doi.org/10.1103/PhysRevE.84.020101
https://doi.org/10.1103/PhysRevE.96.050101
https://doi.org/10.1103/PhysRevE.100.062109
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1126/science.1167782
https://doi.org/10.1103/PhysRevLett.105.255701
https://doi.org/10.1103/PhysRevE.90.022145
https://doi.org/10.1103/PhysRevE.89.042148
https://doi.org/10.1088/1742-5468/2016/12/124002
https://doi.org/10.1038/nphys3378
https://doi.org/10.1103/PhysRevLett.107.275703
https://doi.org/10.1103/PhysRevLett.104.195702
https://doi.org/10.1103/PhysRevE.84.020102
https://doi.org/10.1103/PhysRevE.85.051118
https://doi.org/10.1103/PhysRevLett.105.035701
https://doi.org/10.1103/PhysRevE.85.031103
https://doi.org/10.1103/PhysRevLett.103.255701
https://doi.org/10.1103/PhysRevE.82.042102
https://doi.org/10.1103/PhysRevE.81.036110
https://doi.org/10.1103/PhysRevE.82.051105
https://doi.org/10.1103/PhysRevX.2.031009
https://doi.org/10.1103/PhysRevLett.106.225701
https://doi.org/10.1038/nphys1860
https://doi.org/10.1126/science.1206241
https://doi.org/10.1126/science.1230813
https://doi.org/10.1103/PhysRevE.93.032316
https://doi.org/10.1103/PhysRevLett.116.025701

