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Reservoir computing on epidemic spreading: A case study on COVID-19 cases
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A reservoir computing based echo state network (ESN) is used here for the purpose of predicting the spread
of a disease. The current infection trends of a disease in some targeted locations are efficiently captured by
the ESN when it is fed with the infection data for other locations. The performance of the ESN is first tested
with synthetic data generated by numerical simulations of independent uncoupled patches, each governed by the
classical susceptible-infected-recovery model for a choice of distributed infection parameters. From a large pool
of synthetic data, the ESN predicts the current trend of infection in 5% patches by exploiting the uncorrelated
infection trend of 95% patches. The prediction remains consistent for most of the patches for approximately 4 to 5
weeks. The machine’s performance is further tested with real data on the current COVID-19 pandemic collected
for different countries. We show that our proposed scheme is able to predict the trend of the disease for up to
3 weeks for some targeted locations. An important point is that no detailed information on the epidemiological
rate parameters is needed; the success of the machine rather depends on the history of the disease progress
represented by the time-evolving data sets of a large number of locations. Finally, we apply a modified version
of our proposed scheme for the purpose of future forecasting.
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I. INTRODUCTION

The impact of the unprecedented pandemic COVID-19 is
widespread, practically collapsing all human activities around
the world. A severe crisis has arisen in the public health sys-
tems and economy everywhere. Under this extreme condition,
various agencies, government and non-government, are look-
ing for ways and means to stop the spread of the virus and to
develop a health support system appropriate for mitigating this
disaster. Predicting the number of infected cases is challeng-
ing, although it is the most important task for understanding
the gravity of spread and to keep preparing the public health
system for innumerably large demands [1–4].

An accurate prediction methodology may enable policy-
makers to deter the spread of the pandemic by designing
and implementing effective disease control strategies [5–13].
A wide range of models are being developed by this time,
borrowing ideas from statistical physics and epidemiology,
to understand the trend of disease progression for the pur-
pose of prediction. Data-driven techniques such as machine
learning and artificial-intelligence tools are applied to fore-
cast the future trend of COVID-19-infected cases [14,15].
For instance, an exponential smoothing model can forecast
[3] confirmed COVID-19-infected cases. The recurrent neural
network approach has been used [16] to predict the early
trend of COVID-19 in China by training the machine from
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SARS data of the year 2003. Recently, Li et al. [17] con-
sidered the spatiotemporal information on infection where
susceptible-infected-recovered (SIR) dynamics (constructing
differential equations) is adjusted with a recurrent neural net-
work to forecast the temporal data with limited resources.
Many other approaches such as deep learning using a long-
short-term-memory network [18,19], support vector machine
[20,21], hybrid autoregressive moving average model [20,22],
neural network [23], supervised XGBoost classifier [19], or
random forest algorithm [24] have been utilized to predict the
infection trend as well as the mortality and severity of patient
conditions. However, these prediction-based techniques heav-
ily depend on several structural parameters as well as intrinsic
components of the machine itself. The successful forecasting
by machine learning is also deterred by the limited availability
of temporal data. The key question we raise here is whether
there is any possibility of predicting the infection trend of a
disease, in general, in targeted locations by feeding infection
data on the disease available from other locations in different
countries? We accept the constraint that detailed information
on the basic reproduction number and the force of infection of
the locations may not be available.

We attempt to address this issue in a simple way using
reservoir computing, i.e., the echo state network (ESN). The
ESN is a modified version of the recurrent neural network
that easily avoids the training-related challenges and tunes
the output layer only to mimic the target data at the time
of a training procedure. The ESN has been used extensively
to predict complex signals ranging from chaotic time series
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to stock-price data [25–32], and currently, it has been shown
that it can easily capture the critical onset of generalized syn-
chronization [33–36] and detect collective bursting in neuron
populations [37]. Therefore, the ESN showed encouraging
records of handling multiple inputs of temporal data and the
ability to trace the correlation between them [34,37]. Moti-
vated by this fact, we utilize the strength of the ESN to develop
a strategy for predicting the spread of any infectious disease
from the available collection of a multitude of infection data
on the same disease.

First, we check the efficiency of the ESN for a large
collection of synthetic epidemic data generated from the clas-
sical SIR model. Finally, the prediction capability of the
ESN is carefully investigated with available incidence data
on COVID-19 from a large number of locations around the
world, with the aim of identifying the real outbreak scenario
in other targeted locations. The machine works successfully
to predict the spread of the disease to the extent of 2 weeks
and little more. The ESN is thus shown to be an effective tool
for data-driven future prediction of any infectious disease, in
general. Note that a future prediction from the previous data
(in each location) is not the sole objective of this work. A
nonmonotonic trend of a real data set always resists the fore-
casting of the future trend. Being aware of this drawback, we
adopt an alternative formalism: whether a machine (here the
ESN) can capture the trend of infection of target locations by
utilizing the infection trend of other locations at the same time.
As a result, this alternative formalism (with some adjustment)
can truly forecast the future trend of infection.

II. DESCRIPTION OF THE ECHO STATE NETWORK

In this study, a standard leaky tanh network is considered
as the ESN. The dynamics of each reservoir node is governed
by the following recursive relation [25]:

r(t + 1) = (1 − α)r(t) + α tanh(Wresr(t) + Wins(t)). (1)

Here r(t ) is the Nres-dimensional vector denoting the state
of the reservoir nodes at time instant t and s(t ) is the M-
dimensional input vector. The matrices Wres (dimension:
Nres × Nres) and Win (dimension: Nres × M) represent the
weights of the internal connection of reservoir nodes and
weights of the input, respectively. The parameter α is the
leakage constant, which can take values between 0 and 1. It
is to be noted that the tanh function is operated elementwise.
We take α = 0.5 and Nres = 1000 throughout our simulations.
The reservoir weight matrix Wres is constructed by drawing
random numbers uniformly over the interval (−1, 1) and the
spectral radius of the matrix Wres is rescaled to less than unity.
Matrix Win containing input weights is also generated by
randomly chosen elements from the interval (−1, 1). Note that
a constant bias, b = 1 can be added in the input vector s(t ).

Next, we consider time-series data on N patches, among
which the data on M patches are fed into the machine, and the
remaining N − M patches, whose time signals are to be pre-
dicted by the ESN, are targeted. A fraction of the data points
(when t = 0, 1, . . . , tr) from each of the infected signals is
used for training purposes [see the upper left, light-red box in
Fig. 1). At first, the target is to identify the infection of the
rest of the patches (N − M) by the ESN during the training or

FIG. 1. Training and testing scheme using the echo state net-
work. Upper panel (light-red boxes): Input parts. Lower left panel
(light blue box): Data set of the output data. Lower right panel
(dark-blue box): Predicted-testing data.

learning process (lower left, light-blue box in Fig. 1). Once the
machine is trained, input from M patches with the rest of the
data points (tr + 1, . . . , tfinal) is fed into the machine (upper
right, light-red box in Fig. 1) to predict the infection in the
N − M patches (lower right, dark-blue box in Fig. 1).

At each time t , the input vector s(t ) will have M number of
elements: [I1(t ), I2(t ), . . . , IM (t )]T . At time t , the contribu-
tion of the input weight matrix in the dynamics of the reservoir
[see Eq. (1)] can be written as follows:⎡

⎢⎢⎣
Win(1, 1) · · · Win(1, M )
Win(2, 1) · · · Win(2, M )

...
...

...

Win(Nres, 1) · · · Win(Nres, M )

⎤
⎥⎥⎦ ×

⎡
⎢⎢⎣
I1(t )
I2(t )

...

IM (t )

⎤
⎥⎥⎦.

In the training process, at each time instant t , the reservoir
state r(t) and input s(t) are accumulated in X(t) = [s(t); r(t)].
The output relation can be written in vector form as

Y = WoutX. (2)

Here, Y is a matrix of dimension (N − M ) × K , where K
is the length of the time signal. Matrix X having dimension
(Nres + M ) × K looks like

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I1(t1) I1(t2) · · · I1(tK )
I2(t1) I2(t2) · · · I2(tK )

...
...

...
...

IM (t1) IM (t2) · · · I (tK )
r(1, 1) r(1, 2) · · · r(1, K )
r(2, 1) r(2, 2) · · · r(2, K )

...
...

...
...

r(Nres, 1) r(Nres, 2) · · · r(Nres, K )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Matrix Wout can be determined by the Ridge regression
method as

Wout = YXT(XXT + λI)−1, (3)

where λ is the regularization factor that avoids overfitting. Y
is the time-series data for the targeted patches and I is the
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identity matrix of dimension (Nres + M ) × (Nres + M ). Note
that when λ = 0, Eq. (3) reduces to the least-squares method.

We consider N patches, in which data from M number of
patches are fed into the machine for training purposes. At time
t , the dimension of the output vector of the targeted patches
will be (N − M ) × 1. Thus the output matrix(t ∈ [tr+1, t f ])
can be written as (Fig. 1)

y(t ) =

⎡
⎢⎢⎣
IM+1(t )
IM+2(t )

...

IN (t )

⎤
⎥⎥⎦.

III. PREDICTION FOR SYNTHETIC DATA

The classical SIR model is used to numerically generate
a large set of independent synthetic time-series data (say i =
1, 2, . . . , N) on infection for different sets of disease transmis-
sion rates and the initial fraction of the infected population.
The disease spreads into the patches or locations, where the
SIR dynamics of the jth isolated location is captured by a set
of three coupled equations:

Ṡ j (t ) = −β jS j (t )I j (t ), (4)

İ j (t ) = β jS j (t )I j (t ) − γ jI j (t ), (5)

Ṙ j (t ) = γ jI j (t ). (6)

Based on the health conditions, the population of the jth
location is categorized into three compartments: susceptible
(S j), infected (I j), and recovered (R j). The parameters β j

and γ j denote the rate of disease transmission and recovery
rate, respectively. We fix the recovery rate at γ1 = γ2 = . . . =
γN = 1/14 day−1 for this study. We generate a set of N inde-
pendent synthetic data series by random choices of β j from
the uniform distribution U (0, 0.25). The initial infections
[I j (0)] are also taken from U (10−7, 10−4) and R j (0) = 0,
and S j (0) = 1 − I j (0) − R j (0). The choice of β j is based
on available data and country-level estimation of the basic
reproduction number for COVID-19 [38], which varies from
0 to 3.5. Model (4)–(6) is integrated for a time interval [0,300]
with a time step 0.01 using the RK4 routine. Therefore, each
synthetic data set contains 30 000 data points (300 days).
Since a variation in the disease transmission rate (β j) and an
initial fraction of the infected population [I j (0)] lead to diver-
sity in peak sizes as well as the time duration for reaching the
peak of infection, we treat the independent synthetic data sets
as collected infection data for different regions or countries
where an outbreak of the same disease takes place.

To explain our scheme more clearly, we have drawn ran-
domly selected infected signals (I j) in Fig. 2(a) (red lines).
Due to the distribution of the disease transmission rate and
initial state (initial fraction of the infected population), the
time to reach a peak of infection varies from one isolated patch
to other patches as shown in a number of the time domain plots
of I (red lines). For comparison, we have drawn vertical lines
at a fixed time t = tr in each of the red signals [Fig. 2(a)].
The topmost signal is infected earlier and reaches the zero
state before time tr . The second signal from the top reaches
its peak at t = tr . The third one reaches the infection peak

FIG. 2. Schematic of the ESN and signal variability. (a) Infection
data inputs (red signal) fed into the machine. The dashed vertical
line (at t = tr) signifies a time limit of data point inputs to the
machine. (b) ESN structure: input layer, reservoir, and output layer.
The weights of the input and the reservoir once selected are kept fixed
throughout the training and testing procedure. (c) Data output of
targeted locations or patches (blue signals). Left parts of the dashed
vertical lines (t � tr) are closely mapped with the machine-generated
signals at the time of training. Right parts of the vertical lines are
predicted data (red circles) from the machine at the time of testing
the ESN.

earlier than t = tr . The bottom signal is gradually increasing
and yet to reach the peak at time tr . The sequence of data until
t = tr for each red signal is fed into the ESN [Fig. 2(b)] for
training purposes. Note that the ESN has three components:
(a) an input layer, which captures the input data; (b) a reservoir
network that associates the input data with its nodes generally
in a nonlinear way; and (c) an output layer, which generates
the desired or targeted data. In our proposed scheme, the ESN
output layer is controlled in such a way that it closely maps
the output signal (blue lines) up to the time t = tr [Fig. 2(c)].
Noticeably, these segments of the output signals (left of the
dashed vertical lines; blue curves) are not similar to each
other: the upper one does not reach the peak value, whereas
the lowermost signal just crosses the peak before t = tr . Once
the training process is over, all the components of the ESN
are kept fixed and a further stream of data at the input layer
[t > tr ; right part of the dashed vertical line; Fig. 2(a)] is
passed into the ESN to predict the target signals beyond time
t = tr . The predicted sequences are shown by red circles at
outputs, almost perfectly matching the targets (synthetic data
in blue lines). The ESN shows a strong ability to predict
the targeted data for almost all the data streams. Thus we
claim here: Feeding a wide variety of independent signals [for
random choices of β j and I j (0)] into the ESN enables it to be
well trained. The ESN does not require precise information on
β j or γ j .

For detailed clarification, we consider N = 1000 indepen-
dent time signals of infected data (I) among which M = 950
time series (95% of the whole data set of all equal size) are
used for training purpose. We target the remaining N − M =
50 patches (5% of the whole data set) to be predicted by this
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FIG. 3. (a)–(e) Snapshots of synthetically generated data versus machine-based data; (In
R) vs (In

M ) plot for data taken at time points t = 7,
14, 21, 28, and 35, respectively. Results of 50 patches are presented here. Five randomly chosen nodes are marked with squares, diamonds,
pentagrams, triangles, and ×’s. At t = 7, In

M and In
R are correlated, as they lie on the diagonal line, signifying that the machine can predict

the real data efficiently. (b) At t = 14, two data points (diamond and pentagram) deviate slightly from their original counterparts. The error
increases for a longer duration (t = 21, 28, 35) of forecasting as shown in (c)–(e). However, most of the patches (green circles) lie on the
diagonal line. (f)–(j) The infection trend of five randomly chosen nodes are shown for 5 weeks. Data generated by simulation of the SIR model
are shown by thick blue lines. The machine-generated data closely predict infection in some of the patches (marked by triangles, ×’s, and
squares) up to 30–35 days. For two patches (marked by pentagrams and diamonds), the machine-generated data deviate after 10 days.

95% data set through the ESN at the time of testing. A data set
of tr = 100 days, i.e., 10 000 data points, is used for training
purposes. After the ESN is trained (when the output layer is
properly tuned), we predict the infection for the next 35 days
(3500 data points) for the remaining 50 time-series data. The
synthetic time series is obtained by integrating Eq. (4) for the
jth location as designated by In

R, whereas the ESN predicted
data for the same are denoted In

M . Figure 3(a) describes the
correlation between In

R and In
M (n = 951, 952, . . . , 1000) for

all the patches at time t = 7 (data during training are not
shown here). All the patches (represented by filled green
circles and another five markers for five patches) lie on the
diagonal line, signifying excellent accuracy of prediction of
the trained ESN. Five randomly identified patches are shown
by five markers (triangle, pentagram, diamond, square, and ×
markers). The corresponding signals are shown in Figs. 3(f)–
3(j), where the true synthetic data [generated from Eq. (4)] are
plotted with thick blue lines. Noticeably, the signal data for
each patch closely match the true data at t = 7, confirming
that the ESN predicts the trend of all patches with a higher
accuracy. Next, we have checked In

R and In
M data at t = day 14

as shown in Fig. 3(b). Most of the patches (green circles) still
lie on the diagonal line, confirming the prediction ability of the
ESN, however, few patches (diamonds and pentagrams) devi-
ate a little from the diagonal line, which is further confirmed
in Figs. 3(g) and 3(h), where the predicted and the true signals
start to deviate from each other after t ∼ 14 days. The more
we increase the time of prediction, the larger the deviation
that occurs for these two particular cases [see the positions
of pentagram and diamond markers in Figs. 3(c)–3(e)]. Three
particular patches (triangles, squares, and ×’s) are predicted
with a higher accuracy, as they almost remain on the diagonal

line at t = 21, 28, and 35. The related continuous time signals
for the three patches are shown in Figs. 3(f), 3(i), and 3(j),
respectively. A large fraction of green patches moves along
the diagonal lines, ensuring the higher prediction ability of the
ESN. Noticeably, the ESN can efficiently predict the signal
during an increasing trend [cf. Fig. 3(h) for 10 days and
Fig. 3(i) for 30 days]. Also, it can capture the decreasing
trend [Fig. 3(g) for 14 days] and predict both for 35 days
[Figs. 3(f) and 3(j)]. Thus, the nonmonotonicity of the infec-
tion trend can be captured by the ESN with a higher accuracy.
It is noteworthy that the proposed approach works well if
we increase the number of target locations up to 10%–20%
(we have checked, but the results are not shown here). It was
shown that under suitable conditions, an ESN of size N can
memorize the previous inputs of size N [25]. Also, for com-
plex systems (e.g., chaotic signals), the ESN has the ability to
predict over a short time scale which is actually longer than
the Lyapunov time scale [26]. In our example cases, signals
are not chaotic, however, the epidemic curves are sensitive
to the initial states (initial infection), leading to different out-
comes [39]. On the other hand, the intrinsic epidemiological
parameters of patches are not identical. Therefore, the times
to attain the maximum of infection and peak of infection
will vary from node to node. Thus the accuracy of prediction
may fail after a certain time. From our numerical simulation,
it is clear, for model-generated data, that all are accurately
predicted up to 2 weeks. After that, due to the limitation of
the memory capacity of the reservoir, time signals of certain
nodes are poorly captured and machine-generated data behave
abruptly such as in Fig. 3(g).

Next we try to validate our scheme using a COVID-19-
infected data set. We have already confirmed that the ESN
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FIG. 4. Prediction of COVID-19 data of 10 randomly chosen locations from world COVID-19 data sets. (a) Croatia: infection sharply
increases (blue line) at the time of prediction (5 October to 26 October; shaded region). The machine closely predicts (red circles) the trend
(blue line) in the shaded region. A zoomed-in version of the shaded region is presented directly below (second row). Similar scenarios are
observed for (b) Germany, (e) Italy, and (j) West Bengal. The decreasing trends of (d) Israel, (f) Rajasthan, (g) Telengana, and (h) Tripura are
also well captured by the ESN. The ESN also predicts the trend in (i) Uttar Pradesh, but for a shorter time. Interestingly, the machine prediction
of the increasing and decreasing trend of infection in (b) Finland is closely matched by the real data.

easily predicts the data on targeted locations by exploiting the
infectious data on other locations (at the same time). In the
next section, we reinvestigate the efficiency of the ESN for
COVID-19 cases. It requires special mention that our scheme
does not require any specific knowledge of the reproduction
number of each location, duration of intervention (lockdown),
or impact of mobility within the locations.

IV. PREDICTION ON REAL DATA

To check the feasibility of prediction by the ESN in a real
outbreak scenario, we consider time-series data sets of 189
locations consisting of daily new cases of COVID-19 [40,41].

We have used daily infected data for all the locations or
patches for 279 days (from 22 January to 26 October 2020).
For training purposes, we consider the infection data for 257
days (22 January to 4 October) at each location. We decom-

pose the entire set into two groups. Infected data from 179
locations are fed into the ESN at the time of training and
ESN predicts the current infection trend of 10 locations. The
output weights are tuned in such a way that they can capture
the infected cases for the 10 patches at the time of training.
Once the training is over, we use infection data for 22 days
of 179 locations to predict the infection trend of 10 locations.
We have considered the size of the reservoir 1000 × 1000 and
fixed the leaking rate at α = 0.5, and hence, the input matrix
size is 1000 × 179. We predict the infection trend for 22 days
extending from 5 October to 26 October 2020.

To preprocess the data, we have used the savgol filter
(Python package) [42]. We consider all provinces in China and
all states in the United States, Australia, France, and India. We
have ignored data for some locations, which are not severely
affected by the disease; data are removed if the cumulative
infection is lower than ∼104. For predictive purposes, we have
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randomly picked five states in India (Rajasthan, Telengana,
Tripura, Uttar Pradesh, and West Bengal) and five other coun-
tries (Croatia, Finland, Germany, Israel, and Italy). Thus the
ESN can predict the cases of infection in most of the targeted
locations for 3 weeks as shown in Figs. 4(a)–4(j) with real
data (blue lines) and machine-generated data (dashed red lines
with circles). Note that the daily infection has significantly
increased for Germany, Italy, and Croatia as the disease reap-
pears there. The gray shaded regions (from 5 October to 26
October) demarcate the predicted regimes for each location.
For better clarity, we have also shown the predicted data (for
the shaded regions) separately in zoomed-in versions (second
and fourth rows in Fig. 4). Our proposition can efficiently
determine an increasing or decreasing trend of infection in
the targeted locations. Interestingly, for Finland [Fig. 4(b)],
the ESN captures both the trends: initially increasing and
later decreasing. Thus the ESN performs well for most of
the randomly chosen locations from a large pool of infected
data sets and predicts 5% of the entire data set using the
95% data set. We have checked that 20% patches can be
predicted by our scheme for at most 2 weeks (not shown
here). Dynamical modeling of COVID-19 data demands a
large set of information including the effective reproduction
number (the infection rate may change nonmonotonically),
mobility through the transportation network, and a detailed
description of a large number of compartments (variables).
Our proposition overcomes this drawback and depends only
on an available multidimensional data set. We expect that a
higher resolution of the data set will enable the ESN to capture
the infection trend of a larger number of target locations more
accurately and to enhance the duration of prediction. Apart
from the current prediction of targeted locations, we confirm
with a revised scheme that the ESN can truly capture the
future trend of infection data up to at least 10–14 days. We
elaborate on this scheme in the next section.

V. FUTURE FORECASTING: A PROPOSITION

One may ask whether the proposed method can be used
to capture the future trend of infection. Till now, we have
predicted or traced the current data of selected locations by
utilizing the data set for other locations at the same time (see
scheme in Fig. 1). As we have claimed, usage of a large pool
of desynchronized infection data series (all input data sets are
independent and uncorrelated) in the input of the ESN makes
it easier to predict the trend of infection of randomly selected
other locations. With the same spirit, here we aim to predict
the trend of infection of the above-mentioned target locations
for a future duration of time. Note that the initial growth rate
for this type of infection is slow (follows a power law [43])
compared to the growth rate at later times. Thus we assume
that ignoring initial data (of targeted locations) for a few days
will not affect the overall performance of the ESN. Thus, we
hypothesize that a short duration time-shifting of the input
data can lead us to forecast the future trend (for a short term,
∼2 weeks) of infection of the target locations. To do this we
use the following steps:

(1) Spatial and temporal decomposition. We collect the
same data set from N locations. The data were saved from t =
0 to t = t f . We decompose the data set into two parts: input

FIG. 5. Generalized approach to future forecasting of selected
locations. This scheme enables prediction of the future trend of
infection of the target locations for a duration τ time unit.

(M locations) and target [N − M locations, N � (N − M )].
We shift each of the inputs with a τ (τ � t f ) time unit, i.e.,
the input will be added to the machine at t = τ (light-red
rectangular regime in Fig. 5, top). As a consequence, we
remove the initial trend of target locations up to the τ time
unit (rectangular blue regime with × in Fig. 5, bottom right).
We continue this learning process until all of the target data
are utilized for training purposes, i.e., it will end at t = t f .
Therefore t f − τ input data points will be used to train the
machine such that it can capture the M-dimensional target data
from t = τ to t = t f .

(2) Forecasting using the testing procedure. Now we can
use the trained machine to forecast the target data from t f

to t f + τ (dark-red regime; Fig. 5, bottom right) from the
input data extending from t f − τ + 1 to t f (light-red regime;
Fig. 5, top right). The green brace below the light-blue matrix
(bottom left) represents the training time and the red brace
(bottom right) signifies the future forecasting of the target
locations.

Forecasting future trends from COVID-19 data

To validate our forcasting scheme, we have used COVID-
19 data [40,41] preprocessed for 465 days: from 22 January
2020 to 30 April 2021). We decompose the entire set into two
groups. Infected data from 241 locations are fed into the ESN
at the time of training. We target to forecast the infection trend
of 10 other locations. To forecast 14 days in the future, we
have discarded the initial 14 days from the targeted data. We
have trained the machine by utilizing the COVID-19 data from
22 January 2020 to 16 April 2021 (total, 451 days) to track
the target data from 4 February 2020 to 30 April 2021 (total,
451 days). After training is finished, we forecast 14 days of
data on targeted locations from 1 May 2021 to 14 May 2021.
Note that we have data in hand until 30 April 2021. However,
we can forecast for 14 more days, from 1 May to 14 May.
The machine-generated data are represented by gray shading
(Fig. 6) for 100 realizations. In each realization, the reservoir
weights are randomly changed. The blue line is the average
of these 100 realizations. Our machine-generated prediction
reflects that in most of the states in India [Figs. 6(f)–6(j)],
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FIG. 6. Forecasting the future trend of infection of 10 selected locations from 1 May 2021 to 14 May 2021. The gray region in each figure
represents the machine-generated data for 100 realizations. The blue line shows the average of each gray region. Red crosses show the real
data for the period 1 May 2021 to 6 May 2021.

the daily infection will increase, except in Uttar Pradesh
[Fig. 6(i)]. The real data for each location in India are shown
by red crosses (from 1 May to 6 May 2021). Clearly, the
machine-generated data closely follow the original trend of
infection. Trends in Italy and Germany are weakly captured
[Figs. 6(c) and 6(e)] by the machine, whereas the slow in-
crease (decrease) in Israel (Croatia) is closely matched by the
real data. The upper bound of τ (initial delay in data input) by
increasing (or decreasing) the number of targeted locations is
a real question that demands further investigation in future.

VI. CONCLUSION

We have proposed a machine learning-based mechanism
for efficient prediction of COVID-19 infection. A modified
version of the neural network (ESN) has been used to predict
new infections in randomly chosen locations. Available data
from a large number of locations are utilized to train the
machine such that it can map the infection trend of other
locations, which we call target locations.

The proposed technique does not depend largely on the
intrinsic parameters of the ESN. In the literature, there exist
several phenomenological models [44–46] for predicting the
trend of infection. However, these models have limitations for
prediction due to intrinsic uncertainties in the system parame-
ters. For instance, the well-known Gompertz function cannot
capture the trend of the second wave [47–49] of infection,
whereas it can efficiently predict the initial daily infection.
Also, suitable choices of parameters of the Gompertz function
immediately before the prediction are necessary (please see
the Appendix for a detailed investigation of the Gompertz
function). In our model-free machine learning scheme this
restriction is relaxed, as the ESN can successfully trace the
second wave of specific locations [see Figs. 4(b)–4(d) and
Fig. 6]. Forecasting is really a challenging task, however, we

have proposed a second scheme using a data-shifting tech-
nique during the training process that shows promising results
for future forecasting. We expect that our proposition might
be useful for diverse sets of spatiotemporal data, ranging
from physiological to multivariate climate data. In the same
manner, we can use other types of recurrent neural networks
for prediction of infection trends of certain locations that we
intend to try in future.
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APPENDIX: PREDICTION THROUGH
THE GOMPERTZ CURVE

In the literature, there are many models and mechanisms
available for data fitting which enable us to estimate suitable
parameters for short-term forecasts as well as the uncertainty
in forecasting. For instance, the generalized Richard model,
logistic growth model, subepidemic wave model [44,45], flex-
ible growth model curve [46], and Gompertz curve [48,49]
have been widely used for forecasting infection data. We use
the following Gompertz function [47] for capturing the daily
infection:

I (t ) = aKe− ln ( K
N0

)e−at
(

ln

(
K

N0

)
e−at

)
, (A1)

where the parameter K is the saturating value of the in-
fected cases, N0 is the initial infection, and a represents the
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FIG. 7. Forecasting through the Gompertz curve in 10 randomly chosen regions. Four weeks of data are used to standardize the intrinsic
parameters of the Gompertz function. Twenty-two days were forecast, from 5 October to 26 October 2020.

decreasing trend of the initial exponential growth. Now we
estimate the parameters a and K to predict the infection
pattern from 5 October to 26 October 2020 (22 days). Here
we take daily infection data for 10 countries or regions for
4 weeks, from 8 September to 5 October 2020, and fit it
with the Gompertz curve to obtain the best-fitted parameters.

We can see that the Gompertz curve is able to provide good
predictions for certain locations (Fig. 7; Israel, Uttar Pradesh,
Telengana, Tripura, and Finland) and weakly predicts the in-
fection trend in Croatia, Germany, West Bengal, Rajasthan,
and Italy. However, machine-generated data perform well in
most of the cases (see Fig. 4 for comparison).
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