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Cohesive communities in dynamic brain functional networks
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In large-scale brain network dynamics, brain nodes switching between modules has been found to correlate
with cognition. However, how the brain nodes engage in this kind of reorganization of modules is unclear.
Based on a functional magnetic resonance imaging dataset, we construct dynamic brain functional networks and
investigate nodal module temporal dynamic behavior by applying the multilayer network analysis approach. We
reveal three cohesive communities that are groups of brain nodes linked in the same community during brain
module dynamic reorganization. We show that the cohesive communities have higher clustering coefficients
and lower characteristic path lengths than the controlled community, indicating cohesive communities are the
parts of brain networks with high information processing efficiency. The smaller sample entropy of functional
connectivity in cohesive communities also proves their property of being more “static” compared with the
controlled community in brain dynamics. Specifically, compared with the controlled community, the functional
connectivity of cohesive communities is restricted strictly by structure connectivity and shows more similarity to
structure connectivity. More importantly, we find that the cohesive communities are stable not only in the resting
state but also when processing cognitive tasks. Our results not only show that cohesive communities may be
the fundamental community organization to support brain network dynamics but also provide insights into the
intrinsic structural relationship between the resting state and task states of the brain.
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I. INTRODUCTION

Complex network science has been widely used to unravel
the function of brain dynamics [1–3]. In the context of a
complex network, neural elements such as brain regions at dif-
ferent scales are treated as the nodes, and their direct structural
connectivity (SC) or functional interactions are regarded as
the edges. Previous studies have evaluated the topological and
dynamical behaviors of brain functional networks (BFNs),
which are highly connected with multiple brain cognitive
functions [4–7]. In addition, brain disorders, such as atten-
tion deficit hyperactivity disorder [8,9], schizophrenia [10],
and Alzheimer’s disease [11], are often associated with the
alterations of patterns in functional connectivity (FC).

In BFN, there are groups of densely connected nodes,
which are called modules or communities [12–14]. Modular-
ity is an important character of BFN and provides a source
of separation of specialized functions with various cognitive
demands [15–17]. To fit different cognitive states, the FC of
two distinct brain regions could be strong or weak dynam-
ically, leading to reconfiguration of brain modules [18–20].
For example, changes of modular organization of BFN have
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been identified during human learning [21] and listening be-
havior [22]. A number of recent studies have also revealed the
decrease of modularity across the human life-span [23–25]. In
the module reorganization process, every node in the network
can possibly switch between different modules temporally
[21,26]. The high correlation between the flexibility of nodes
switching across modules and the performance of higher-
order cognitive tasks has been clarified [27]. However, recent
studies suggest that, both in model networks and realistic net-
works such as social networks, there are groups of nodes that
are usually found together in the same module and essentially
indivisible in multiple module divisions [28]. These groups of
nodes, which are called “building blocks” in Ref. [28], may
represent the fundamental organization of module structures
in networks. However, their functions in the networks are not
fully clear. Furthermore, whether this type of community is
present in brain networks has not yet been explored.

In the present work, we assume there are similar underlying
“building blocks” in BFN, in which the nodes are cohesive
and always join the same community during modular reor-
ganization. We call them “cohesive communities.” We first
analyze module switching dynamics of nodes by applying the
multilayer network analysis approach to a group of functional
magnetic resonance imaging (fMRI) data acquired from 110
healthy subjects. The multilayer network analysis enables us
to decompose BFN dynamics into nonoverlapping modules
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FIG. 1. The pipeline of brain dynamic FC analysis. (a) The time
series are the BOLD signals of one subject after fMRI data prepro-
cessing. Utilizing an overlapping sliding-time window approach, the
dynamic BFNs were constructed. (b) The upper triangular element
without a diagonal of each BFN matrix is reshaped to a column (FCv)
as the matrix is symmetric. Then, all of the new columns are arranged
into a new matrix in chronological order and according to the order
of subjects.

that span time and space and allows us to quantify temporal
switching behavior between different modules of each node
[29,30]. We introduce the community solidification degree to
detect the cohesive communities. The community solidifica-
tion degree of one node pair is defined as the proportion of
module reconfiguration events in which the node pair stays
in the same module. Second, we demonstrate that the co-
hesive communities have higher clustering coefficients and
have shorter characteristic path lengths. Furthermore, the FCs
of the cohesive communities have lower sample entropy and
higher similarity to SC. Finally, we verify the robustness of the
cohesive communities in task states by analyzing the dynamic
BFNs of four task states.

The remainder of this paper is organized as follows:
Section II describes the fMRI dataset source and analysis
algorithm, Sec. III describes the results of the analysis of
cohesive communities, and Sec. IV gives the Discussion and
Conclusions.

II. MATERIALS AND METHODS

A. Functional networks construction

The fMRI data used in this research were acquired from
130 healthy subjects. Twenty subjects were excluded because
of incomplete data (see Supplemental Material [31]). The
brain was partitioned into 90 regions of interest (ROIs) with
the AAL (automated anatomical labeling) atlas [32]. The
fMRI time series for each ROI was obtained by averaging the
voxel time series within each ROI. An overlapping sliding-
time window approach is applied to construct the dynamic
BFN [Fig. 1(a)]. In this approach, a certain length time series
from the first time point is cut out to construct the first BFN.

The certain length time series is called a window, and its width
is 30 time points. Then, the window slides forward one time
point along the time series to construct the second BFN, and
so on to the last time point. The set of BFNs obtained by this
approach is deemed to contain brain dynamic FC information.
The FC between ROIs was constructed by calculating the
Pearson correlation coefficient:

ρX,Y =
∑N

t=1 [X (t ) − X ][Y (t ) − Y ]√∑N
t=1 [X (t ) − X ]

2 ∑N
t=1 [Y (t ) − Y ]

2
, (1)

where t is the time point, N stands for the total number of
time points, X and Y are the fMRI time series for different
ROIs, and X and Y are the average values corresponding to
these time series.

B. BFN states and cohesive community detection

Processing fMRI time series of all subjects by the overlap-
ping sliding-time window approach, the dynamic BFNs for
each subject are constructed. Notably, each BFN matrix is
symmetric due to ignoring directions. Therefore, the upper or
lower triangular elements include FC information between all
node pairs. It is reasonable that reshaping the upper triangular
elements without a diagonal of every BFN matrix to a column
vector (FCv) could reduce the computation and does not make
the FC information incomplete; see Fig. 1(b). Then, all the
FCvs are arranged into a new FCv matrix in chronological
order and according to the order of subjects.

The k-means clustering algorithm is one of the unsuper-
vised learning algorithms and is commonly used to cluster
different observations into several clusters based on the dis-
tance between these observations [33]. It has been widely used
in fMRI studies [34,35]. In the present work, the k-means
clustering algorithm is applied to the FCv matrix to cluster
all the FCvs into several clusters. Restoring the mean FCv of
each cluster to the matrix can acquire the repertoire of BFN
states. As it is sensitive to the initial conditions, the k-means
clustering algorithm repeats 20 times for each k from 2 to 20.
The cluster result is evaluated by the maximum Dunn’s score
within the range of k [36].

Here, we use an algorithm developed by Newman to de-
tect the community structure of every BFN state [12]. The
algorithm aimed to find the community by optimization of
modularity Q based on the spectral partitioning methods. The
processing steps of this algorithm are as follows:

(1) Constructing a modularity matrix Bi j for the network
and finding its leading eigenvalue and eigenvector.

(2) Dividing the network into two parts according to the
signs of the eigenvector elements of Bi j .

(3) Repeating steps (1) to (2) for each of the parts.
(4) Stop the processing if the split makes a zero or negative

contribution to Q.
The Bi j for each subgraph and Q can be expressed as

Bi j = Ai j − kik j

2m
− δi j

[
k(g)

i − ki
dg

2m

]
, (2)

Q = 1

2m

[∑
i, j∈g

(
Ai j − kik j

2m

)
δi j

]
, (3)
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FIG. 2. A dynamic behavior example of the multilayer modular
network with nine nodes and two switching events (distinct commu-
nities are shaded by different colors). The modularity partitions of
the network are reorganized after each switching event. This example
shows some nodes (nodes 3 and 4) joined to modules with different
node groups during switching events. However, some groups of
nodes (node groups {1, 2}, {5, 6}, and {7, 8, 9}) in which nodes
always linked together cohesively join the same module throughout
all switching events.

where Ai j are the elements of the adjacency matrix of BFN
states, m is the total number of edges in the network, ki

represents the degree of node i, δi j = 1 if i and j are in the
same community and δi j = 0 otherwise, k(g)

i is the degree of
node i within subgraph g, and dg is the total degree of nodes
in the subgraph.

To find cohesive communities, the first thing is to decide
the process of brain dynamics. By applying the k-means clus-
tering algorithm, the FCv matrix was reduced in dimension
to several BFN states. If two adjacent FCvs relate to different
BFN states, it means that the two BFN states have a switching
relationship. Due to every FCv corresponding to a single BFN
state, it is feasible to track the switching relationship between
different BFN states. The last thing is to decide if one node
pair belongs to one community both before and after a BFN
state switching event; see Fig. 2 for an overview. Suppose
there are n BFN states with p and q as two states with a
switching relationship along time. We define the community
solidification degree of one node pair as the proportion of
switching events in which the node pair links to the same
module in all switching events between BFN states. The com-
munity solidification degree of nodes i and j is

SDi j =
∑

p,q∈n δi j,pδi j,q

R
, (4)

where R is the total number of BFN state pairs that have a
switching relationship, δ is the Kronecker delta function, and
δi j,p = 1 if i and j belong to the same community in state p.
Otherwise, δi j,p = 0. Observe that SDi j is 1 if nodes i and j
are affiliated to the same community among all of the BFN
states.

C. Analysis of cohesive communities

To illustrate the dynamic feature of cohesive communities,
we analyze their node and network measures.

1. Clustering coefficient

The clustering coefficient is a typical measure of network
functional segregation. It is the fraction of a node’s neighbors
that are also neighbors to each other [37].

CC = 1

n

∑
i∈N

2ti
ki(ki − 1)

, (5)

where n is the number of nodes, N is the set of all nodes in
the network, ti is the number of edges between the neighbors
of node i, and ki is the degree of node i, which represents that
node’s number of neighbors.

2. Characteristic path length

The characteristic path length is the average shortest path
length between all pairs of nodes in a network and is the
most common measure of network functional integration [37].
The shortest path between two nodes is the least number of
paths from one node to another. The path length in a weighted
network usually is the inverse of connectivity strength.

L = 1

n

∑
i∈N

∑
i∈N, j �=i di j

n − 1
, (6)

where di j is the shortest path length between nodes i and j
of the network. Note that di j = ∞ for all disconnected pairs i
and j.

3. Sample entropy

We used sample entropy to estimate the complexity of each
dynamic FC time series between nodes in cohesive communi-
ties [38].

Using X = (x1, x2, . . . , xN ) denote the dynamic FC time
series of one node pair. Then, construct embedding vectors
Vi = (xi, xi+1, . . . , xi+m−1), in which m denotes the dimension
of Vi(1 � i � N−m + 1). Next, calculate the Chebyshev dis-
tance between Vi and other vectors. Then, define r = ε · σX as
a tolerance value where ε is a small value fixed at 0.2 here
and σX is the standard deviation of X. The ratio between the
number of vectors whose the Chebyshev distance is larger
than r and the total number of vectors that does not contain
itself is defined as Cm

i :

Cm
i = 1

N − m

N−m+1∑
j=1, j �=i

�(r − ||Vi − Vj ||), (7)

where �(· · · ) is the Heaviside function, and || · · · || stands for
the Chebyshev distance.

The sample entropy of X is

S = − ln
1

N−m

∑N−m
i=1 Cm+1

i

1
N−m+1

∑N−m+1
i=1 Cm

i

. (8)
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FIG. 3. (a) The Dunn’s score of every k. The peak value of Dunn’s score occurs at k = 16. (b) The total number of subjects who perform
a certain BFN state. Of these, the BFN states that arise in more than 30% of subjects (i.e., more than 33 subjects in 110 subjects) are reserved
[green (light gray) bar], and the other six BFN states are rejected [purple (dark gray) bar]. (c) The FC patterns of each BFN state.

III. RESULTS

Based on the fMRI dataset collected from 110 healthy
subjects, we first analyzed the switching dynamics of distinct
BFN states by employing the multilayer network analysis
approach. According to the module partition and switching
relationship between different BFN states, the cohesive com-
munities in which nodes affiliate with the same module in
every BFN state are detected. We further investigate the net-
work features of cohesive communities by calculating the
clustering coefficients, characteristic path length, sample en-
tropy, and similarity between FC and SC. Finally, we explore
the robustness of the cohesive communities in task states.

A. Cohesive communities

Using the overlapping sliding-time window approach, a to-
tal of 122 × 110 = 13 420 FC windows are calculated for all
subjects in the resting state. A k-means clustering algorithm
is applied on all FCvs across time points and subjects for k
from 2 to 20. The results of Dunn’s score in Fig. 3(a) indicate
the best number of BFN states representing the present data
is 16. Considering the proportion of subjects with a BFN
state, we eliminate six BFN states that are only present in
a few subjects [the proportion is �30%; see Fig. 3(b)]. The
other ten BFN states that are reserved are shown in Fig. 3(c).
Their FC patterns are the average of all FC window patterns
identified as belonging to the BFN state by the k-means clus-
tering algorithm. While every FC window corresponds to one
BFN state, the FC window series can be transferred to a BFN

state series across subjects. Then, the switching relationship
between different BFN states can be distinguished.

The switching probabilities from one BFN state to another
are shown in Fig. 4(a). The column represents the initial BFN
state in a switching process, and the row is the target BFN
state. For example, the value in the first row and second
column means that the probability of state 1 switching to state
2 is 0.59 in all switching events from state 1. It is necessary
to note that the switching behavior is considered only when
the switching probability between the two BFN states �0.1.
There are 28 potential switching events meeting the criterion.
With module partition, every node (brain region) for each
BFN state is assigned to a defined module. Further, whether
nodes within the same module are still within one module
before and after BFN state switching can be determined by the
community solidification degree. The result shown in Fig. 4(b)
illustrates the community solidification degrees of all node
pairs, and the values that are equal to 1 (shown in orange
color [dark gray)] mean the node pairs solidify to the same
defined module along BFN dynamic evolution. To eliminate
the effects of random factors, we apply the same analysis
process to surrogate data. Finally, three cohesive communities
are revealed as excluding common node pairs, for which the
community solidification degrees are 1 both in real data and
surrogate data. Figure 4(c) shows the community solidifica-
tion degree matrix of the three cohesive communities. They
are located in the anterior, middle, and posterior of the brain,
respectively. The first three drawings in Fig. 4(d) display the
locations of nodes in the three cohesive communities in the
cortical space, respectively.
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FIG. 4. (a) The probability matrix of switching between BFN states. The elements of the probability matrix mean the transition probability
from one state to another. It should be noted that the elements will be considered in the present research only if the values are bigger than 0.1.
(b) The community solidification degree matrix of all node pairs. The values in the matrix that are equal to 1 [shown in orange (dark gray)]
meaning the node pairs solidify to the same defined module along FC dynamic evolution. (c) The community solidification degree matrix of
the three cohesive communities. They include six, six, and 13 nodes, respectively. The community solidification degree equals 1 within each
cohesive community. (d) The location of nodes of the three cohesive communities and the control group (in the dotted box) in cortical space.

B. Network analysis of cohesive communities

As nodes in the three cohesive communities are special
in terms of the module properties of BFNs, we wonder
whether the three cohesive communities display special roles
in BFN. To address this question, we first calculate the clus-
tering coefficient and characteristic path length to clarify the
functional segregation and integration of the three cohesive
communities. The other 19 nodes that do not belong to the
three cohesive communities are picked to constitute the con-
trol group [see the last drawing in Fig. 4(d)]. The results
calculated for each BFN state show that the clustering coef-
ficients of the three cohesive communities are higher than the
control group, which means stronger functional segregation
in these cohesive communities [Fig. 5(a)]. The two-sample
t-test approach is used to confirm significant differences
between cohesive communities and the control group. The
results indicate the clustering coefficients of the second and
the third cohesive communities are significantly higher than
that of the control group. Meanwhile, the characteristic path
lengths of the three cohesive communities are lower than

that of the control group [Fig. 5(b)], which means stronger
functional integration in these cohesive communities. The
two-sample t-test results show the differences are significant
between the control group and the second and third cohesive
communities.

The cohesive communities are stable, which means they
will not be broken in the dynamic switching of BFN states.
This property might relate to the complexity in information
processing of node pairs in cohesive communities. In other
words, it is expected that FCs between node pairs in co-
hesive communities fluctuate so less to bond them into the
same module over time. Here, sample entropy is used to
estimate temporal complexity of FC between node pairs. The
results show that the sample entropy of node pairs in cohe-
sive communities is smaller than that in the control group
[Fig. 5(c)]. The two-sample t-test results indicate the dif-
ferences are significant between the control group and each
cohesive community. The lower sample entropy suggests that
FCs in cohesive communities are more structurally stable and
less random.
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FIG. 5. (a) The clustering coefficients, (b) the characteristic path length, and (c) the sample entropy of the cohesive communities compared
with the control group. The symbol “*” stands for the significant difference (two-sample t-test, p < 0.05). (d) The FC matrix of nodes in
the three cohesive communities and the control group. (e) The SC matrix of nodes in the three cohesive communities and the control group.
(f) The cosine similarity between values in the upper triangular parts of FC and SC within each community.

The relationship between invariant structure architecture
and rich functionality of the brain has been a major mystery
[39]. The following question is how the cohesive communi-
ties relate with the underlying anatomical network. The FC
and SC of the three cohesive communities and the control
group are shown in Figs. 5(d) and 5(e), respectively. Notably,
compared with the control group [framed in yellow squares in
Figs. 5(d) and 5(e)], the connectivity in both the FC and SC of
cohesive communities (framed in red squares) demonstrates
a significantly modular character. The results of similarity
between FC and SC shown in Fig. 5(f) also indicate the FCs
of cohesive communities share more features of the structure
network, while the control group differs more from the struc-
ture architecture.

C. Robustness of cohesive communities in cognitive tasks

As cohesive communities are present in resting state BFN,
it is interesting to test whether the three cohesive communities
will be destroyed when the brain is doing cognitive tasks.
Task fMRI used here were scanned from the same subjects
as resting state fMRI. These cognitive tasks include (i) the
balloon analog risk task (BART), (ii) spatial working memory
task (SCAP), (iii) stop-signal task, (iv) and task-switching
task. For details of these tasks, see the Supplemental Material
[31].

We first calculated the community solidification degree
of each cognitive task BFN by applying the same research
process used in resting state BFN; the results are shown in
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FIG. 6. The community solidification degree matrix of all node pairs (top) and the three cohesive communities (bottom) in (a) BART,
(b) SCAP, (c) stop-signal task, and (d) task-switch task.

Fig. 6. The top panel of Fig. 6 shows the community solidi-
fication degree of the whole network for the four tasks. The
distribution of community solidification degrees across the
BFN is significantly changed by different cognitive demands.
The bottom panel shows the community solidification degree

matrices of the three cohesive communities. It is obvious
that community solidification degrees are equal to 1 within
the three cohesive communities in most cases, suggesting the
brain reconfiguration under task stimulus has little influence
on the modular structure of cohesive communities. Prompted
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FIG. 7. The clustering coefficient (left column), characteristic path length (middle column), and FC (right column) of the three cohesive
communities in all four task states (BART, SCAP, stop-signal task, and task-switch task) and resting state. The top row is for cohesive
community 1, the middle row is for cohesive community 2, and the bottom row is for cohesive community 3. The symbol “*” stands for
the significant difference (two-sample t-test, p < 0.05).

by these results, we wonder whether the network functional
features of cohesive communities are also robust upon dy-
namic reconfiguration of BFN from resting state to task states.
We compared the clustering coefficients, characteristic path
length, and FC of the three cohesive communities in all four
task states and resting state. As shown in Fig. 7, except for the
FC of community 3 in the SCAP state [Fig. 7(i)], community
1 and community 3 did not perform significantly different be-
tween the task states and resting state in terms of the clustering
coefficient, characteristic path length, and FC. However, the
three measures of community 2 in task states are significantly
different from the resting state [Figs. 7(d)–7(f)]. These results
indicate that the basic modular structure of cohesive commu-
nities remains stable under task stimulus.

IV. DISCUSSION AND CONCLUSIONS

In this paper, we investigated the nodal module temporal
dynamic behavior of BFN and focused on the properties of
cohesive communities. Based on the overlapping sliding-time
window approach, we constructed the temporal multilayer
BFN and defined the community solidification degree to
detect cohesive communities. We revealed three cohesive
communities in resting BFN and found that the cohesive

communities had higher clustering coefficients and shorter
characteristic path lengths. By investigating the complexity in
information processing, we observed that the FC of cohesive
communities has lower sample entropy and shows more simi-
larity with SC. In particular, we showed that the same cohesive
communities existing in the resting state are also present in
task states.

The nodal switching between modules occurs in modular
reconfiguration of BFN, and its relationship to brain func-
tions has been widely explored [22,27]. However, the groups
of nodes that do not exhibit module switching behavior are
neglected in previous studies. A similar concept has been
explored in other network science domains [28], but the func-
tions of this kind of node have not been fully discussed.
Here, we used community solidification degree to identify
cohesive communities in BFNs based on multilayer network
analysis. The cohesive communities comprised the nodes that
did not switch between modules during brain modular re-
configuration. We found three cohesive communities located
in the anterior, middle, and posterior of the brain, respec-
tively (Fig. 4). The cohesive communities have two features.
First, they are indivisible. Second, they are not independent
communities but join other nodes to form larger community
structures in each temporal FC. The second feature appears
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to be a characteristic of hierarchical modularity. “Hierarchical
module” means that a large complex network could be broken
down into smaller modules that are interlinked with each other
[40]. Combined with the first feature, we could speculate
that cohesive communities act as the substrate layer of the
hierarchical modular structure in dynamic switching between
different BFN states. In BFN, the hierarchical modular struc-
ture plays an important role in supporting normal information
integration and segregation processing [41]. This type of or-
ganization facilitates efficient spatial embedding, evolutionary
adaptability, robustness to perturbations, and maximized func-
tional diversity [42]. In the following discussion, we show
that the cohesive communities are the more efficient parts
of information processing of BFN and are robust to external
task perturbations. This further demonstrates that the cohesive
communities play an important functional role in supporting
hierarchical modularity of BFN.

In the present work, we demonstrated the special in-
formation integration and segregation features of cohesive
communities by calculating their clustering coefficients
and characteristic path lengths. We found every cohesive
community had higher clustering coefficients and shorter
characteristic path lengths [Figs. 5(a) and 5(b)]. The clus-
tering coefficient measures the number of triangles in the
network, and a larger clustering coefficient reflects higher
functional segregation [37]. Inversely, characteristic path
length estimates integration of the network, with shorter
path length reflecting higher integration. Simultaneously, high
segregation and integration are the typical characteristics of
small-world networks [43]. Furthermore, the clustering coef-
ficients are positively correlated with local efficiency, and the
characteristic path length is inversely related to global effi-
ciency of the network [44]. Our results suggest that cohesive
communities are part of BFNs with more small-worldness and
higher information processing efficiency. In addition, in terms
of FC-SC similarity, we found that the cohesive communities
have high similarity between SC and FC. This result implies
that there are more direct structural connections within func-
tional cohesive communities. In general, a closer link to SC
is found in FC during the integrated state of BFN [45]. Our
findings suggest that cohesive communities may be the core
to integrating BFN as densely direct SC always promotes
information for global broadcast [46].

We further investigated the consistency of cohesive com-
munities in task states, including BART, SCAP, stop-signal
task, and task-switch task. Our results indicated that the three

cohesive communities in the resting functional network are
robust during external task perturbations. It has been demon-
strated that reconfiguration of BFN across a wide variety of
tasks is highly relevant to the resting state [47]. The robustness
of cohesive communities in cognitive tasks confirmed the
existence of the intrinsic structure in BFN during both resting
state and higher-order cognitive information processing. The
present results may provide potential support for the view-
point that task-induced networks are modestly reorganized
from the resting state network [5,48]. It is worth noting that
“structural” stability does not mean the “functional” stabil-
ity of cohesive communities in task states. We calculated
clustering coefficients, characteristic path lengths, and FCs
of cohesive communities in task states and showed that the
second cohesive community is significantly different from
the resting state. The second cohesive community consists
of regions in attention networks. The high activation of at-
tention networks in tasks may induce this kind of significant
change in the second cohesive community. The correlation
between cognitive performance and switching of BFN states
or switching of nodes between different communities has been
discussed in previous studies [4,27]. It will be important for
future research to build bridges between task performance and
the architecture of cohesive communities to better understand
the functional role of cohesive communities in the brain.

In summary, we studied the special cohesive communities
of BFN in resting state and task states. We first certified
the existence of cohesive communities during brain mod-
ular reconfiguration. Second, we showed that the cohesive
communities have higher clustering coefficients and shorter
characteristic path lengths. Third, we found that the FCs of
cohesive communities are less complex and more similar to
SC. Finally, we highlighted that the same cohesive communi-
ties existing in the resting state are also present in task states.
These findings not only reveal the characteristics of cohesive
communities but also indicate the intrinsic relationship be-
tween the resting state and task states of the brain.
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