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To understand controlling a complex system, an estimation of the required effort needed to achieve control is
vital. Previous works have addressed this issue by studying the scaling laws of energy cost in a general way with
continuous-time linear dynamics. However, continuous-time linear dynamics is unable to capture conformity
behavior, which is common in many complex social systems. Therefore, to understand controlling social systems
with conformity, discrete-time modeling is used and the energy cost scaling laws are derived. The results are
validated numerically with model and real networks. In addition, the energy costs needed for controlling systems
with and without conformity are compared, and it was found that controlling networked systems with conformity
features always requires less control energy. Finally, it is shown through simulations that heterogeneous scale-
free networks are less controllable, requiring a higher number of minimum drivers. Since the conformity-based
model relates to various complex systems, such as flocking, or evolutionary games, the results of this paper
represent a step forward toward developing realistic control of complex social systems.
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I. INTRODUCTION

The controllability of complex networks have been studied
extensively in recent years [1–14]. Owing to the ubiquity of
networked systems in social [15], biological [16–18], eco-
logical [19], technological [20], or financial [21] systems,
understanding how to control them is important. The nodes of
a network represent individual members, for example, species
in an ecological network [15] or individuals in an opinion
network [22], and links between nodes represent coupled
interactions, for example, when a particular specie preys on
the other, or when the opinion of an individual influences the
opinion of others. Based on their complex networked inter-
actions, complex dynamical systems could be modelled with
state equations, where the states represent, for example, pop-
ulation level or support/opposition of a particular idea. Left
to their own devices, these complex dynamical systems would
evolve over time in a certain way. However, by introducing
appropriate external interventions, the node states evolution
could be altered (controlled) and made to behave in some
other prescribed ways [1]. Therefore, by finding out which
nodes in the network need to receive the appropriate external
control signals (nodes which are injected with control signals
are called driver nodes) [1,23], a complex system could be
controlled and have its node states steered toward the desired
final state vector.

Within the literature, particular attention has been paid
toward the energy cost needed for control. The energy cost
relates to the amount of effort that the drivers have to consume
to steer the state vector, and is affected by the inverse of the
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Gramian [24], which is dependent on the network structure,
driver nodes, and control time Tf . Numerically, the energy
cost has been studied in the context of optimization [25–28]
and computation [29,30]. Analytically, scaling behaviors have
been derived in terms of number of drivers [31], target nodes
cardinality [32], and Tf [24,33,34].

While the aforementioned works have been adequate in
their treatment of network control, the results presented have
so far generalised the network dynamics to be continuous-
time and linear, without taking into account conformity. Given
that networked controllability is restricted to the study of
networks with linear dynamics owing to the difficulty in
controlling nonlinear dynamical systems [2], continuous-time
linear dynamics modeling is unable to capture conformity,
which are often nonlinear [35], the same way that discrete-
time linear dynamics modeling can [36]. As shown in
Ref. [36], when the dynamics of the networked system has
conformity behavior, where each member adapts and mimics
its nearest neighbors’ node states, the results obtained can
differ when comparing network dynamics with and with-
out conformity. For example, the eigenvalues of unweighted
chain, ring, and complete graphs differ when comparing the
systems with and without conformity. Besides, the conclu-
sions drawn from structural controllability using a generalized
network structure were inconsistent when taking into account
self-dynamics [4]. Further, conformity dynamics models a
significant class of social systems in a more realistic way,
which a generalised linear dynamics may fail to capture. For
example, evolutionary games [37], learning behaviors [38,39]
and collective movements [40–44] of animals are all described
by models with conformity feature. Given the sensitivity of
model specificities and the importance of control energy, it
would be worthwhile to revisit previous calculations, keeping
in mind conformity dynamics.
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In this paper, the energy cost needed to control a complex
network with conformity behavior is studied. The idea behind
this work is to check what are the effects of the mechanism
of conformity on the energy cost. To do so, the energy cost
is studied analytically through a series of scaling laws. In
general, the energy cost is affected by several different param-
eters such as initial state vector, final state vector, final control
time Tf , number of drivers, and even network eigenvalues.
Therefore, a systematic study of the analytical scaling laws of
the control energy is advantageous, as compared to numerical
ones, because it characterizes exactly the boundaries of the
energy cost based on these different parameters and allows
the energy cost to be estimated. Based on the research results,
it was found that for controlling networks with discrete-time
linear dynamics and conformity behavior, the lower and upper
bound energy cost scales as a function of Tf similarly to those
of continuous-time linear dynamics without conformity be-
havior. While their scaling behaviors are similar, their energy
costs are not. When comparing the energy cost needed to
control systems with and without conformity, it was found
that the energy cost of those with conformity features are
always lower, suggesting that the mechanism of conformity
is beneficial to the control of networked systems. Finally,
the controllability of scale-free (SF) networks with degree-
distribution P(k) ∼ k−γ was also studied, and it was found
that with or without conformity, the scaling exponent γ plays
an important role in controllability, where SF networks with
lower scaling exponent γ are less controllable, requiring a
higher number of minimum driver nodes.

II. PROBLEM FORMULATION

In networked systems with conformity behavior, each node
i mimics the strategies (or opinions) of its nearest neighbors j
by adapting its node state in the next round as the average of
its ni nearest neighbors’ node states in the current round [36]:

xi(τ + 1) = 1

si

ni∑
j=1

âi jx j (τ ), (1)

where xi(τ ) is the strategy of node i in discrete time τ , si =∑N
j=1 Âi j is the weighted strength of node i, with Â = {âi j}

being the N × N network matrix, where âi j is the directed
weighted connection pointing from node j to node i, and zero
otherwise. Note that xi is a continuous variable that describes,
for example, the degree of opinion in an opinion network
[2,45], where a high xi value indicate support for opinion A,
and a low xi value indicate support for opinion B. In evolu-
tionary games, xi ∈ [0, 1] denotes the probability of node i
to select a particular strategy. For example, xi = 1 indicates
that node i always chooses to cooperate, while with xi = 0,
node i always defects [36]. Equation (1) belongs to a class of
conformity-based memory-one strategy games [46,47], where
the strategy played by an agent is influenced only by the
strategies of their immediate neighbors in the round prior. For
example, a fair player has a weighted probability to cooperate
with other players based their immediate neighbors’ strategies
played in the previous round [48].

Introducing input control signal terms to Eq. (1), and writ-
ing the state equation in vector notation, the complex system

has the following discrete linear time-invariant (LTI) dynam-
ics [36]:

x(τ + 1) = S−1Âx(τ ) + Bu(τ )

= Ax(τ ) + Bu(τ ), (2)

where x(τ ) = [x1(τ ), x2(τ ), ..., xN (τ )]T is the state
vector which captures the node states, u(τ ) =
[u1(τ ), u2(τ ), ..., uM (τ )]T is the input control signals
which attach to the complex network to alter the node
states, B = {bi j} is the N × M input matrix which tracks
where the M number of control signals are placed, where
bi j = 1 if control signal j attaches to node i (nodes which
receive control signals are called driver nodes), and bi j = 0
otherwise, S−1 is a N × N diagonal matrix with its nonzero
entries as the inverse of weighted node strength si (if si = 0,
then set S−1(i, i) = 0), A = S−1Â = {ai j} is the N × N
network matrix with conformity behavior, and is in general
nonsymmetric due to weighted quantity S−1.

Input control signal u(τ ) is responsible for driving the node
states of the network and the energy cost required is defined as
[34,49–51] E (Tf ) = ∑Tf −1

τ=0 uT (τ )u(τ ), where Tf is the final
control time, which is the allocated time that control signal
u(τ ) must complete its tasks. Minimizing the energy cost, the
discrete-time energy-optimal control signal can be derived as
[34,49]

u∗(τ ) = BT (AT )Tf −τ−1W−1(x f − ATf x0), (3)

where

W(Tf ) =
Tf −1∑
τ=0

ATf −τ−1BBT (AT )Tf −τ−1 (4)

is the N × N discrete-time controllability Gramian matrix,
x0 = [x1(0), x2(0), ..., xN (0)]T is the initial state vector and
x f = [x1(Tf ), x2(Tf ), ..., xN (Tf )]T is the desired final state
vector. Substituting u∗(τ ) into E (Tf ), and assuming that x0 =
0, the cost function becomes E (Tf ) = xT

f W−1x f . In addition,
to simplify the scope of the research, the final state vector
x f is normalized by restricting the Euclidean distance xT

f x f

to be one, leading to the normalized cost function E (Tf ) =
E (Tf )/xT

f x f , which is bounded by the eigenvalues of the
Gramian using the Rayleigh-Ritz theorem [52]:

1

|η′
max[W(Tf )]| = E ′ � E (Tf ) � E

′ = 1

|η′
min[W(Tf )]| , (5)

where E ′(E ′
) is the lower (upper) bound of the energy cost,

and |η′
max(W)|(|η′

min(W)|) is the absolute maximum (mini-
mum) eigenvalue of Gramian W. In other words, to calculate
the lower and upper bound energy costs, it is crucial to
compute the inverse of the absolute maximum and minimum
eigenvalues of the controllability Gramian.

The controllability Gramian exists in simplified form,
which has an analytical expression comprising the complex
network’s eigenvalues. This can be obtained through eigen-
decompositions A = PDP−1 and AT = VDV−1, where Dii =
λi is the N × N diagonal matrix containing eigenvalues of
A (AT ), sorted in ascending order of magnitude |Reλ1| �
|Reλ2| � ... � |ReλN |, and P (V) is the N × N associated
eigenvectors of A (AT ). Substituting the eigendecompositions
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into Eq. (4), the Gramian, expressed in Hadamard product
form [24,31,33,34], becomes

W(Tf ) = P
Tf −1∑
τ=0

Dτ P−1BBT VDτ V−1 = PMV−1, (6)

where M(Tf ) is the simplified controllability Gramian, with
(i, j) elements which can be obtained as (see Supplemental
Material [53])

Mi j = Qi j
1 − (λiλ j )Tf

1 − λiλ j
, (7)

with

Qi j = [P−1BBT V]i j . (8)

Therefore, to study the Tf scaling behaviors of normalized
energy cost bounds, it suffices to analyze the eigenvalues of
M(Tf ) as Tf varies:

1

|ηmax[M(Tf )]| = E � E (Tf ) � E = 1

|ηmin[M(Tf )]| , (9)

where E (E ) is the lower (upper) bound of the energy cost,
and |ηmax[M(Tf )]| (|ηmin[M(Tf )]|) is the absolute maximum
(minimum) eigenvalue of M(Tf ).

While most eigenvalues are computed numerically, the
eigenvalues of M(Tf ) can be estimated analytically with the
formulas [33,54]:

|ηmax[M(Tf )]| ≈ |Re[ f (α, β )]| (10)

and

|ηmin[M(Tf )]| ≈
∣∣∣∣Re

1

f (α, β )

∣∣∣∣, (11)

where f (α, β ) =
√

α
N +

√
N−1

N (β − α2

N ), and

α = trace(M2), (12)

β = trace(M4), (13)

α = trace[(M−1)2], (14)

and

β = trace[(M−1)4] (15)

are pertinent estimation parameters for obtaining analytical E
or E .

In subsequent analyses, through the use of Eqs. (10) and
(11), the analytical scaling behaviors of the energy bounds
with respect to Tf are given in terms of small and large Tf

regime, and different number of driver nodes. Where possible,
analytical estimations for E and E are made, if not, then ap-
proximate, or numerical ones, which are all validated against
numerical computations of E and E .

III. RESULTS

In this section, for the first time, the energy cost scaling
laws of a complex network with discrete-time linear dynamics
and conformity behavior is derived and quantified using the
estimation formulas Eqs. (10) and (11). Necessarily, because
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FIG. 1. Comparison of nonconformity and conformity discrete
LTI models. The magnitudes of the largest eigenvalues of Â and
A denoted by Re|λ̂N | and Re|λN |, respectively, for random network
with fixed 〈k〉 = 4 and varying N is shown in panel (a), where each
data point is computed as the mean (error bars are standard deviation)
of 20 independent network realizations. State equation evolving in τ

with conformity dynamics, absent control u(τ ) is shown in panel (b),
while panel (c) shows the node states being driven by one driver node
toward the desired x f = 4. Panel (d) depicts the state equation of
nonconformity dynamics, which is unstable and diverges in τ . Panel
(e) demonstrates the unstable system being driven by one driver node
toward x f = 4, with inset showing the final two time step.

the energy cost is somehow related to the network’s eigenval-
ues, a discussion about the properties of the eigenvalues with
and without conformity, and how they relate to system dynam-
ics is given. Next, the energy costs needed to control complex
networks with and without conformity are compared. Finally,
the controllability properties of a SF network is studied, where
it is showed, for the first time, that the scaling exponent γ of
a SF network tunes its controllability.

The energy cost bounds are estimated analytically us-
ing Eqs. (10) and (11), which are themselves dependent on
Eqs. (12)–(15), whose calculations depend on the traces of
M and M−1. Recalling Eq. (7), Mi j is dependent on λi (and
λ j), the eigenvalues of network A, which is why it is im-
portant to quantify λi, as the energy cost bounds are coupled
to them. As an example, using undirected Erdős–Rényi (ER)
random networks with average degree 〈k〉 = 4 varying from
system size N = 5 up to N = 195, it is shown in Fig. 1(a),
that when the system has conformity behavior, |Reλi| < 1 for
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i = 1, 2, ..., N − 1, with |ReλN | = 1. In contrast, for the same
network structure, but without conformity behavior, let the
system dynamics be

x(τ + 1) = Âx(τ ) + Bu(τ ), (16)

where Â is the network structure without conformity, with
eigenvalues λ̂i (for i = 1, 2, ..., N), then it can be seen from
Fig. 1(a) that Â has maximum eigenvalue |Reλ̂N | > 1, which
makes the discrete-time system unstable because the node
states diverge in time. In practice, an unstable system is un-
desirable and stability is the basic requirement for control
[55]. Thus, when the discrete-time system has conformity, the
network’s eigenvalues change and become less than or equal
to one, causing the system to be stable and controllable.

To demonstrate system stability and instability, the evolu-
tions of node states in an ER network with N = 25, and 〈k〉 =
4, with and without conformity are plotted in Figs. 1(b) and
1(d), with x0 drawn from random uniform [0,1]. In Fig. 1(b),
when each node i adapts its opinion as the average of its ni

nearest neighbors, over time, consensus is reached within the
network. However, when there is no conformity behavior, it
can be seen in Fig. 1(d) that opinions diverge in τ , owing to
Re|λ̂N | > 1.

Regardless of system stability, both types of networks can
be (numerically) controlled with one driver node. Setting x f =
[4, 4, ..., 4]T , and using energy-optimal control signal u∗(τ ),
with Â replacing A in Eq. (3) for controlling network Â, it
is shown in Figs. 1(c) and 1(e) that the node states could be
driven toward x f . However, due to system instability, control
signal u(Â, τ ) has to work much harder to bring the state
vector toward the desired x f . At Tf = 8N , the numerical en-
ergy cost difference between controlling the system with and
without conformity is about 15 orders of magnitude. While
both conformity and nonconformity systems can be numeri-
cally controlled, the node states of the unstable system reach
at least several orders of magnitude, which may in practice be
infeasible.

Next, keeping in mind that λi � 1, the bounded estimates
for the energy cost needed in controlling networks with
discrete-time conformity-based linear dynamics is presented
in the sections that follow. Before proceeding, it is worth men-
tioning that for discrete-time dynamical systems, Tf cannot
be below a certain value, Tf ; otherwise, the controllability
Gramian is not invertible, and the system is not controllable.
Based on numerical experiments, it was found that when using
N drivers, Tf = 1; otherwise,

Tf =
⌈

N

M

⌉
+ 1, (17)

where M is the number of control signals or driver nodes.

A. Lower bound E

As indicated in Fig. 1(a), networks A which have
conformity behavior all have |ReλN | = 1, with the rest
of the eigenvalues λi < 1 for i = 1, 2, ..., N − 1. There-

fore, since Mi j = Qi j
1−(λiλ j )

Tf

1−λiλ j
, all (λiλ j )Tf terms vanish

in the large Tf limit, with the exception of the last
row/col element (using L’hopital’s rule to evaluate the limit)

MNN = limReλ2
N →1 QNN

1−Re(λ2
N )Tf

1−Re(λ2
N )

= QNN Tf . In the large Tf

limit, all Mi j values are small relative to MNN , which dom-
inates, and applying Eq. (10),

E ≈ Re

∣∣∣∣ 1

QNN Tf

∣∣∣∣ ∼ T −1
f , (18)

regardless of number of drivers, which is validated with model
networks (ER and SF) as shown in Fig. 2, and real networks
(office [56] and karate [57]) as shown in Fig. 3. Note that the
scaling E ∼ T −1

f is true for large Tf , but not necessarily true
for small Tf . For small Tf , analytical E should be estimated
with Eqs. (10), (12), and (13) using the nonvanishing Mi j .
However, based on Figs. 2 and 3, E ∼ T −1

f approximates
the small Tf lower bound energy cost with good agreement
between analytical and numerical results in most cases. For
Fig. 3(g), the deviation of the numerical computations from
the analytical scaling is noticeable, and the small Tf an-
alytical E should be estimated with the nonvanishing Mi j

instead.
The driver nodes placement is encoded in Q [Eq. (8)],

which affects the simplified controllability Gramian M
[Eq. (7)], and is responsible for shifting the E plots vertically.
When controlling the network with a single control signal
attached to node h, B is a N × 1 matrix, with entry bh1 = 1,
and the rest of the elements bi j = 0, leading to BBT = Jhh,
where Jhh is a single-entry matrix [58], and substituting into
Eq. (8), Qi j = [P−1] jhvhi. When using d number of drivers
(where 1 < d < N), B is a N × d matrix with the driver nodes
placement bi j = 1 if the jth control signal attaches to node
i and zero otherwise, leading to BBT = Jd1d1 + Jd2d2 + ... +
Jdd dd , where dk represents driver node k for k = 1, 2, ..., d ,
then Qi j = ∑d

k=1[P−1]idk vdk j . Finally, when controlling with
all N drivers such that all N nodes each receive a control
signal, B is a N × N matrix with bii = 1 for i = 1, 2, ..., N and
zero everywhere else, leading to B = I, and Qi j = [P−1V]i j .
Consequently, substituting the resultant Qi j terms into
Eq. (18),

E ≈
⎧⎨
⎩

|Re[[P−1]NhvhN Tf ]−1|, one driver,
|Re[

∑d
k=1[P−1]Ndk vdkN Tf ]−1|, d drivers,

|Re[[P−1V]NN Tf ]−1|, N drivers.
(19)

Comparing Figs. 2(a)–2(c), 2(g)–2(i), and Figs. 3(a)–3(c),
3(g)–3(h), it can be seen that an increase in number of drivers
leads to a decrease in E .

B. Upper bound E

Based on observing the numerical calculations of E , there
are two distinct regimes: small Tf regime, characterized by
linear scaling behavior E ∼ T −�

f , where � is a numerical
value to be found, and large Tf regime, where upper bound
E converge to a constant value. Using different number of
driver nodes leads to different scaling exponents such that
E ∼ T −�1

f , E ∼ T −�d
f , and E ∼ T −�N

f when using one driver,
d drivers, and N drivers, respectively. Note that the range of
small Tf regime is relatively small and decreases with increas-
ing number of driver nodes. Small Tf regime is characterized
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FIG. 2. Energy cost lower and upper bound for controlling model networks. Top-half (a−f) and bottom-half (g−l) panels relate to ER and
SF networks (both are N = 50, 〈k〉 = 6), respectively. Each column represents the same number of drivers, and d = 3. Triangles are numerical
calculations of the inverse of maximum and minimum absolute eigenvalues of M, while solid lines, dashed lines, and dash-dotted lines are
respectively the analytical scaling laws, numerical linear fit, and E estimates using Eq. (11), calculated from numerical M−1.

by the linear scaling behavior E ∼ T −�
f , and not by the range

of Tf . A simple algorithm can be used to perform the linear
fitting of numerical E :

(1) Calculate numerical E at Tf = {Tf , Tf + 1, Tf +
2, ..., Tf + 9}, where Tf is the minimum permissible Tf .

(2) Linear fit the first two data points computed at Tf

and Tf + 1 and accept this range as the valid small Tf linear
scaling regime.

(3) Linear fit the first three data points computed at Tf ,
Tf + 1, and Tf + 2, and measure the R-squared value. If
R-squared value � 0.85, accept the data points as the valid
small Tf linear scaling regime and move to step 4., else termi-
nate.

(4) Repeat step 3. with increasing number of data points:
linear fit E computations evaluated at Tf = [Tf , Tf + i], for
i = 3, 4, ..., 9.

From this simple algorithm, the small Tf regime is linearly
fitted, where for one-driver-node calculations, small Tf regime
spans several data points, which decreases as number of driver
nodes increases. Because using one driver node requires the
most control energy [31], it can be seen that �1 > �d > �N

when comparing Figs. 2(d)–2(f), 2(j)–2(l), and Figs. 3(d)–
3(f), 3(i)–3(j). �N is in general <1 and essentially negligible
in Tf . In addition, �1 ∼ N

〈k〉 regardless of network topology,
as shown in Fig. 4.

Next, E is derived for large Tf limit, when controlling
the network with one driver node, where a control signal is
attached to node h, leading to input matrix B and simpli-
fied controllability Gramian matrix M the same as before in
Sec. III A. For the upper bound, analytical E in the large
Tf regime has to be estimated using Eqs. (11), (14), and
(15), which are dependent on the inverse of the simplified
controllability Gramian, M−1. While M has an analytical
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FIG. 3. Energy cost lower and upper bound for controlling real networks. Top-half (a−f) and bottom-half (g−j) panels relate to office
and karate networks (N = 40, 〈k〉 = 11.9, and N = 34, 〈k〉 = 4.6), respectively. Each column represents the indicated number of drivers, with
d = 3 for office network and d = 10 for karate network. There are no one-driver-node plots for karate network, because its minimum number
of drivers [23] is ND = 10. Triangles are numerical calculations of the inverse of maximum and minimum absolute eigenvalues of M, while
solid lines, red dashed lines, blue dashed lines, and dash-dotted lines are, respectively, the analytical scaling laws, numerical linear fit, small
Tf analytical E , and E estimates using Eq. (11), calculated from numerical M−1.

expression as shown in Eq. (7), analytical M−1 has to be
derived by applying M−1 = M∗

|M| , where M∗ is the adjoint
matrix, and |M| is the determinant. Using Gaussian elimina-
tion to obtain the general expressions of M∗ and |M| based
on M, analytical M−1 in the large Tf limit is obtained as
shown in Eq. (B1). Note that Eq. (B1) differs nontrivially
from Ref. [34]’s discrete-time system M−1, not just in terms
of eigenvectors, but also in terms of form. Inspecting Eq. (B1),
M−1 elements lying in the last row/col are negligible when Tf

is large. Ignoring those terms and applying Eq. (14), analytical
α Eq. (B2) is a constant. Similarly, β can be obtained through

Eq. (15). Substituting α and β into Eq. (11), analytical E is a
constant.

When using more than one driver (d and N drivers) to
control the complex system, it is difficult to obtain analytical
M−1 in the large Tf limit. However, large Tf analytical E can

still be estimated with Eqs. (11), (14), and (13) using M−1

computed numerically. From Figs. 2 and 3, the E scaling be-
havior of the system is noted to be the same as when using one
driver node, and E converge to a constant value in the large Tf

limit. In addition, for N drivers, E can also be approximated
with Eq. (11) using an approximate analytical M−1, which is
a diagonal matrix such that its nonzero entries M−1(i, i) =
[Mii]−1 = 1−λ2

i
[P−1V]ii

. This approximation can be verified against
numerical computation of M−1, where it is noted that the main
diagonal elements are large in comparison to the rest of matrix
elements. Applying approximate M−1 to Eqs. (14) and (15),

α ≈ ∑N−1
i=1 [ 1−λ2

i
[P−1V]ii

]
2

and β ≈ ∑N−1
i=1 [ 1−λ2

i
[P−1V]ii

]
4
, which when

applied to Eq. (11), also yields a constant in the large Tf

limit. The validity of the analytical or approximate results are
demonstrated in Figs. 2 and 3.
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FIG. 4. �1 calculated from numerical linear fit in small Tf

regime of the one-driver scaling law, E ∼ T −�1
f , for varying N and

〈k〉 with random and scale-free network topologies. Each data point
is the mean of 20 independent network realizations and error bar is
the standard deviation.

Regardless of network topology, it can be seen in Figs. 2
and 3 that the scaling behaviors of the upper bound E of the
energy cost with respect to Tf are very similar.

E

⎧⎪⎪⎨
⎪⎪⎩

∼ T −�
f , small Tf ,

≈ constant, large Tf , one driver,
≈ constant, large Tf , d drivers,
≈ constant, large Tf , N drivers,

(20)

where in the small Tf regime, because control signal u(τ )
has to drive the node states in a short amount of time, most
energy is needed. Relaxing Tf requirement on the driver
nodes reduces E at a scaling rate of E ∼ T �1

f , E ∼ T �d
f , or

E ∼ T �N
f depending on the number of drivers used. However,

increasing Tf beyond a certain point, E converge to a constant
value. As expected, because increasing the number of drivers
reduces control energy [31], E is highest when using just one
driver node.

C. Comparing large Tf E: Conformity versus nonconformity

From Figs. 2, 3, and Eq. (20), it is apparent that E scales
∼T −�

f in the small Tf regime, eventually converging to a
constant value in the large Tf limit. This behavior is simi-
lar to those of continuous-time dynamics [33], in particular,
when the nonconformity continuous-time network Ã is not
positive definite (PD, meaning that the eigenvalues of Ã are
all positive) or positive semi-definite (PSD, meaning that the
eigenvalues of Ã are all positive or zeros). A consequent
natural question to ask is: How do the E values compare in the
absence and presence of conformity? Answering this question
could offer insights into the mechanism of conformity in the
context of networked controllability. Before proceeding, it is
worth clarifying why only large Tf E values should be com-
pared between the conformity-based discrete-time dynamical
system and the nonconformity-based continuous-time dynam-
ical system. First, it is not sensible to compare conformity and

nonconformity dynamics energy costs between the discrete-
time systems Eqs. (2) and (16) because while the former
is stable, the latter is unstable. Second, it is not sensible
to compare the energy costs in the small Tf regime, as the
discrete-time dynamical system is limited by Tf , while the
continuous-time dynamical system can set Tf to an arbitrarily
small value. Third, it is not sensible to compare lower bound,
as conformity-based E goes to zero in the large Tf limit. It
should be noted that Tf has different meaning in the discrete-
time and continuous-time system; for example, Tf = 20 is a
relatively small Tf for the discrete-time system, but Tf = 20
is a large enough value for the continuous-time system such
that further increase in Tf would not lead to further reduction
in energy cost [24,33]. For the remainder of this section, it can
be assumed that the Tf values for the continuous-time or the
discrete-time dynamical system are chosen sensibly such that
only the convergent large Tf E values are being compared.

The continuous-time dynamical system has the following
dynamics [1]:

ẋ(t ) = Ãx(t ) + Bu(t ), (21)

where Ã = {ãi j} ∈ RN×N describes the network connection
such that when node j has a directed link to node i, ai j

is nonzero, otherwise, ai j = 0, B = {bi j} ∈ RN×M accounts
for where in the network the control signals are placed,
for example, bi j = 1 if control signal j attaches to node
i, otherwise bi j = 0, t is a continuous variable depicting
instantaneous time, ẋ(t ) = [ẋ1(t ), ẋ2(t ), ..., ẋN (t )]T , x(t ) =
[x1(t ), x2(t ), ..., xN (t )]T , and u(t ) = [u1(t ), u2(t ), ..., uN (t )]T

are, respectively, the instantaneous vector of rate of change
of states, the state vector, and input control signals vector.
Further, the continuous-time nonconformity network Ã is dif-
ferent from the discrete-time nonconformity network Â on the
diagonal matrix elements. For the continuous-time system, to
model system stability [31], ãii = ∑N

j=1 ãi j − δ, where δ rep-
resents a small perturbation to ensure system stability (in con-
trast, discrete-time âii = 0). For the simulations that follow,
δ = 0, which is suitable for modeling opinion dynamics [45].

The energy cost for the continuous-time dynamical system
is defined to be [59] E (Tf ) = ∫ Tf

0 uT (t )u(t )dt , whereupon op-
timizing [24,33] leads to the continuous-time energy-optimal
control signal

u∗(t ) = BT eÃT (Tf −t )W−1(x f − eÃTf x0), (22)

where W = ∫ Tf

0 eÃ(Tf −t )BBT eÃT (Tf −t )dt is the N ×
N continuous-time controllability Gramian, x0 =
[x1(0), x2(0), ..., xN (0)]T is the initial state vector when
t = 0, and x f = [x1(Tf ), x2(Tf ), ..., xN (Tf )]T is the final state
vector at t = Tf that the complex system is being driven
toward. Following analogous reasoning as Sec. II, the bounds
for the energy cost needed in controlling a continuous-time
dynamical system is just the same as Eq. (9), except that ηmin

and ηmax are the minimum and maximum eigenvalues of the
simplified continuous-time controllability Gramian [33]:

M(Tf ) = P̃T WP̃, (23)

where P̃ is the eigenvectors matrix of the eigen-decomposed
continuous-time nonconformity matrix Ã = P̃D̃P̃T , and W
is the continuous-time controllability Gramian matrix. Thus,
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FIG. 5. Comparing the large Tf upper bound energy cost E between the continuous-time nonconformity dynamical system and the
discrete-time conformity-based dynamical system. The network sizes are all N = 50, with average degree of 〈k〉 = 8. Both continuous-time
nonconformity log(E ) and discrete-time conformity log(E ) can be linearly fitted against N/M, indicating that E ∼ eN/M for both types of
systems. Overall, the conformity-based system requires less control energy. Panel (a) shows E needed to control ER networks, while panel
(b) shows E needed to control SF networks. Each data point is computed based on the mean of 20 independent realizations, and error bars
represent standard deviation.

numerically, the upper bound energy cost is computed as

E = 1

|ηmin(M(Tf ))| . (24)

Computing large Tf E for the continuous-time nonconfor-
mity and the discrete-time conformity systems, their energy
costs are compared in Fig. 5. For both Figs. 5(a) and 5(b),
corresponding to ER networks and SF networks, log(E ) is
plotted on the vertical axes, while N/M, the total N number
of nodes of the complex network over the total M number of
control signals, is plotted on ther horizontal axes. For ease
of reading the energy costs, the equivalent log10(E ) scale is
also provided on the right-end vertical axes. Unsurprisingly, as
noted from Fig. 5, the linear relationship between log(E ) and
N/M affirms the continuous-time results reported by Ref. [31],
that the upper bound E ∼ eN/M , indicating that an increase
in the number of drivers leads to a decrease in maximum
control energy at an exponential rate. Different from what
has already been reported in the literature, however, is that
this scaling behavior, E ∼ eN/M , is also true for the discrete-
time dynamical system with conformity. Further, regardless of
number of drivers and complex network topology, the upper
bound energy cost E of the discrete-time conformity-based
dynamical system always requires less control energy. When
using only one control signal to drive the network such that
N/M = 50, the difference in E can be as much as 20 orders
of magnitude. The disparity in E lessens as the M number of
drivers increases. The results suggest that the mechanism of
conformity always leads to a complex system that is easier to
control, requiring less control energy.

D. The role of scaling exponent γ in the controllability
of SF networks

When computing ND minimum number of drivers [23]
needed to ensure controllability of the karate network in

Fig. 3, it was found that ND = 10. Defining the degree of
controllability as the fractional number of minimum drivers
over the total number of nodes, nD = ND

N , and 〈k〉
N as the density

of connections of the network, the karate network was low in
controllability (requiring high Nd to be controlled), with nD ≈
0.29, despite being dense in connections 〈k〉

N ≈ 4.6
34 ≈ 0.14.

In contrast, as shown in Ref. [36], SF networks with γ = 3
have nD decreasing monotonically with increasing 〈k〉 toward
nD = 1

N , where starting at 〈k〉
N ≈ 3

500 = 0.006, are sufficiently
dense and controllable with one driver. Therefore, with the
karate network as a counterexample, 〈k〉 cannot be the only
mechanism in determining the controllability of SF networks.

The scaling exponent γ also affects the controllability of
SF networks. Using the static model [60] to generate SF
networks with varying γ (where 2 < γ < ∞), it is shown
in Fig. 6, for fixed N = 500, that SF networks with lower γ

(2.05) are less controllable. However, high γ (5 and 10) does
not improve the controllability of SF networks significantly
when compared to γ = 3. All scaling exponent γ curves
display decreasing nD with increasing 〈k〉, and the curves are
the same without or without conformity dynamics.

IV. DISCUSSION

In this paper, the energy cost needed to control a complex
network with conformity behavior is studied. To do so, a series
of scaling laws were derived, based on the number of driver
nodes, to characterize the control energy as a function of Tf

in terms of its lower bound and upper bound, allowing for the
energy cost to be estimated. A summary of the scaling laws
can be found at Table I. In particular, it was found that lower
bound scales as E ∼ T −1

f , suggesting that in the large Tf limit,
no energy cost is needed by the driver nodes to steer the state
vector toward the least costly direction. If the intended final
state vector coincides with the network consensus opinion,
which can be reached naturally with conformity dynamics,
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FIG. 6. The degree of controllability nD of SF networks with
varying γ and 〈k〉 values. Each data point is the mean of 20 inde-
pendent network realizations, with the error bar being the standard
deviation.

then no further action is required by the driver nodes. Upper
bound energy cost decreases with increasing Tf at a rate of
E ∼ T −�

f in the small Tf limit, suggesting that in this regime,
setting a relatively larger Tf always leads to less energy cost.
Further, it was found that �1 ∼ N

〈k〉 regardless of network
topology, and the small Tf regime scaling behavior depends
only on system size and average node degree. In the large
Tf limit, E converges to a constant value, indicating that in
this regime, the energy cost cannot be lowered any further by
increasing Tf . Overall, these scaling laws have implications
about the trade-off between final control time Tf and energy
cost and is useful to the design of control strategies in complex
social networks with conformity behavior.

It is interesting to note the difference in controllability
and energy cost of the networked systems with and without
conformity. From the point of view of dynamical systems,
the discrete-time nonconformity model Â is always prac-
tically uncontrollable owing to system instability. Yet, the
same network structure with conformity in discrete-time lin-
ear dynamics, A = S−1Â, is always stable and controllable,
suggesting that the mechanism of conformity can make an
otherwise unstable and uncontrollable discrete-time linear dy-
namical complex system stable and controllable. In terms
of controllability, it was found that the fractional minimum
number of drivers that guarantees the controllability of a
SF network is unaffected by the mechanism of conformity.

TABLE I. Summary of the scaling behaviors of the lower bound
E and upper bound E of the energy cost with respect to Tf in small
and large Tf regime using one, d , and N number of drivers.

Tf regime One driver d drivers N drivers

E Small/large ∼T −1
f ∼T −1

f ∼T −1
f

E Small ∼T −�1
f ∼T −�d

f ∼T −�N
f

E Large Eq. (11) with Eq. (B1) Constant Constant

Instead, given the scale-free degree distribution P(k) ∼ k−γ

of a SF network, it was found that the scaling exponent γ

tunes the controllability, and heterogeneous (smaller γ ) [61]
SF networks are less controllable, requiring a higher minimum
number of driver nodes. In terms of energy cost, networks
with discrete-time linear dynamics and conformity behavior
and networks with continuous-time linear dynamics but no
conformity behavior both scale as a function of number of
drivers as E ∼ eN/M , indicating that regardless of conformity,
adding more driver nodes always reduces the maximum con-
trol energy at an exponential rate. Nevertheless, comparing the
convergent large Tf E values of the different systems shows
that the conformity-based model always requires less control
energy with a difference of E values by as much as 20 orders
of magnitude when using one driver node to control networks
of system size N = 50. All in all, the results suggest that the
mechanism of conformity plays an important role in making a
complex social system more controllable.

Objectively speaking, the degree to which a social system
is controllable has neutral connotations: It is neither better nor
worse to be more or less controllable. For example, a complex
social system that is more difficult to control is at the same
time more resilient against malicious social manipulations as
it is against positive social change. The converse is true for
a complex social system that is easier to control. Thus, from
the point of view of governance, conformity behavior in com-
plex social systems should be discouraged in some situations,
for example, the sharing of controversial or polarizing news,
and encouraged in some others, for example, the propaga-
tion of ideas which can lead to positive social change such
as recycling. Recently, a few sociophysics works have been
successful in corroborating their mathematical models with
real world data, such as the distributions of agree, disagree,
or undecided in controversial and noncontroversial topics us-
ing poll data [62], and the emergence of echo chambers in
social networks surrounding politically controversial topics
using Twitter data [63]. It would be interesting to corrobo-
rate or even disprove, with real world data, the claim of the
present research that conformity in social networks always
leads to a situation where the network is easier to control or
influence. Further, a limitation of networked controllability is
that only linear dynamics can be studied [2], while various
socio-physics models can be nonlinear or have states which
are not continuous variables [22]. In these types of models,
how would conformity dynamics influence the system as a
whole?

ACKNOWLEDGMENTS

The authors are grateful to Dr. Chew Lock Yue and Dr.
Chiam Keng-Hwee for helpful discussion and suggestions,
and Matthew Ho for guidance on creating high resolution
figures from Matlab. H.C. and E.H.Y. acknowledge support
from Nanyang Technological University, Singapore, under its
Start Up Grant Scheme (Grant No. 04INS000175C230).

APPENDIX A: METHODS

System stability, network matrix diagonal entries and
numerical precision require careful attention during compu-
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tation. Unlike its continuous-time counterparts, which could
be stabilized by introducing negative terms along the net-
work diagonals [31], the discrete-time system cannot be
stabilized the same way. Introducing diagonal entries in Â
would cause system instability for both nonconformity and
conformity discrete-time dynamics. Therefore, in this work,
for discrete-time dynamics, the diagonal entries of Â are
zero, and conformity-based model is stable with eigenvalues
λi � 1. When computing the state equation of the unstable
nonconformity discrete-time dynamics, which diverges, high
numerical precision is needed, which can be achieved using
Advanpix [64]. Computing the unstable state equation without
high numerical precision, using the standard double preci-
sion, would lead to erroneous calculations where they would
wrongly stabilize in large τ . Further, one-driver-node control
typically requires high energy cost, and E has to be calculated
with high numerical precision.

The model networks used in this paper are constructed
with the standard Erdős–Rényi random network algorithm,
and the static model [60], where in Fig. 2, γ = 2.5, in Fig. 5,
γ = 3.0, and in Fig. 6, γ is varied. All model networks Â
and Ã are undirected, symmetric, and weighted, with link
weights âi j = â ji or ãi j = ã ji drawn from random uniform

(0,1]. The network construction algorithms do not guarantee
that the graph object does not have isolated nodes, and for
one-driver-node calculations, checks were done to ensure that
each node has at least one connection, otherwise the network
was discarded and replaced. For the real networks, the karate
network is unweighted with link âi j = 1 if nodes i and j are
connected and zero otherwise, the office network is weighted
but with integer âi j greater or equal to 1 if nodes i and j are
connected and zero otherwise.

With sufficiently high average degree 〈k〉, the conformity-
based model networks used have ND = 1, and any random
choice of driver nodes (for d drivers and one driver) would
suffice to ensure network controllability. It should be noted
that k, node degree, and s, node strength, are distinct from
each other; where the former is calculated from the adjacency
matrix, and the latter from Â whose links âi j are weighted. For
computing minimum driver nodes [23], the Matlab software
written by Patel was used [65].

APPENDIX B: ONE-DRIVER-NODE ANALYTICAL
EQUATIONS

M−1(i, j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)N
∏N−1

k=1 (1 − λiλk )
∏N−1

l = 1
l �= i

(1 − λlλi )

[P−1] jhvhi
∏N−1

k = 1
k �= i

(λi − λk )
∏N−1

l = 1
l �= i

(λl − λi )
, i = j, (N − 1) × (N − 1) block,

[
(−1)N+1

(λ j − λi )vhi[P−1] jh

] ⎡
⎢⎢⎣

∏N−1
k=1 (1 − λiλk )

∏N−1
k = 1
k �= i

(1 − λkλ j )

∏N−1
k = 1
k �= i

(λi − λk )
∏N−1

k = 1
k �= j, i

(λk − λ j )

⎤
⎥⎥⎦, i �= j, (N − 1) × (N − 1) block,

1

qNN Tf
= 1

[P−1]NhvhN Tf
, i = j = N,

[
(−1)N

[P−1] jhvhi(λ j − λi )Tf

]⎡
⎢⎢⎣

∏N−1
k=1 (1 − λiλk )

∏N−1
l = 1
l �= i

(1 − λlλ j )

∏N−1
k = 1
k �= i

(λi − λk )
∏N−1

l = 1
l �= j

(λl − λ j )

⎤
⎥⎥⎦, i �= j, N th row/col.

(B1)

α = trace[(M−1)2] ≈
N−1∑
i=1

N−1∑
a = 1
a �= i

[M−1]ia[M−1]ai + [M−1]ii[M−1]ii

≈
N−1∑
i=1

N−1∑
a = 1
a �= i

[
1

(λa − λi )vhi[P−1]ah

]⎡
⎢⎢⎣

∏N−1
k=1 (1 − λiλk )

∏N−1
k = 1
k �= i

(1 − λkλa)

∏N−1
k = 1
k �= i

(λi − λk )
∏N−1

k = 1
k �= a, i

(λk − λa)

⎤
⎥⎥⎦

[
1

(λi − λa)vha p−1
ih

]

×

⎡
⎢⎢⎣

∏N−1
k=1 (1 − λaλk )

∏N−1
k = 1
k �= a

(1 − λkλi )

∏N−1
k = 1
k �= a

(λa − λk )
∏N−1

k = 1
k �= i, a

(λk − λi)

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

∏N−1
k=1 (1 − λiλk )

∏N−1
l = 1
l �= i

(1 − λlλi )

[P−1]ihvhi
∏N−1

k = 1
k �= i

(λi − λk )
∏N−1

l = 1
l �= i

(λl − λi )

⎤
⎥⎥⎦

2

. (B2)

See Supplemental Material for additional information [53].
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