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Nonequilibrium thermodynamics of glycolytic traveling wave: Benjamin-Feir instability
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Evolution of the nonequilibrium thermodynamic entities corresponding to dynamics of the Hopf instabilities
and traveling waves at a nonequilibrium steady state of a spatially extended glycolysis model is assessed
here by implementing an analytically tractable scheme incorporating a complex Ginzburg-Landau equation
(CGLE). In the presence of self and cross diffusion, a more general amplitude equation exploiting the multiscale
Krylov-Bogoliubov averaging method serves as an essential tool to reveal the various dynamical instability
criteria, especially Benjamin-Feir (BF) instability, to estimate the corresponding nonlinear dispersion relation
of the traveling wave pattern. The critical control parameter, wave-number selection criteria, and magnitude of
the complex amplitude for traveling waves are modified by self- and cross-diffusion coefficients within the
oscillatory regime, and their variabilities are exhibited against the amplitude equation. Unlike the traveling
waves, a low-amplitude broad region appears for the Hopf instability in the concentration dynamics as the
system phase passes through minima during its variation with the control parameter. The total entropy production
rate of the uniform Hopf oscillation and glycolysis wave not only qualitatively reflects the global dynamics
of concentrations of intermediate species but almost quantitatively. Despite the crucial role of diffusion in
generating and shaping the traveling waves, the diffusive part of the entropy production rate has a negligible
contribution to the system’s total entropy production rate. The Hopf instability shows a more complex and
colossal change in the energy profile of the open nonlinear system than in the traveling waves. A detailed analysis
of BF instability shows a contrary nature of the semigrand Gibbs free energy with discrete and continuous wave
numbers for the traveling wave. We hope the Hopf and traveling wave pattern around the BF instability in terms
of energetics and dissipation will open up new applications of such dynamical phenomena.
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I. INTRODUCTION

Oscillation is a ubiquitous phenomenon in a living system
[1–3], starting from cellular rhythms [4–6], oscillation in sin-
gle enzyme systems [7], to glycolytic oscillation in a cell [8,9]
with a diverse oscillatory pattern from different origin but with
a universal underlying principle. Glycolysis, a crucial energy-
generating pathway of the metabolism in a living system,
involves a complex chemical reaction network. From simple
nonlinear models [10,11] to sophisticated complex models
[12–14], several theoretical schemes have been proposed to
capture the temporal and spatial oscillatory behavior of gly-
colysis. However, the intricacy of the sophisticated glycolysis
model hinders the investigation of any particular mechanism
within a specific regime. Therefore, in the spirit of simplicity
and clarity, we have chosen the two-variable Selkov model
extended by diffusion, which provides scope for studying the
vital dynamical features and elaborating them from the theo-
retical ground [15,16]. From the kinetic picture of glycolysis
to the Selkov equation, obscurity arises with the consideration
of many irreversible states. Here we have concentrated on the
reversible kinetics of the Selkov model as an open system with
Rayleigh oscillator form to study nonequilibrium steady-state
(NESS) [17] phenomena.

*gautam@bose.res.in

The generation of traveling waves from glycolytic activity
in the diffusive layer exploiting the yeast extracts in an open
spatial reactor is previously demonstrated [18,19] experimen-
tally. On the other hand, an amplitude equation [3,20] in the
presence of diffusive coupling is utilized to explain the ap-
pearance of inward rotating spiral waves in glycolysis [21,22].
However, in the previous study [16] of the Selkov model
involving an amplitude equation, either diffusion coefficients
are taken equally in magnitude for analytic investigation or
their contribution is neglected. In our amplitude equation
consideration, all the diffusion coefficients (self and cross)
are present and can take any range of values. In this aspect,
our findings related to the amplitude equation would enable
one with more flexibility in exploring and studying various
standard glycolysis model performance, generic features, and
robustness. For the Selkov glycolysis model, inhomogeneous
control parameter flux [16,23] or periodic substrate influx
[24] has been often considered to investigate various rich
features such as phase reversal, chaotic oscillation, or oscil-
lation entrainment within the oscillatory regime. However,
we have considered the homogeneous concentration of the
control parameter in this report. Therefore features that ap-
pear in homogenous Hopf oscillation or traveling waves are
solely due to uniform chemostatted species concentration and
diffusion coefficients.

The main focus of investigating glycolysis waves was
limited to controlling the spatiotemporal pattern [2,3], recog-
nizing the vital influential factors of the oscillating behavior
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and entrainment of intrinsic glycolytic oscillations until now.
However, the role of glycolysis waves in processing and
spreading biological information [25–27], and thus dictating
the coordination among events in the system, seeks to ad-
dress the questions related to entropic cost, energetics, or
efficiency of the wave. In this report we have investigated
the evolution of nonequilibrium thermodynamic entities cor-
responding to the uniform oscillation and traveling waves in a
simple glycolysis model system of finite size. This thermo-
dynamic description will help to understand any nonlinear
system containing limit cycles or waves on a fundamen-
tal level. Furthermore, our general analysis of the canonical
complex Ginzburg-Landau equation (CGLE) for the extended
reaction-diffusion systems in the presence of both self and
cross diffusion [28] in this report will shed light on how the
different instabilities dictated by the coefficients of amplitude
equation to imprint their signatures on the evolution of the
thermodynamic entities near Hopf instability point at NESS.

The layout of the report is as follows. In Sec. II we have
discussed the reaction dynamics of the Selkov model and
its reversible equivalent version. The reaction-diffusion form
of the glycolytic model and its linear stability analysis are
provided in the next section. In Sec. IV we have derived the
CGLE equation using the Krylov-Bogolyubov (KB) method
and then separate the magnitude and the phase dynamics. In
Sec. V the concentration fields are obtained by combining
analytical results in previous sections. Entropy production rate
and nonequilibrium Gibbs free energy are formulated for the
reaction-diffusion system in Sec. VI. We have provided nu-
merical results and discussions in Sec. VII. Finally, the paper
is concluded in Sec. VIII.

II. SIMPLE GLYCOLYSIS MODEL: FROM KINETIC
SELKOV MODEL TO REVERSIBLE MODEL

In this section we derive simplified partial differential
equation forms of the simple glycolytic models from their
standard chemical reaction networks. The simplified system
will be utilized for linear stability analysis and amplitude
equation formulation in later sections of the report.

A. Kinetic Selkov model

E. E. Selkov proposed a simple kinetic model of glycoly-
sis [10] that exhibits periodic oscillation for a specific range
of parameters. The Selkov model contains the following se-
quence of chemical reactions:

(1)

where ′ρ ′ is a reaction step label. The substrate S1(AT P) is
supplied at constant rate z1, and the product S2(ADP) is re-
moved at a rate v2. The free enzyme E (phosphof ructokinase)
is initially inactive and becomes active only after combining
with the product S2 to form a complex ES2

2 . It should be
noted that a chemical reaction corresponding to ρ = 2 here
generates the product, S2(ADP), irreversibly.

With the assumption that all the reverse rate constants
k−ρ are vanishingly small (10−4), and the forward reaction
rate constants kρ are much higher than the reverse one, i.e.,
kρ � k−ρ , the rate equations of concentrations of intermediate
species in Eq. (1) yield

ẋ1 = (k1 + k2)x2 − k1s1x1 + k3(e0 − x1 − x2)s2
2 − k−3x1

ẋ2 = k1s1x1 − (k−1 + k2)x2, (2)

where concentrations of the species are denoted by

x1 = [
ES2

2

]
, x2 = [

S1ES2
2

]
, s1 = [S1], s2 = [S2].

The steady-state solution of Eq. (2) is

xs.s.
1 = e0k3s2

2[k2 + k−1]

S
, (3a)

xs.s.
2 = e0k3k1s1s2

2

S
, (3b)

where S = (k1s1+k3s2
2 + k−3)(k2 + k−1) − (k−1 + k2 − k3s2)

(k1s1). After rearranging Eqs. (3a) and (3b) we arrive at the
following form:

xs.s.
1 = e0ζ

2
2

1 + ζ 2
2 (1 + ζ1)

, (4a)

xs.s.
2 = e0ζ1ζ

2
2

1 + ζ 2
2 (1 + ζ1)

, (4b)

where ζ1 = k1
k−1+k2

s1 and ζ2 =
√

k3
k−3

s2 are relative concentra-

tions of substrate and product, respectively. Furthermore, we
can also obtain es.s. = e0

1+ζ 2
2 (1+ζ1 )

by exploiting the fact that
total enzyme concentration remains constant over the whole
process. From Eq. (1) we can write the following dynamical
equation:

∂s1

∂t
= z1 − k1s1x1 + k−1x2, (5a)

∂s2

∂t
= k2x2 − k3(e0 − x1 − x2)s2

2 + k−3x1 − k2s2. (5b)

After dimensionless analysis of Eqs. (5a) and (5b), we have

∂ζ1

∂θ
= z −

(
1 + k−1

k2

)
ζ1x1

e0
+ k−1

k2

x2

e0
, (6a)

∂ζ2

∂θ
= α2

[
x2

e0
− k−3

k2

e

e0
ζ 2

2 + k−3

k2e0
x1 − X2ζ2

]
, (6b)

where z = z1
k2e0

, θ = k1k2e0t
k−1+k2

, α2 = k2+k−1

k1

√
k3

k−3
, X2 = 1

e0

√
k−3

k3
.

Now, further applying dimensionless analysis on Eq. (2), we
get

ε
∂x1

∂θ
= x2 − x1ζ1 − K3

K1 + 1

[
x1 − ζ 2

2 e
]
, (7a)

ε
∂x2

∂θ
= ζ1x1 − x2, (7b)

where ε = k1k2
(k−1+k2 )2 , K3 = k−3

k2
, K1 = k−1

k2
. By considering ε is

a very small quantity, we can substitute x1, x2, e in Eqs. (6a)
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and (6b) by their steady-state values. Thus, Eqs. (6a) and (6b)
become

∂ζ1

∂θ
= z − ζ1ζ

2
2

1 + ζ 2
2 (1 + ζ1)

, (8a)

∂ζ2

∂θ
= α2

[
ζ1ζ

2
2

1 + ζ 2
2 (1 + ζ1)

− X2ζ2

]
. (8b)

For further simplification we introduce the rescaled
quantities τ = X 2

2 z−2θ, x = X −1
2 zα2ζ1, y = X −1

2 zζ2, ν =
X −3

2 z4α2, ω = X −1
2 z2α2, κ = zX2

−1α2 in Eqs. (8a) and (8b),
and obtain the following system:

∂x

∂τ
= ν − xy2

1 + z
ν
y2(κ + x)

, (9a)

∂y

∂τ
= xy2

1 + z
ν
y2(κ + x)

− ωy. (9b)

Due to slow glycolytic flux during self-oscillation, i.e., for
z � 1, we can write 1 + z

ν
y2(κ + x) = 1. Finally, the simpli-

fied form of the Selkov model system can be written as

∂x

∂τ
= ν − xy2,

∂y

∂τ
= xy2 − ωy. (10)

B. Chemostatted Selkov model

For the nonequilibrium thermodynamic representation of
the chemical reaction network, all the elementary chemical
reactions must be reversible. However, as mentioned earlier,
the elementary reaction of ρ = 2 in Eq. (1) in the Selkov
scheme is irreversible. An equivalent, completely reversible
description based on the Selkov model can be written as [29]

(11)

where S and P are the ATP and ADP concentrations, respec-
tively. This reversible reaction network would be convenient
in connecting kinetic and thermodynamic descriptions. Here
{S, P} ∈ I are two intermediate species having dynamic
concentration, and {A, B} ∈ C are externally controllable
chemostatted species. Considering that reverse reaction rates
are very small relative to the forward reaction rates, we can
write the dynamical equation of Eq. (11) as

∂s

∂t
= k1a − k2sp2,

∂ p

∂t
= k2sp2 − k3 p. (12)

By introducing the scaled variables τ = k2t
c2

1
, ν = c3

1k1a
k2

, x =
c1s, y = c1 p, ω = c2

1k3

k2
in Eq. (12), we would have the same

set of equations as in Eq. (10). Here c1 is an arbitrary constant.
We would use the parameter ν as the control parameter of the
system, keeping another parameter ω at a fixed value.

III. DYNAMICAL STABILITY OF THE SYSTEM
WITH DIFFUSION

When the spatial aspect of the system is not considered, we
can only have Hopf instability with uniform oscillation with
wave number q = 0 in the model. In a more general case with
a nonzero finite wave number, the reaction-diffusion model of
glycolysis also admits traveling waves.

A unique steady-state value of Eq. (10) that satisfies ẋ =
ẏ = 0 is x0 = ω2

ν
, y0 = ν

ω
. For linear stability analysis at the

steady-state value (x0, y0), one needs to consider the Jacobian
matrix of the model,

J =
(−y0

2 −2x0y0

y0
2 2x0y0 − ω

)
. (13)

Elements of the Jacobian matrix J are the following:
J11 = −y0

2, J12 = −2x0y0, J21 = y0
2, J22 = 2x0y0 − ω.

Determinant and trace of the Jacobian, J , are det(J ) =
ν2

ω
and Tr(J ) = ω − ( ν

ω
)2, respectively. Eigenvalues, λ of

J are given by the characteristic equation, λ2 − Tr(J )λ +
det(J ) = 0. Hence eigenvalues in terms of determinant and
trace are

λ± = Tr(J ) ±
√

Tr(J )2 − 4 det(J )

2
. (14)

As chemical parameters are real quantities, eigenvalues of the
system at stable steady-state are the complex conjugate pair
λ± = λr ± iλi. At the onset of Hopf instability, Tr(J ) = 0,
i.e., J11 + J22 = 0, and it leads to a critical value of the control
parameter as νcH = ω

√
ω. Therefore, at the onset of the Hopf

instability, the determinant is det(J ) = ω2 and eigenvalues
are λ± = ±iω. The critical frequency of the Hopf instability
fcH will be the imaginary part of the eigenvalue λ at the onset
of instability, and hence the period of the limit cycle near
the onset of instability νcH is approximately T = 2π

fcH
, where

fcH = ω. Now the critical eigenvector UcH , corresponding to
the eigenvalue λ = iω at the onset of Hopf instability, is

UcH =
(

1 − i
−1

)
. (15)

Now in the presence of diffusion, the reaction-diffusion
equation of the Selkov model in one spatial dimension r ∈
[0, l] can be expressed from Eq. (10) as

∂x

∂τ
= ν − xy2 + D11xrr + D12yrr,

∂y

∂τ
= xy2 − ωy + D21xrr + D22yrr, (16)

in which D11, D22 are self-diffusion coefficients correspond-
ing to intermediate species x and y, respectively, and D12, D21

are cross-diffusion coefficients of x and y. Diffusion coeffi-
cients can have concentration dependence. However, we have
considered here constant self- and cross-diffusion coefficients
for simplicity.

In the presence of diffusion, the Jacobian J becomes

JD = J − q2D

=
(−y0

2 −2x0y0

y0
2 2x0y0 − ω

)
− q2

(
D11 D12

D21 D22

)
, (17)
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where we have applied a Fourier transform g(r, t ) →
g(q, t ), with q being the wave number. Now the trace
of JD is Tr(JD ) = Tr(J ) − q2Tr(D) = ω − ( ν

ω
)2 − (D11 +

D22)q2, and the determinant of JD is a quadratic equation
of q2,

det(JD ) = det(D)q4 − [D11J22 + D22J11

− D12J21 − D21J12]q2 + det(J ), (18)

in which det(J ) = ν2

ω
is the determinant of J , and det(D)

is the determinant of the matrix containing diffusion co-
efficients. The eigenvalues λ of JD are obtained by the
characteristic equation λ2 − Tr(JD )λ + det(JD ) = 0. Hence
eigenvalues can be expressed only in terms of determinant and
trace as

λ± = Tr(JD ) ±
√

Tr(JD )2 − 4 det(JD )

2
. (19)

The stability criterion would demand both of these eigen-
values have to be negative, and thus in terms of trace and
determinant, this implies Tr(JD ) < 0 and det(JD ) > 0. The
existence of the traveling wave in the presence of diffusion
demands that Tr(JD ) = 0 and det(JD ) > 0.

Now, exploiting the Tr(JD ) = 0 condition, the critical
value of the control parameter ν can be specified as

νctw = w
√

w − (D11 + D22)q2. (20)

The wave number q has to follow q = 2nπ
l according to peri-

odic boundary conditions in the finite domain of size l . Here
n is an integer and specifies the number of oscillations within
the region of interest. The condition det(JD ) > 0 for generat-
ing a traveling wave imposes a restriction on the wave-number
selection. Hence the wave number q in this model needs to
satisfy the condition obtained from (18),

det(D)q4 − [D11 − D22 − D12 + 2D21]wq2 + w2 > 0. (21)

IV. AMPLITUDE EQUATION IN THE PRESENCE OF
CROSS DIFFUSION

The amplitude of a dynamical system is generally a com-
plex quantity that demonstrates features akin to the order
parameter in a phase transition. We have used the KB av-
eraging method [30] to find out the magnitude and phase
dynamical equation of the extended Selkov model in the pres-
ence of both self- and cross diffusion. In this KB method,
the slowly varying magnitude and phase allow us to treat the
instantaneous amplitude equation and the averaged amplitude
equation on an equal footing.

Initially, two new variables, i.e., the total concentration of
intermediate species z = x + y and total flux of u = ν − ωy,
have been introduced to rewrite Eq. (10) of the Selkov model
in the following form:

ż = u,

u̇ = −ω(u − ν) − ω−2(ωz + u − ν)(u − ν)2. (22)

The steady-state solution of the new set of differential equa-
tions is us = 0 and zs = ω2

ν
+ ν

ω
. From now on we use the

notation t in the place of τ to denote time. Now setting up
another new variable as ζ = z − zs will shift the fixed point of

the system to the origin. With the aid of u and ζ it is possible
to represent (22) as a single second-order equation akin to the
generalized Rayleigh equation [23,31,32],

ζ̈ +�2ζ = λ

[
2(1 + c1u − c2u2)u − �2

λ
(ν−2u2 − 2ν−1u)ζ

]
,

(23)

where � = ν√
ω
, λ = ω−ω−2ν2

2 , c1 = (2ω−2ν− ω
ν

)
2λ

, c2 = ω−2

2λ
. By

inserting 2(1 + c1u − c2u2)u − �2

λ
(ν−2u2 − 2ν−1u)ζ = h in

Eq. (23), we obtain

ζ̈ + �2ζ = λh. (24)

Now for the reaction-diffusion representation of the Selkov
model, Eq. (16) comprising of both self- and cross-diffusion
coefficients, we can extend Eq. (24) in the following
way:

ζ̈ + �2ζ = λh + (D22 + D12 − D11 − D21)u̇rr

+(D22 + D12)ζ̇rr + (D11 − D12)urr − D12ζrr .

(25)

For λ being infinitesimal, Eq. (25) would accept simple
harmonic-function-like solutions,

ζ (r, t ) = A(r, t ) cos[�t + φ(r, t )], (26a)

u(r, t ) = ζ̇ (r, t ) = −�A(r, t ) sin[�t + φ(r, t )], (26b)

with slowly varying amplitude A and phase φ during fast
oscillations. Finally, with the aid of Eq. (26a) and (26b),
we acquire the dynamical equations of amplitude and phase,
respectively as,

Ȧ = − 1

�

[
λh − �2

(
D22 + D12 + D12

�2
− D11 − D21

)
ζrr

+ (D22 + D11)urr

]
sin(�t + φ), (27)

�̇ = 1

�A

[
λh − �2

(
D22 + D12 + D12

�2
− D11 − D21

)
ζrr

+ (D22 + D11)urr

]
cos(�t + φ). (28)

Now by taking the average, amplitude and phase equations of
the Selkov reaction-diffusion model in the presence of cross
diffusion are obtained as

Ȧ = Aλ − p1
3λc2�

2

4
A3 − �

2

(
D22 + D12 + D12

�2
− D11

− D21

)
(2Arφr + φrrA) + (D11 + D22)

2

(
Arr − Aφ2

r

)
,

(29a)

�̇ = −p2
�3

8ν2
A2 − (D11 + D22)

2

(
2Arφr

A + φrr

)

− �

2

(
D22 + D12 + D12

�2
− D11 − D21

)(Arr

A − φ2
r

)
.

(29b)
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Here, correction factors p1 = c2
c1

and p2 = 2c1
νc2

are introduced
in Eqs. (29a) and (29b) to include the modification in radius
and phase of the cycle owing to unidirectional acceleration
from the unstable steady state [16].

A. Complex Ginzburg-Landau equation near Hopf onset:
Amplitude and phase equations

Near the onset of Hopf instability, the lowest-order am-
plitude equation, the CGLE [3,20], properly reflects the
dynamics of the partially extended nonlinear oscillatory mod-
els. The unscaled form of CGLE can be represented as

∂Z

∂t
= λZ − (βr − iβi )|Z|2Z + (αr + iαi )∂

2
r Z. (30)

Assuming the same velocity for all the traveling waves and
introducing a comoving coordinate as r = r − velocity × t ,
we can utilize the same amplitude equation of the form of
Eq. (30) for the traveling waves.

By inserting Z = A exp(iφ) in Eq. (30) and separating real
and imaginary parts we obtain

∂A
∂t

= λA − βrA3 − αi(2Arφr + φrrA) + αr
(
Arr − Aφ2

r

)
,

(31a)

∂φ

∂t
= βiA2 + αr

(
2Arφr

A + φrr

)
+ αi

(Arr

A − φ2
r

)
. (31b)

Comparing amplitude and phase Eqs. (31a) and (31b) de-
duced from CGLE with Eqs. (29a) and (29b) derived by the
KB method, we get the following coefficients: βr = p1

3λc2�
2

4 ,

βi = −p2
�3

8ν2 , αr = − (D11+D22 )
2 , αi = −�

2 (D22 + D12 + D12
�2 −

D11 − D21). With the help of the scaled variables A = A√
βr

and r = r√
αr

, we can represent Eqs. (31a) and (31b) as

∂A
∂t

= λA − A3 − α(2Arφr + φrrA) + (
Arr − Aφ2

r

)
,

(32a)

∂φ

∂t
= βA2 +

(
2Arφr

A + φrr

)
+ α

(Arr

A − φ2
r

)
, (32b)

and the corresponding normal form of CGLE [3,33,34] in the
spatially extended system as

∂Z

∂t
= λZ − (1 − iβ )|Z|2Z + (1 + iα)∂2

r Z. (33)

Coefficients in the normal form of CGLE are given by α =
αi
αr

= �(D22+D12+ D12
�2 −D11−D21 )

(D11+D22 ) and β = βi

βr
= − p2

p1

√
ωω

3ν
. In the

case of Hopf instability, it is apparent that only the coefficient
α explicitly depends on both the self- and cross-diffusion
terms.

For large r, the normal form of the CGLE, Eq. (33), has
an asymptotic solution of a simple plane wave for nonlinear
oscillations,

Z = A exp i(ω0t + qr), (34)

where ω0 is the shift in frequency from the critical frequency
ωcH . Here q is a unique wave number selected by the unique

spiral frequency. With the help of Eq. (34), we obtain from
Eq. (33)

A2 = λ − q2, (35a)

ω0 = ωq − ωcH = βA2 − αq2 = βλ − (β + α)q2. (35b)

Here the bulk frequency for the system or the frequency
of uniform oscillation is obtained by inserting q = qcH = 0
in (35b). In general, the phase and group velocities can be
expressed by vp = ωq

q and vg = ∂ωq

∂q = −2(β + α)q, respec-
tively, and they can have different sign.

For slow time variation of amplitude, we can set A to its
steady-state variation. Therefore we can write the following
from Eq. (32a):

A2 = λ − α

(
2Arφr

A + φrr

)
+
(Arr

A − φ2
r

)
. (36)

The phase dynamical equation, Eq. (32b), contains the space
derivatives of A, and due to long-range phase variation we
would remove the higher space derivatives of A in the final
equation. Thus the steady-state amplitude, Eq. (36), can be
simplified to

A2 = λ − αφrr − φ2
r . (37)

By inserting Eq. (37) into Eq. (32b), we obtain the nonlinear
phase dynamical equation as

∂φ

∂t
= βλ + (1 − αβ )φrr − (α + β )φ2

r . (38)

Now introducing the new phase variable, ψ = φ − βλt , we
acquire from (38)

∂ψ

∂t
= (1 − αβ )ψrr − (α + β )ψ2

r . (39)

The exchange between the inward and outward rotat-
ing spiral is associated with the criterion (α + β ) < 0,
whereas the Newell criterion, (1 − αβ ) < 0, gives rise to the
Benjamin-Feir (BF) instability [3,35] from the uniform oscil-
lation. The BF instability, a long-wave sideband instability,
was first identified in deep-water waves [35]. Due to the onset
of BF instability, the wave number and frequency of a previ-
ously uniform traveling wave become irregular.

Now with the aid of derivation with respect to space and
setting ψr = u, we obtain the following equation similar to
the Burger’s equation form (39):

∂u

∂t
= (1 − αβ )urr − (α + β )2uur . (40)

Application of the Cole-Hopf transformation, ψ =
−[ 1−αβ

α+β
] ln χ , to Eq. (39) will transform it into a linear

equation:

∂χ

∂t
= (1 − αβ )χrr . (41)

As phase is a real variable, the trial solution of the
linear dynamical equation, Eq. (41), can be consid-
ered as χ = G(t ) exp (α + β )qr, and inserting the
trial solution into Eq. (41), we would have G(t ) =
G0 exp (1 − αβ )(α + β )2q2t . Therefore a simple solution to
Eq. (41) is χ = G0 exp [(1 − αβ )(α + β )2q2t + (α + β )qr].
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Accordingly, the expression of the phase of the
system is

φ = βλt − 1 − αβ

α + β
[ln G0 + (1 − αβ )(α + β )2q2t

+ (α + β )qr]. (42)

It should be noted that modification of the system’s frequency
will lead to the change of wave number, q, according to the
nonlinear dispersion relation in Eq. (35b).

B. Stability of the plane wave

To test the stability of the asymptotic plane wave solution
of the CGLE, we can afford a small perturbation about the
nonlinear wave state. Thus the perturbed plane wave would
have the following form:

Z = (A + Aper ) exp i(qr + ω0t ). (43)

Here Aper can be expressed in terms of complex growth rate,
σ , in the following way:

Aper = A+ exp (iKr + σ t ) + Ã− exp (−iKr + σ̃ t ), (44)

where Ã and σ̃ are the complex conjugation of A and σ , and
K corresponds to different perturbation modes. Now, inserting
Eq. (43) into Eq. (33) and neglecting the higher order of the
perturbation, we arrive at the following equation:

∂Aper

∂t
+ iω0(A + Aper )

= λ(A + Aper ) − (1 − iβ )(A3 + 2A2Aper + A2Ãper )

+ (1 + iα)
[
∂r

2Aper + 2iq∂rAper − q2(A + Aper )
]
.

(45)

Now substituting Eq. (44) into Eq. (45) and rearranging in
terms of functions exp (iKr + σ t ) and exp (−iKr + σ̃ t ), we
have

[A+σ + iω0A+ − λA+ + (1 − iβ )(2A2A+ + A2A−)

+ (1 + iα)(K + q)2A+] exp (iKr + σ t )

+ [Ã−σ̃ + iω0Ã− − λÃ− + (1 − iβ )(2A2Ã− + A2Ã+)

+ (1 + iα)(K − q)2Ã−] exp (−iKr + σ̃ t )

+ iω0A − λA + (1 − iβ )A3 + (1 + iα)q2A
= 0. (46)

Equating the coefficients of functions exp (iKr + σ t ) and
exp (−iKr + σ̃ t ) to 0, we obtain a homogeneous system com-
prising two linear equations:

[σ + (1 − iβ )A2 + (1 + iα)(K2 + 2qK )]A+
+ (1 − iβ )A2A− = 0, (47a)

[σ + (1 + iβ )A2 + (1 − iα)(K2 − 2qK )]A−
+(1 + iβ )A2A+ = 0. (47b)

We can represent Eq. (47a) and Eq. (47b) as

H

(
A+
A−

)
= 0 , (48)

where

H =

⎡
⎢⎢⎢⎢⎣

σ + (1 − iβ )A2

+(1 + iα)(K2 + 2qK ) (1 − iβ )A2

(1 + iβ )A2 σ + (1 + iβ )A2

+(1 − iα)(K2 − 2qK )

⎤
⎥⎥⎥⎥⎦.

By setting det(H ) = 0, we can find the characteristic equation
for σ and solving the characteristic equation, we get the most
positive growth rate σ as

σ = −A2 − K2 − 2iαqK

+
√

(1 + β2)A4 − (αK2 − βA2 − 2iqK )2. (49)

Now to explore the long-wavelength behavior, we have ex-
panded Eq. (49) around K = 0,

σ = − 2iq(α + β )K +
[

[2q2(1 + β2) + βαA2]

A2
− 1

]
K2

+ O(K3). (50)

We seek the threshold of stable wave number above which
traveling waves show instability. The condition ∂KKσ = 0 sets
a boundary between the stable and unstable wave number.
Therefore, at the onset of instability one can find

q2 = λ(1 − αβ )

2β2 − αβ + 3
. (51)

Thus the wave number lying within the band set by Eq. (51)
near the critical wave number of the Hopf instability would
be the allowed wave number of the traveling wave. Unlike
the equilibrium system, the wave number selection is a sig-
nificant problem to be addressed in a finite system far from
equilibrium [3]. We can have different wave numbers cor-
responding to control parameter values based on different
boundary conditions, dynamical processes, perturbations, and
methodologies. Here we have considered a finite system with
periodic boundary conditions. The wave number q has to
satisfy q = 2nπ

l , where n is an integer to fit the domain length l
and periodic boundary conditions. Therefore the wave number
is quantized, and we have a discrete set of possible wave num-
bers of the plane waves as the control parameter of the system
is tuned. Now the perturbation wave number K also needs to
fit in the finite domain with periodic boundary conditions, and
thus we can write the allowed wave number, q ± K = 2mπ

l .
Here m is also an integer and generally m �= n. The perturba-
tion wave number can be kept at a minimum finite value by
maintaining |m − n| = 1 near the critical wave number of the
Hopf instability. Thus we obtain a discontinuous change in
allowed wave numbers for the control parameter. Now within
the BF instability regime, plane waves are linearly unstable.
However, due to the convective nature of the instability, lin-
early unstable waves can hold some physical relevance. Near
the onset of BF instability, q approaches zero. For q = 0,
Eq. (49) results in the following equation:

σq=0 = −λ − K2 +
√

λ2 − α2K4 + 2αβK2λ. (52)

Now, expanding Eq. (52) for K → 0 and then setting the
Taylor expansion of σq=0 to zero, we arrive at the following
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FIG. 1. Wave number vs the amplitude equation coefficient α is shown in Fig. 1(a). Figure 1(b) illustrates variation of the magnitude of
the complex amplitude with respect to the same coefficient, α. Both figures are obtained by varying the cross-diffusion coefficient D12 from
−0.000 01 to −0.0005 and D21 from 0.000 01 to 0.0005 while other parameters are fixed, i.e., D11 = D22 = 0.000 51, ν = 2.45 and w = 2.

expression:

K2
c = 2λ(αβ − 1)

α2(1 + β2)
. (53)

For the control parameter value extremely near the BF in-
stability onset and within the BF instability regime, linearly
unstable modulated waves with the discrete allowed wave
numbers obtained from the band |K| < Kc persist in the sys-
tem. The effect of the finite domain size on the wave number
selection is presented in detail in Ref. [36].

Equation (51) suggests the wave number q depends explic-
itly on the amplitude equation coefficients α and β. Equa-
tion (53) also shows that the Kc expression contains α and β.
Now the coefficient α contains the cross-diffusion terms, so by
plotting wave numbers against α in Fig. 1(a), we have shown
the nature of implicit dependence of the wave number on the
cross diffusion by varying both the cross-diffusion coefficients
simultaneously while keeping all the other parameters, includ-
ing the self-diffusion coefficients, fixed. Here the zero wave
number point corresponds to the onset of the BF instability
point. Therefore it is possible to enter or leave the BF insta-
bility regime by tuning only the cross-diffusion coefficients
of the system. However, the continuous variation of wave
number is only possible for infinite system consideration.
Similarly, we have illustrated the variation of the complex
amplitude’s magnitude with α in Fig. 1(b). The magnitude sets
the radius of the limit cycle in the system, and from Fig. 1(b)
it is evident that variation in the radius is possible by changing

the cross-diffusion coefficient solely. As the wave number
within the BF instability regime decreases towards the onset
of BF instability point in Fig. 1(a), the magnitude increases
gradually in Fig. 1(b). A decline in the magnitude with a rise
in the wave number is observed outside the instability regime.

V. CONCENTRATION DYNAMICS OF THE SYSTEM

We can have both Hopf instability and traveling waves
within the same parametric regime of the control parameter
ν, depending on whether the selected wave number is zero
or finite nonzero. The temporal pattern in a reaction-diffusion
system can be traced at the critical wave number of Hopf
instability from the corresponding amplitude. The evolution
equation of the concentration representing the uniform oscil-
lation near the onset of Hopf instability can be written by
exploiting the amplitude equation formalism as

zI H = zI 0 + AHUcH exp (i fcHt ) + C.C., (54)

with zI 0 being the time-independent uniform base state for the
extended direction and AH being the amplitude part within the
oscillatory regime given by Eq. (34).

The evolution equation of the concentration, zI TW , repre-
senting traveling waves near the onset of Hopf instability have
expression similar to the Hopf instability. However, unlike
the Hopf instability, the amplitude part AH holds the spatial
variation in the case of traveling waves owing to the nonzero
wave number. Hence the final general form of concentration
dynamics within the oscillatory regime is given by

(
x
y

)
=
(

x0

y0

)
+
√

λ − q2

(
2 cos (ω0t + fcHt + qr) + 2 sin (ω0t + fcHt + qr)

−2 cos (ω0t + fcHt + qr)

)
. (55)

It is important to note here that the cross diffusion in a
two-variable reaction-diffusion model can generate diffusion-
driven Turing instability in the system [37,38]. However, we
have not considered Turing instability in this report. The spa-
tiotemporal chaos can also emerge for large system sizes in the

presence of cross diffusion [39]. This chaotic behavior is also
out of the scope of this study. The concentration dynamics
in Eq. (55) only captures the dynamic features of Hopf in-
stability and traveling waves within the parametric regime of
interest. For the nonequilibrium thermodynamic study of the
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spatiotemporal pattern in the presence of cross diffusion due
to overlapping of Turing and Hopf instability, one can consult
Ref. [40].

VI. THERMODYNAMICS OF NONLINEAR
PHENOMENON OF CHEMICAL REACTION NETWORK

The nonequilibrium thermodynamic framework of nonlin-
ear dynamic phenomena [41,42] at steady state can generate
the system’s energetics near the onset of Hopf instability for
uniform oscillation and a traveling waves pattern. The thermo-
dynamic description of the pattern would reveal more about
controlling the system’s pattern and performance through dif-
fusion coefficients around the BF instability and parametric
phase-reversal dynamics.

A. Conservation laws and emergent cycles

The stoichiometric matrix of the reversible Selkov model
in Eq. (11) is

Sσ
ρ =

⎛
⎜⎝

R1 R2 R3

S 1 −1 0
P 0 1 −1
A −1 0 0
B 0 0 1

⎞
⎟⎠ (56)

The left null vectors corresponding to the left null space of the
stoichiometric matrix Sσ

ρ are defined as the conservation laws
[43] and can be obtained from the expression∑

σ

lλ
σ Sσ

ρ = 0, (57)

where {
lλ
σ

} ∈ R(σ−w)×σ , w = rank
(
Sσ

ρ

)
.

For the stoichiometric matrix Eq. (56) of the reversible Selkov
model, the conservation law of the closed reaction network is

lλ=1
σ = (

X Y A B
1 1 1 1 ).

Components [43], conserved quantities of the chemical reac-
tion network, are defined as

Lλ =
∑

σ

lλ
σ zσ (58)

such that d
dt

∫
drLλ = 0. Thus the component corresponding

to the conservation law is L1 = s + p + a + b. The conserva-
tion law of the system, lλ=1

σ , is broken as the system is opened
by chemostatting. Therefore, the corresponding component of
the open system is no longer a global conserved quantity. The
right null space of the stoichiometric matrix, Sσ

ρ cn
σ , represents

the internal cycle. However, this chemical reaction network
has no internal cycle. The right null eigenvector corresponding
to null space of SI

ρ is defined as the emergent cycle [44].
States of intermediate species remain unchanged over a com-
plete emergent cycle, but chemostatted species are exchanged
between the system and chemostats. The total number of
chemostatted species is equal to the sum of the number of
broken conservation laws and the number of emergent cycles

in the open chemical reaction network [41,44]. Therefore, the
reversible Selkov model has one independent emergent cycle:

c1 =
(1 1

2 1
3 1

)
.

B. Entropy production rate

The forward or reverse flux corresponding to an elemen-
tary reaction can be expressed in accord with mass action

law by j±ρ = k±ρ

∏
σ z

vσ
±ρ

σ , with ′+′ and ′−′ the labels for
the forward and backward reactions, respectively, and vσ

±ρ

denotes the number of molecules of a particular species ′σ ′.
Thus the net flux will be jρ = j+ρ − j−ρ . The thermodynamic
driving forces of the reaction known as reaction affinities
[45] is given by fρ = −∑

σ Sσ
ρ μσ , where Sσ

ρ = vσ
−ρ − vσ

+ρ

is the stoichiometric coefficient of species and μσ = μo
σ +

ln zσ

z0
is the chemical potential with solvent concentration z0

and standard-state chemical potential μo
σ . The nonequilibrium

concentrations of intermediate species solely attribute to the
global nonequilibrium state of the chemical reaction network.
Hence implementing the equilibrium form of thermodynamic
variables in this nonequilibrium framework can be justified
under the assumption that the nonequilibrium system is kept at
local thermal equilibrium at a temperature set by the solvent in
a dilute solution. The system is fixed at constant absolute tem-
perature T by the solvent, and RT is considered as unity here.
From the expression of affinities one can further write another
form in terms of the reaction fluxes of the chemical steps as
fρ = ln j+ρ

j−ρ
. Therefore the entropy production rate (EPR) due

to the chemical reaction using the flux-force relation is

d�R

dt
= 1

T

∫
dr

∑
ρ

( j+ρ − j−ρ ) ln
j+ρ

j−ρ

. (59)

Now, considering diffusive flux and affinity, the entropy
production rate due to diffusion can be expressed as

d�D

dt
=

∫
dr

[
D11

∥∥ ∂x
∂r

∥∥2

x
+ D22

∥∥ ∂y
∂r

∥∥2

y
+ D12

∥∥ ∂y
∂r

∥∥∥∥ ∂x
∂r

∥∥
x

+ D21

∥∥ ∂x
∂r

∥∥∥∥ ∂x
∂r

∥∥
y

]
. (60)

The last two terms on the right in Eq. (60) represent the
contribution of the cross diffusion of the intermediate species.

Total EPR comprises the homogeneous part EPR, reaction
EPR, and diffusion EPR. Under the second law of thermody-
namics, the total EPR will always be positive.

C. Semigrand Gibbs free energy

We need to take the open system’s true thermodynamic po-
tentials to analyze the chemical reaction network’s energetics
at the nonequilibrium regime. The nonequilibrium Gibbs free
energy of a reaction network can be expressed in terms of the
chemical potential as [46]

G = G0 +
∑
σ �=0

(zσμσ − zσ ), (61)
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with G0 = z0μ
o
0. However, to capture the energetics of the

open system properly one needs to define the semigrand Gibbs
free energy [42] of the system analogous to the grand potential
of the grand-canonical ensemble. The semigrand Gibbs free
energy of an open system can be acquired by operating a
Legendre transformation [41] on the nonequilibrium Gibbs
free energy,

G = G −
∑
λb

μλbMλb, (62)

where Mλb = ∑
Cb

lλb
−1

Cb
Lλb represents moieties exchanged be-

tween chemostats and the system. Now the affinities acting
along emergent cycles of the system obey the following
equation,

με = cε ln
kρ

k−ρ

z
−Sc

ρ

c , (63)

where zc and Sc
ρ are respectively the concentrations and

stoichiometric elements corresponding to the chemostatted
species.

VII. RESULTS AND DISCUSSION

The intermediate species’ concentration dynamics are con-
sidered in a simple 1D glycolysis model in the regime of
Hopf instability for uniform oscillation and traveling waves.
Its direct correspondence in the evolution of the entities car-
rying the entropic and energetic descriptions of the system far
from the equilibrium has been investigated systematically. All
the figures here correspond to a NESS in a one-dimensional
system of length l = 200 with absolute temperature T =
300 K, diffusion coefficients D11 = D22 = 0.000 51, D12 =
−0.0002, D21 = 0.0002, and for weakly reversible reactions,
i.e., chemical reaction rate constants k−ρ = 10−4 unless oth-
erwise indicated. Here, forward reaction rate constants of
Eq. (11) are considered as k1 = k2 = 1 and k3 = 2. As both
theoretical [47] and experimental [48] evidence regarding
temperature dependence of glycolysis oscillation are avail-
able, one should stick to a constant temperature assumption. A
constant temperature assumption implies heat diffuses much
faster than the intermediate species of the reaction-diffusion
model. For the parameter ω = 2, we would have a self-
sustained oscillation for the regime below νcH . As a further
expansion of the parameter space of ν results in an unphysical
negative concentration of Y with other parameter values used
in this analysis, we have deliberately chosen a comparatively
small parametric space in the vicinity of νcH for Hopf in-
stability. Moreover, implementing CGLE as the backbone of
our analytical investigation restricts us to near the onset of
instability. We have used here discrete wave numbers for all
the analysis regarding traveling waves due to the finite domain
with periodic boundary conditions as discussed in detail in
Sec. IV B.

Initially, the system is at a uniform base state set by steady-
state values of two intermediate species. We have used a
time step of 0.16 and have considered 520 grid points for a
system size of l = 200. Concentration profiles of the inter-
mediate species over the system length in Fig. 3 for a range
of control parameter values are obtained at a NESS using the

analytical evolution equation of concentrations, Eq. (55). The
total entropy production in Fig. 6 is acquired using Eqs. (59)
and (60) with the aid of concentrations of species at NESS.
Similarly, the semigrand Gibbs profiles in Fig. 7 are obtained
from Eq. (62).

In the lower panel of Fig. 2, we have illustrated the dynam-
ics of the real part of the amplitude field AH in normalized
form near the Hopf instability regime. The dynamics of AH

are obtained from Eq. (34) (i.e., Z in the equation) with the
aid of Eqs. (35a) and (35b). Therefore the variation of the
real part of AH reflects dynamical features of both the phase
and magnitude. In the upper panel of Fig. 2, variation of
the phase φ with the control parameter is demonstrated by
using Eq. (42). Now for the Hopf instability in Fig. 2(d), the
selected wave number is simply zero, and we can observe
an irregular oscillatory behavior of the real part of the Hopf
amplitude field AH for a NESS at time t = 400 as the control
parameter ν is varied within the Hopf instability regime. The
Hopf amplitude’s different magnitude concerning the control
parameter implies how the corresponding limit cycle’s radius
gets modified. This amplitude profile helps us to understand
the dynamics of local concentration in the Hopf instability
parameter space at a fundamental level. Figure 2(a) shows the
system’s phase change for the Hopf instability as a function of
the control parameter. The comparison between Figs. 2(d) and
2(a) suggests that corresponding to a “double-well-shaped”
region of low amplitude at ν = 2.5 in Fig. 2(d), the phase
of the system passes through a local minimum. Therefore we
can state that the appearance of the double-well-shaped, low-
amplitude region in the normalized amplitude profile is due
to phase minima at that point in the case of Hopf instability.
Now for traveling waves, initial changes in the normalized
profile are mainly due to quantization of the wave number (see
Fig. 5). One can notice no notable change in the normalized
real part of the amplitude field of Fig. 2(e) while phase passes
through the minimum in Fig. 2(b). However, when the spatial
distribution of the system phase ceases to a single point in
Fig. 2(b), a spatially homogeneous part in the normalized
amplitude in Fig. 2(e) appears near ν = 2.6. In Figs. 2(d)
and 2(e), we can also observe that the magnitude exhibits a
gradual increase relatively far from the onset of oscillatory
instability point for the variation of the control parameter. The
phase and amplitude change for traveling waves in the limit
of infinite size, i.e., for continuous wave number bands, are
illustrated in Figs. 2(c) and 2(f), respectively. Both the phase
and amplitude of the traveling waves with continuous wave
numbers exhibit more smooth transitions than their discrete
wave-number counterparts.

The three-dimensional (3D) concentration field and a cor-
responding image of the intermediate species X as obtained
from the analytical Eq. (55) are presented in Fig. 3. One can
notice an extra-wide region of low concentration between the
control parameter value ν = 2.4 and ν = 2.6 in Fig. 3(d).
The extra wide region of low concentration has a one-to-one
correspondence with the double-well-shaped low amplitude.
We also discussed that the low-amplitude profile is connected
with the phase slope sign change from negative to positive. To
understand the wide low-concentration region area in terms
of the amplitude equation coefficients, we need to consider
Fig. 4(a). The red dotted line of Fig. 4(a) corresponds to the
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FIG. 2. The system’s phase as a function of the control parameter ν is illustrated in Figs. 2(a) and 2(b) for Hopf instability and traveling
waves, respectively, for finite domain of length l = 200. The phase change in the limit of infinite size is illustrated in Fig. 2(c). The normalized
real part of the Hopf amplitude denoted by Re AH comprised of magnitude and phase is obtained analytically as a function of control parameter
ν at time t = 400 in Fig. 2(d). The corresponding normalized real part of amplitude fields for traveling waves for discrete and continuous wave
number are shown in Figs. 2(e) and 2(f), respectively. These amplitude figures will provide a better understanding of the local concentration
profile in the 1D Selkov model in the parameter space of Hopf instability and traveling waves. Here the diffusion coefficients are D11 = D22 =
0.00051, D12 = −0.0002, D21 = 0.0002, and the value of the parameter ω is set as 2.

variation α + β of the CGLE with control parameter ν, and
the dotted black line refers to α + β = 0 or 1 − αβ = 0 con-
dition. As discussed in Sec. IV A, whenever the α + β values
cross the α + β = 0 line, the phase of the spiral is reversed.
However, the α + β profile always remains below the zero
line in Fig. 4(a). Here the solid blue line in Fig. 4(a) represents
the 1 − αβ condition. The 1 − αβ profile crosses the zero line
near ν = 2.6 and signals a transition from the uniform oscil-
lation to BF instability with the control parameter variation.
Now one can notice that the amplitude in Fig. 2(d) demon-
strates an abrupt low-amplitude profile before the point of
onset of BF instability, and this low-amplitude profile dictates
the extra wide low-concentration region of the concentration
field shown in Fig. 3(d). As the control parameter value is in-
creased beyond the onset of instability point, there is a damped
oscillation type of behavior. Moreover, corresponding to the
extra wide low-concentration regime in the X concentration
of the Hopf instability, we can observe a clear turn back
before moving towards the center in the illustration, similar
to a phase portrait in Fig. 4(b). Therefore the direction change
in the phase portrait of the Hopf instability is a consequence
of a phase slope sign at the fundamental level. Lavrova et al.
[23] found a pulsating regime in temporal dynamics of X
concentration within the uniform oscillatory regime corre-
sponding to phase reversal with time in a previous study of
glycolytic wave propagation with inhomogeneous substrate
influx.

Instead of the zero wave number of uniform oscillation,
when we consider a small finite wave number near qcH = 0,

we would obtain a traveling-wave-type concentration profile
within the oscillatory regime of the system. In Fig. 5, the wave
number near the critical wave number of the Hopf instability
is shown as a function of the externally controlled parame-
ter ν. Discrete wave numbers for different control parameter
values that have been used as allowed wave numbers for the
traveling wave can be seen from the bold line in Fig. 5. These
discrete values of wave number are allowed in the finite do-
main with periodic boundary conditions and are obtained with
the aid of the analytically derived continuous wave number
expressions, Eqs. (51) and (53). The wave number decreases
and approaches the critical value of wave number for Hopf
instability as we change the control parameter value towards
the onset of the BF instability point while all other parameters
remain constant. Then we have again considered discrete and
finite wave numbers within the BF instability region. In the
same figure, a dashed line shows the corresponding continu-
ous wave number profile, which can be selected as valid wave
numbers in the limit of infinite system size. The 3D concen-
tration field of X for the traveling waves with discrete wave
numbers is shown in Fig. 3(b) and the corresponding image
of the concentration field are presented in Fig. 3(e). In the
stable oscillatory regime of the control parameter, traveling
waves are demonstrated for discrete wave numbers within the
linearly stable wave number limit in Fig. 3(e). Even when the
control parameter goes beyond the onset of BF instability,
as seen in Fig. 4(a), our selection of nonzero wave number
generates a modulated pattern due to the convective nature
of BF instability as seen in Fig. 3(e). The disconnectedness
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FIG. 3. In Fig. 3(a), the 3D concentration field of X for the Hopf instability in the Selkov model of length l = 200 as a function of the
externally controlled parameter ν is presented (plot of Y is similar) at time t = 400 and temperature T = 300 K for a fixed value of parameter
ω = 2. The “jet” color map is used to show contrast in concentration field. Figure 3(d) illustrates the corresponding image of the concentration
field of X . The 3D concentration field of X for the same system in the case of traveling waves with finite system consideration is illustrated
in Fig. 3(b) and the corresponding image is shown in Fig. 3(e). The extended spatial dimension is considered along the vertical axis. The 3D
concentration field of X and corresponding image for traveling waves with a continuous family of wave numbers in the limit of infinite size
are demonstrated in Figs. 3(c) and 3(f), respectively. Diffusion coefficients are D11 = D22 = 0.00051, D12 = −0.0002, D21 = 0.0002, and all
the reactions are weakly reversible, i.e., K−ρ = 10−4.

in the traveling wave pattern is due to the different discrete
wave number values corresponding to the control parameter
values. Modification in the traveling waves pattern around
the BF instability due to the control parameter variation is
dictated by the change in amplitude dynamics while passing

through the onset of the BF instability point. For traveling
waves, by selecting the zero wave number around the onset of
BF instability as seen from Fig. 5, amplitude dynamics have
a spatially homogeneous part in Fig. 2. Although the wave
number of the traveling waves at the onset of BF instability

FIG. 4. The Benjamin-Feir (BF) instability and phase-reversal defining conditions corresponding to the amplitude equation are shown in
Fig. 4(a). Figure 4(b) illustrates a plot similar to a phase portrait in the case of Hopf instability. Here X and Y concentrations dynamics are
obtained by varying ν but for a fixed time t = 400. The red dotted line in Fig. 4(a) corresponds to α + β and the solid blue line represents
1 − αβ. As the 1 − αβ line crosses the zero line (the dotted black line), we enter the BF instability regime. Diffusion coefficients are D11 =
D22 = 0.000 51, D12 = −0.0002, D21 = 0.0002, and all the reactions are weakly reversible, i.e., K−ρ = 10−4.
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FIG. 5. The wave number near the onset of Hopf instability. For
the finite system of length l = 200, we have shown discrete allowed
values of wave number below the continuous wave number. The
continuous wave number in the limit of infinite size is illustrated
by the dashed line. Here the diffusion coefficients are D11 = D22 =
0.00051, D12 = −0.0002, D21 = 0.0002, and the value of the pa-
rameter ω is set as 2.

is equal to the Hopf instability wave number, we need to treat
them as two different dynamic features. For the infinite size
limit, wave numbers of traveling waves can have continuous
values, as shown in Fig. 5. For continuous wave number,
the concentration pattern of traveling waves is different from
its finite domain counterpart. The 3D concentration field of
X and the corresponding image of the concentration field
for the infinite size limit are shown in Figs. 3(c) and 3(f),
respectively. The difference in the concentration pattern of
intermediate species for the discrete wave numbers and the
continuous wave numbers is predictable given their different
amplitude dynamics. Therefore, by incorporating the idea of
different instability conditions directly related to amplitude
equation coefficients α and β with the amplitude dynamics
concerning ν in 2, we can understand and predict the profiles
in Fig. 3 better. The α parameter playing an important role
in setting instability conditions in the amplitude framework
contains both the self and cross-diffusion coefficients. Thus
the cross diffusion can alone shift the parametric regimes
shown in Fig. 4(a) and thus modify the temporal concentration
pattern to a significant extent, especially in the case of equal
self-diffusion coefficients.

The entropy production rate owing to its origin to reac-
tion and diffusion in the system is obtained separately using
Eqs. (59) and (60), respectively, in the presence of cross
diffusion. Even in the traveling wave case where the wave
number selection directly depends on the parameter contain-
ing diffusion coefficients, there is no significant contribution
from the diffusion part to the entropy production. Therefore
total entropy production is basically due to the sum of the
initial homogeneous part and reaction dynamics of the global
system.

We have investigated the total EPR response due to the
variation in the control parameter ν, keeping another param-
eter ω constant in both the Hopf and traveling wave cases.
For Hopf instability, a nonzero total EPR shows oscillatory

response, as shown in Fig. 6(a). Comparing profiles of the
global concentration of X and Y in Fig. 6(d) and correspond-
ing total EPR in Fig. 6(a), one observes that the total EPR
is quantitatively proportional to the global concentration of
Y . Moreover, they have qualitatively similar dynamics. In
other words, the total EPR reflects the global dynamics of Y
concentration. This similarity implies that we can exploit the
total EPR of a dissipative system as a quantitative and qualita-
tive measure of the system’s temporal pattern. The traveling
wave total EPR in Fig. 6(b) exhibits a pulse-type response
around the onset of BF instability point. The total EPR of
traveling waves otherwise shows a clear upward trend against
the control parameter as seen in Fig. 6(b). The oscillatory
nature of traveling waves is not prominent for discrete wave
number cases. The total EPR of traveling waves in the limit of
infinite system size exhibits the oscillatory nature of traveling
waves over the whole range of ν and only suffers an abrupt
sharp change around the onset point of BF instability. Similar
to the Hopf instability, the total EPR of the traveling wave
is analogous to the global dynamics of Y concentration in
Figs. 6(e) and 6(f). Thus a dissipative system’s total EPR
can capture the temporal and spatial inhomogeneities both
quantitatively and qualitatively, irrespective of its size.

Figure 7(a) illustrates the semigrand Gibbs free energy
change as a function of the control parameter ν for Hopf insta-
bility. As suggested by Fig. 7(a), semigrand Gibbs free energy
oscillates around its unstable homogeneous counterpart. The
semigrand Gibbs free energy has a (2 : 1) periodic oscilla-
tion feature. The extra wide low-concentration regime of X
concentration field can also be identified at around ν = 2.5
as a comparatively slow change in the semigrand Gibbs free
energy profile. The plot of slopes for the same thermodynamic
entity is shown in Fig. 7(d), and as expected it confirms
the slow variation of semigrand Gibbs free energy at around
ν = 2.5. For traveling waves in a finite domain with periodic
boundary conditions, the semigrand Gibbs free energy against
ν is demonstrated in Fig. 7(b), and corresponding slopes are
shown in Fig. 7(e). Like the total entropy production rate,
the oscillatory behavior of traveling waves with discrete wave
number is not clear enough in the energetic entity. However,
the change in the semigrand Gibbs free energy due to the
spatial pattern generation is visible as it separates the semi-
grand Gibbs free energy profile of the traveling wave from the
unstable homogeneous counterpart. The semigrand Gibbs free
energy for the traveling wave is greater than the system’s un-
stable homogeneous counterpart except for around the onset
of the BF instability point. The increase in semigrand Gibbs
free energy for the spatial pattern is due to the work needed
to vary the wave number of the traveling wave. Around the
onset of BF instability point, the wave number of a traveling
wave for finite system size is equal to the critical wave number
to Hopf instability, and the semigrand Gibbs free energy de-
creases from its value for the unstable homogeneous state and
passes through a minimum. Unlike the discrete wave number
case, the semigrand Gibbs free energy in the infinite size
limit has a prominent oscillatory behavior and exhibits a clear
maximum at the onset of BF instability.

Slopes of semigrand Gibbs free energy in the Hopf instabil-
ity and traveling waves are of the same order in Fig. 7. Akin to
the total entropy production rate, a pulselike behavior appears
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FIG. 6. Total entropy production of Hopf instability with respect to control parameter ν is obtained analytically for a 1D Selkov model
of length l = 200 at time t = 400 and absolute temperature, T = 300 K for ω = 2. Total entropy production rate is comprised of entropy
production rates due to the homogeneous part and reaction part. Global concentration fields of intermediate species X and Y as a function of ν

are presented in Fig. 6(d). Total entropy production of traveling waves of the same system with discrete wave numbers is presented in Fig. 6(b).
In the case of traveling waves, global concentration fields of intermediate species X and Y vs control parameter are shown in Fig. 6(e). In the
limit of infinite size, the total entropy production rate and global concentration fields of intermediate species of traveling waves are presented
in Figs. 6(c) and 6(f). It is very apparent from Figs. 6(a) and 6(d) and Figs. 6(b) and 6(e) that entropy production rate is proportional to
global concentration of Y in terms of both magnitude and phase. For all the cases the diffusion coefficients are D11 = D22 = 0.000 51, D12 =
−0.0002, D21 = 0.0002, and elementary chemical reactions are weakly reversible, i.e., K−ρ = 10−4.

around the onset of BF instability in the slope of semigrand
Gibbs free energy for the finite system size in Fig. 7(e). A
close similarity in the profiles of entropy production rate and
slope of the semigrand Gibbs free energy is also observed for
the infinite size limit, as shown in Fig. 7(f). These similarities
suggest that the slope of the semigrand Gibbs free energy is
proportional to the total entropy production rate of the system.

VIII. CONCLUSION

Capturing the uniform oscillation and traveling wave dy-
namics of the system are implemented here by a CGLE-based
description to a more general reaction-diffusion system in
the presence of cross diffusion. Then opting for a rigorous
nonequilibrium framework for entropic and energetic charac-
terization of the temporal and spatial dynamics of the system,
we have provided a general recipe for relating any dynamic
signature with nonequilibrium thermodynamic entities explic-
itly. Besides the uniform oscillation and traveling waves, this
analytical study applies to any pattern or overlapping of dif-
ferent patterns [49–51] within a more general environment or
the spatiotemporal dynamics owing to BF instability.

As the amplitude equation explicitly contains all the
diffusion matrix elements, diffusion coefficients affect the
amplitude and phase of the system through the form of a
CGLE solution. Besides, the wave number also has implicit
cross-diffusion dependence, which is again reflected by the

coefficients of the amplitude equation. Here the challenging
task of wave number selection in the nonequilibrium system
has been handled by obtaining a boundary value of linearly
stable wave number through the perturbation method of test-
ing the stability of plane waves and then modifying it for the
finite domain case by considering admissible discrete wave
number values.

We have restricted ourselves to the global thermodynamic
description of Hopf instability and traveling waves in this re-
port. As all conservation laws of the closed system are broken
here by chemostatting in the corresponding open system, the
semigrand Gibbs free energy is equivalent to the system’s
energetic entity at the local level [52]. Our previous study
[40] found the proportionality of the total EPR with the global
concentration profile in the Turing-Hopf overlapping regime.
Here, we have obtained that EPR dynamics is analogous to the
global concentration dynamics, both qualitatively and quanti-
tatively, for uniform oscillation and traveling waves. We have
also acquired a pulselike shape in the total EPR profile at the
onset of BF instability for the finite wave numbers. However,
in the limit of infinite system size with continuous wave num-
ber, the total EPR profile demonstrates a sharp change at the
onset of BF instability.

We have found that the energetics of the Hopf instability
over the whole control parameter range is more complicated
than the traveling wave. Here the appearance of a (2 : 1) pe-
riodic oscillation in semigrand Gibbs free energy of the Hopf

014221-13



PREMASHIS KUMAR AND GAUTAM GANGOPADHYAY PHYSICAL REVIEW E 104, 014221 (2021)

FIG. 7. The semigrand Gibbs free energy and corresponding slope of the Hopf instability are illustrated in Figs. 7(a) and 7(d), respectively,
as functions of the control parameter ν at t = 400 and T = 300 K for fixed parameter ω = 2. The same entities for traveling waves of discrete
wave numbers are presented in Figs. 7(b) and 7(e), respectively. In the limit of infinite size, the semigrand Gibbs free energy and corresponding
slope profile of traveling waves are shown in Figs. 7(c) and 7(f), respectively. The dotted lines are for the unstable homogeneous state of the
system in both cases. For all the cases diffusion coefficients are D11 = D22 = 0.000 51, D12 = −0.0002, D21 = −0.0002.

instability is an example of nonlinear resonance. Surprisingly,
we have obtained different natures of the semigrand Gibbs
free energy around the BF onset associated with discrete and
continuous wave number consideration. This contradiction
indicates the significance of considering the finite boundary
effect for a thorough investigation of the traveling wave in a
real situation.

Here we have considered sufficiently small but equal
self-diffusion coefficients [16,23,53] in the presence of a
cross-diffusion coefficient to generate complex oscillation
patterns. The thermodynamic description of Hopf instabil-
ity and the traveling wave can be extended to control the

collective dynamics of biological, physical, or chemical os-
cillators from a new perspective [54]. It is also possible to
extend this analysis to study the spiral waves [55] and their
phase-reversal scenario [56–58]. We believe this CGLE-based
framework can be applied even in the super- or subdiffusive
regime as well as in the presence of concentration-dependent
diffusion. However, it is noteworthy that CGLE may be
questionable [59] to capture the antiwave-to-wave transi-
tion, as the transition can happen away from the Hopf onset
point. In a similar context, the thermodynamic framework
for the nonelementary chemical reaction network [60] is also
relevant.
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