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Fragile many-body ergodicity from action diffusion
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Weakly nonintegrable many-body systems can restore ergodicity in distinctive ways depending on the range of
the interaction network in action space. Action resonances seed chaotic dynamics into the networks. Long-range
networks provide well connected resonances with ergodization controlled by the individual resonance chaos
time scales. Short-range networks instead yield a dramatic slowing down of ergodization in action space, and
lead to rare resonance diffusion. We use Josephson junction chains as a paradigmatic study case. We exploit finite
time average distributions to characterize the thermalizing dynamics of actions. We identify an action resonance
diffusion regime responsible for the slowing down. We extract the diffusion coefficient of that slow process and
measure its dependence on the proximity to the integrable limit. Independent measures of correlation functions
confirm our findings. The observed fragile diffusion is relying on weakly chaotic dynamics in spatially isolated
action resonances. It can be suppressed, and ergodization delayed, by adding weak action noise, as a proof of
concept.
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I. INTRODUCTION

We address the question of the way a macroscopic nonin-
tegrable system will slow down its thermalization dynamics
upon approaching an integrable limit. The conventional per-
ception of evolving dynamical systems with a macroscopic
number of degrees of freedom (DoF) is them being in a state
of thermal equilibrium, i.e., ergodic. This assumes all allowed
microstates having the same probability. It goes along with
trajectories visiting the vicinity of all points of the available
phase space (i.e., the phase space subject to constraints due to
integrals of motion such as, e.g., the energy), and infinite time
averages equaling available phase space averages [1]. Statisti-
cal physics approaches were paved by Gibbs and Boltzmann
and provide a straight connection between microcanonical
dynamics and the emergence of canonical distributions [1].
The more interesting it is to study cases when this connection
is not evident, eroding, or even missing. This can happen (i)
for dynamics in the proximity of an integrable limit, (ii) for
dynamics in the proximity of nonergodic sets of measure zero
(such as periodic orbits), and (iii) for dynamics driven out of
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ergodicity due to additional constraints (e.g., condensation).
Fermi-Pasta-Ulam-Tsingou problems [2–6] can be associated
with (ii), and non-Gibbs states for interacting Bose lattice
gases [7–11] with (iii). As for (i), the celebrated Kolmogorov-
Arnold-Moser (KAM) theorem is available [12], but applies to
systems with finite numbers of DoF and dictates weakly non-
integrable dynamics to be nonergodic on a finite measure set
of invariant tori, while being ergodic on the complementary
one (Arnold diffusion [13]). The KAM borders are assumed
to quickly diminish with increasing DoF numbers [12]. What
lies beyond those borders for macroscopic systems? The ex-
pectation that Gibbs and Boltzmann take over, was shattered
by recent results on many-body localization [14,15], which
show that certain quantum many-body systems can resist
thermalization at finite distance from integrable limits. With
most analytical results being non-rigorous, and computations
notoriously heavy due to exploding Hilbert space dimensions,
the weakly touched field of ergodization and thermalization of
corresponding classical many-body systems is in the focus of
this work.

Networks of weakly coupled superconducting grains are
one of the few paradigmatic examples of systems where the
above scenarios have been considered [16–19]. Also, related
networks of interacting anharmonic oscillators were used to
argue for and show the existence of two different classes
of nonintegrable perturbations of an integrable Hamiltonian
H0({Jk}), with a countable set of actions Jk (k being an integer)
[20]. Nonintegrable perturbations H1({Jk,�k}) typically span
long-range or short-range networks (LRN or SRN) in the
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action-angle space (here �k are the canonically conjugated
angles). A reference action Jk in that network is coupled to
Rk × Lk-tuples of other action-angle pairs. Lk is typically a
single digit integer. Rk , however, can be intensive (SRN) or
extensive (LRN) [20].

Let us consider a typical LRN of weakly interacting ac-
tions, and translationally invariant two-body interactions Lk =
3, Rk ∼ N2 with N being the volume (system size) [20]. Such
cases turn up when considering translationally invariant sys-
tems (extended eigenmodes in the absence of interactions) and
weak short-range contact nonlinear interactions, as opposed to
long-range couplings leading to critical behavior [21]. Chaotic
dynamics can develop in a given L-tuple on a time scale
T� = 1/� where � is the typical (largest) Lyapunov exponent
in the system. Chaotic dynamics develops due to nonlinear
resonances which take place when ratios of network matrix
elements to certain frequency differences are large [22]. In
the proximity to an integrable limit the network matrix ele-
ments scale with 1/N [20]. Therefore the probability for an
L-tuple to be resonant will be πr/N � 1 where πr � 1 is an
intensive measure of the distance to the integrable limit. How-
ever, there are Rk ∼ N2 L-tuples in which one given action
is involved. Therefore the probability �k that the reference
action is in resonance with at least one of its L-tuples (i.e.,
satisfying the resonance condition) turns exponentially close
to unity: �k ≈ 1 − (1 − πr/N )Rk ≈ 1 − e−Rkπr/N for such a
macroscopic LRN. It follows that LRNs thermalize homoge-
neously in action space, see, e.g., Ref. [20].

On the contrary, SRNs show anomalously slow ergodiza-
tion and thermalization dynamics in proximity to an integrable
limit [18,20]. Since Rk is now intensive and N independent,
the resonance probability �k ∼ πr is small, resonances are
rare, and thermalization is delayed until resonances were able
to migrate through the whole system. Thermalization is ex-
pected to be a highly inhomogeneous process in action space.

In this work we quantitatively describe the dynamics of
thermalization in the SRN regime by making use of finite
time average (FTA) distributions. We (a) observe an alternate
regime of action diffusion, and extract the diffusion coefficient
as a function of the proximity to the integrable limit, (b) show
the connection between the dynamics of FTA distributions and
autocorrelation functions and predict and observe algebraic
decay of correlations in time, and (c) finally predict the dif-
fusion delay through action noise destroying resonances and
provide computational evidence of the delay.

II. MODEL, DISTRIBUTIONS, MEASURES

We consider the Hamiltonian

H (q, p) =
N∑

n=1

[
p2

n

2
+ EJ (1 − cos(qn+1 − qn))

]
, (1)

describing the dynamics of a chain of N superconducting is-
lands with nearest neighbor Josephson coupling in its classical
limit. This model is equivalent to a one-dimensional XY chain
or simply a coupled rotor chain with rotor momenta pn and
angles qn. EJ controls the strength of Josephson coupling
and will be compared to the energy density h = H/N . The

equations of motion of Eq. (1) read

q̇n = pn, ṗn = EJ [sin(qn+1 − qn) + sin(qn−1 − qn)]. (2)

We apply periodic boundary conditions p1 = pN+1 and q1 =
qN+1. The system has two conserved quantities: the total
energy H and the total angular momentum P = ∑N

n=1 pn.
We will choose P = 0 without loss of generality. A SRN

limit is obtained for EJ/h → 0, with H0 = ∑N
n=1

p2
n

2 and H1 =∑N
n=1 EJ (1 − cos(qn+1 − qn)). The actions Jn ≡ pn, and the

angles �l ≡ qn. Note that the opposite limit EJ/h → ∞ (not
further studied in this work) yields a LRN network as dis-
cussed in the introduction.

The microcanonical dynamics of Eq. (1) explores the avail-
able phase space �. For an observable f ( �X ), its phase space
average is 〈 f 〉 ≡ 1

Z

∫
f ( �X )d�, Z = ∫

d�. Here �X is a point
in �. The ergodicity property is tested quantitatively by show-
ing that the infinite time average of any observable f ( �X ) will
be equal to its phase space average 〈 f 〉. Lacking infinite times,
we rather compute finite time averages, which depend on both
the averaging time T , and the initial condition �X0:

fT ( �X0) = 1

T

∫ T

0
f ( �X (t ))dt, �X (t = 0) = �X0. (3)

For an ergodic system it follows

lim
T →∞

fT ( �X0) = 〈 f 〉, (4)

for any choice of �X0 except for a subset of measure zero.
Dense scanning of all initial points �X0 over � yields the finite
time average distributionρ( f ; T ) of the finite time averages
fT ( �X0). It is a function of f , parametrically depends on T ,
and is characterized by its central moments

μm(T ) =
∫

( f − μ)mρ( f ; T )df , μ0 = 1 (5)

with μ = ∫
f ρ( f ; T )df . It follows that the first moment μ ≡

〈 f 〉 is invariant under variation of the averaging time T . All
higher moments will in general depend on T . For an ergodic
system it follows that

lim
T →∞

μm(T ) → 0, m � 2. (6)

In our studies ρ is close to a Gaussian distribution, which
allows us to focus on μ2.

We use the actions (momenta) pn as the relevant slow
observables in the SRN proximity to the integrable limit
EJ → 0: f ≡ pn. With P = 0 it follows μ1 = 0. The sec-
ond moment μ2(T ) is then simply the variance of ρ, and
further related to the momentum-momentum auto-correlation
function R(t ) = limτ→∞ 1

τ

∫ τ

0 pl (τ )pl (t + τ )dτ as μ2(T ) =
1
T

∫ T
0 R(t )dt . Under the usual assumption that the correlation

function will have an exponential decay at large enough times
(with ways to even weaken the requirement) the conclusion
is that μ2(T → ∞) ∼ 1/T . This also follows from assuming
that at large enough times the finite time averages are obtained
from averaging over uncorrelated numbers with some distri-
bution function. With the central limit theorem we arrive at a
standard deviation of the order of 1/

√
T and a corresponding

variance of the order of 1/T .
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FIG. 1. The time dependence of the second moment μ2(T ) for
various values of EJ : EJ = 0.25, 0.3, 0.4, 0.5, 0.7, 0.8, 1.0 from top
to bottom. Here h = 1, N = 1024 and R = 192.

III. RESULTS

The details of the integration methods are outlined in
Appendix A. We numerically integrate R trajectories using
symplectic integrators [23], where each initial point is differ-
ent and was chosen by setting qn = 0, drawing uncorrelated
random values of pn from a Maxwell distribution, constrain-
ing P = 0, rescaling all momenta such that the desired energy
density h is obtained, and giving each trajectory a prether-
malization run of tprethermal = 106. Since all actions pn are
statistically equivalent, we measure them all and add all data
into one pool which is used to compute ρ. Figure 1 shows
μ2(T ) for h = 1, N = 1024 and 0.25 � EJ � 1. The variance
μ2(T ) resists decay up to some characteristic ergodization
time scale TE , after which it turns decaying as expected, sig-
naling restoration of ergodicity. Note that this time scale TE

was assessed in Ref. [18] and is an intensive time scale.
A close inspection of the size dependence of μ2(T ) is

shown in Fig. 2 for h = 1, EJ = 0.7 and a variety of system
sizes. We find that μ2(TE � T � TD) loosely follows a 1/

√
T

diffusive decay, which is followed by the anticipated 1/T
decay for TD � T . The new time scale TD(N ) is evidently
system-size dependent. To support that finding, we plot δ =
d (log10μ2)/d (log10T ) versus T in Fig. 3. The curves clearly
show intermediate saturation on a plateau with δ ≈ −0.5,
and a subsequent decay at TD(N ) down to δ = −1. Since TD

is increasing with system size, we conjecture that TD(N →
∞) → ∞, extending the 1/

√
T decay in μ2(T ) to infinite

times for infinite size. In turn this implies that the correlation
function R(t ) ∼ 1/

√
t without any exponential cutoff in the

same limit.
Let us discuss possible mechanisms leading to the observed

behavior of μ2(T ) for different system sizes by studying the
presence and the propagation of chaotic resonances along
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FIG. 2. The time dependence of the second moment μ2(T ) for
different system sizes N : N = 26, 27, 28, 29, 210, 211, 212, 213 from
bottom to top. Here, h = 1, EJ = 0.7, and R = 192.

the chain; similarly to former studies, e.g., [24–26] in both
classical and quantum many-body systems. We consider the
occurrence of a chaotic resonance to take place when first-
order perturbation theory for the evolution of a given rotor
at site n breaks down. A simple calculation reported in
Appendix B yields 
+

n < EJ and 
−
n < EJ with 
±

n =
|pn(pn − pn±1)|. The presence of such resonantly coupled
triplets of grains along the network generate chaotic dynamics
and results in a Lyapunov exponent whose inverse yields a
time scale T� � 10 on the studied interval 0.25 � EJ � 1
[18]. It follows that T� � TE , TD. The resonance probability
can be easily computed as (see Appendix B for details).

πr ≈ 1

4

(
EJ

h

)2

. (7)

FIG. 3. The time dependence of the parameter δ =
d (log10μ2 )/d (log10T ) for the curves in Fig. 2. System size
increases at δ = −0.8 from left to right. The red dashed lines
represent δ = −0.5 and δ = −1.
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FIG. 4. The rescaled time dependence of μ2N versus
bT/N2 for various EJ : EJ = 1.0, 0.8, 0.7, 0.5, 0.4, 0.3, 0.25
from left to right. The corresponding shift factor b =
0.01, 0.1, 1, 10, 100, 1000, 10000 is introduced for better
visibility of the curves. Here h = 1.

At variance to the LRN cases, the SRN resonances are rare
and inhomogeneously distributed over the system at any time.
The typical distance between consecutive chaotic triplets lr ∼
(h/EJ )2 grows with reducing EJ turning the resonances more
sparse and rare [27]. The assumption of partial thermalization
of actions involved in the rare resonances will still not lead
to any substantial observation of the onset of ergodization,
simply because resonances are rare and separated by non-
chaotic (regular) regions. To onset ergodicity instead, chaotic
resonances have to diffusively migrate throughout the entire
system [18]. This presumably happens due to an incoherent
detuning of the momenta of rotors in a neighborhood of a
given resonance. Once such a neighboring rotor is sufficiently
detuned, it could become resonant with its own neighborhood
forming a new resonance.

To confirm that we observe action diffusion, we rescale
μ2 → μ2N and T → T/N2, as shown in Fig. 4. For a given
value of EJ we observe very good collapse of all curves onto
one master curve for T � TE . The master curves in Fig. 4
show the turnover from diffusive 1/

√
T to asymptotic 1/T

decay at the time TD. The diffusion process assumes that a
diffusion coefficient D ∼ N2/TD can be read off a fit of TD.
We found the inverse D−1 from the intersection of the fit of the
diffusive 1/

√
T and the asymptotic 1/T trends (marked with

green dots in Fig. 4). The measured values of the diffusion
coefficient D are then reported as a function of EJ in Fig. 5,
which appears to be reasonably close to a power law over the
analyzed interval. To check whether the asymptotic behavior
of D may turn into an exponential behavior rather than power
law [28–34] we plot the data in linear-log scale in the inset of
Fig. 5. From the available data we conclude that a power law
is more close to the obtained data.
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FIG. 5. Diffusion coefficient D vs EJ for fixed h = 1 in log-log
scale (main) and linear-log scale (inset). The red dashed lines guide
the eye and represent a power-law trend D ∼ E−5.5

J (main) and an
exponential trend D ∼ exp(−2.3/EJ ) (inset).

Our analysis shows that the dynamics of resonances starts
with a diffusion process between chaotic triplets, i.e., on a
length scale lr ∼ √

DTE . After that the diffusion continues
until all fluctuations stored in N/lr nonresonant patches each
of the size lr , were exchanged and reached a given location in
the system. This happens for TD ∼ N2/D [35].

If the above scenario is correct, we can expect to de-
lay the diffusion, relaxation, and ergodization process, if we
manage to efficiently destroy resonances, before they had
time to diffuse. To check this prediction, we take a system
with N = 512 and Ej = 0.7 at h = 1. Every time interval
T� ≈ 10 we randomly pick a site n, and increment or decre-
ment its momentum pn by a given value 
p with equal
probability [36]. On average a given site n0 is reached on
a time T�N ≈ 5000. If 
p ≈ EJ/h we expect to efficiently
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FIG. 6. The time dependence of μ2(T ) in the presence of a
random kick process with 
p = 0 (magenta), 0.3 (maroon), 0.6
(orange), 1 (indigo), 2 (red), 3 (black), 5 (cyan). Here N = 512,
h = 1 and EJ = 0.7.
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detune and destroy a nonlinear resonance. The effect should
become visible for T ≈ 5000. The results in Fig. 6 are excel-
lently reproducing the prediction. The kicks will also generate
new resonances at another location, such that the average
number of resonances will not change. Our results confirm
that resonance diffusion is at the origin of the ergodization
process. It is exactly this diffusive process which is effi-
ciently harmed, destroyed and delayed by the above kicking
procedure.

IV. CONCLUSIONS

Combining our results with previous studies shows that
weakly nonintegrable many-body systems can restore er-
godicity in distinctive ways depending on the range of the
interaction network in action space. It all starts with action res-
onances seeding chaotic dynamics into the networks. While
long-range networks provide well connected resonances with
ergodization controlled by the characteristic individual reso-
nance chaos time scales, short-range networks instead yield a
dramatic slowing down of ergodization in action space, and
lead to rare resonance diffusion. We used Josephson junc-
tion chains as a paradigmatic study case and exploited finite
time average distributions to characterize the thermalizing
dynamics of actions. The slowing down of the thermalization
dynamics upon approaching the integrable limit results in a
decreasing of an effective diffusion constant which is related
to heat conductivity. This slowing down appears to follow a
power law in the distance from the integrable limit, rather than
an exponential one. We identify an action resonance diffusion
regime responsible for the slowing down. The observed fragile
diffusion is relying on weakly chaotic dynamics in spatially
isolated action resonances. We were able to successfully delay
and suppress it by adding weak action noise, as a proof of
concept. Among a number of intriguing open questions, we
mention the search for further distinct classes of noninte-
grable action networks (neither short nor long ranged), and
the impact of quantization on the fragile short-range network
dynamics in the vicinity of an integrable limit.

We also note that we studied thermalization or restor-
ing of ergodicity for generic initial data, which excite all
available actions to typically nonzero Gibbs distributed val-
ues at some finite temperature. This is conceptually different
from exciting only one or a few actions to nonzero values,
as done in a plethora of studies of the Fermi-Pasta-Ulam-
Tsingou problem [5,37] where only one or a few modes
(actions) are excited. For the short- range network consid-
ered here, a few momenta would be excited to nonzero
values only. That will lead straight to the excitation of
perturbed discrete breathers [38,39] with solution specific
slow relaxation. For the long-range network case the situ-
ation is essentially similar, as single mode excitations in a
weakly nonlinear system will get closer to exact q-breather
states [4].
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APPENDIX A: NUMERICAL INTEGRATION DETAILS

We split Eq.(1) into

A =
N∑

n=1

p2
n

2
, B = EJ

N∑
n=1

(1 − cos(qn+1 − qn)). (A1)

As discussed in Ref. [23], this separation leads to a symplectic
integration scheme called ABA864, where

ABA864(
t ) = ea1
tLA eb1
tLB ea2
tLA eb2
tLB ea3
tLA

× eb3
tLB ea4
tLA eb4
tLB ea4
tLA eb3
tLB

× ea3
tLA eb2
tLB ea2
tLAZ eb1
tLB ea1
tLA ,

and a1 ≈ 0.071, a2 ≈ 0.241, a3 ≈ 0.521, a4 ≈ −0.334,
b1 ≈ 0.183, b2 ≈ 0.311, b3 ≈ −0.027, and b4 ≈ 0.065; see
Ref. [40] for the accurate values of these coefficients. We
chose a time-step 
t that ensure that relative energy error
|H (t )−H (t=0)

H (t=0) | ∼ 10−5 during all simulations.

The operators e
tLA and e
tLB propagate the set of initial
conditions (qn, pn) from Eq. (A1) at the time t to the final
values (q′

n, p′
n) at the time t + 
t :

e
tLA :

{
q′

n = qn + pn
t
p′

n = pn

e
tLB :

{
q′

n = qn

p′
n = pn+EJ [sin(qn+1 − qn) + sin(qn−1−qn)]
t .

(A2)

APPENDIX B: RESONANCES

We expand the solutions of Eq. (2) in a Taylor series
in powers of the small parameter EJ and initial conditions
pn(0) = pn, qn(0) = 0:

{qn(t ), pn(t )} =
∑

ν

E ν
J

{
q(ν)

n (t ), p(ν)
n (t )

}
. (B1)

The zero order part of the integrable limit reads

p(0)
n (t ) = pn, q(0)

n = pnt . (B2)

and the first-order correction term for the momenta is

p(1)
n (t ) = cos(pn − pn−1)t

pn − pn−1
+ cos(pn − pn+1)t

pn − pn+1
. (B3)

The perturbation expansion is assumed to fail when the first-
order term is comparable to the zero-order one leading to the
following resonance condition:

|pn(pn − pn±1)| � EJ . (B4)

To ensure chaotic dynamics sets in, we need both resonance
conditions to be satisfied, since a pair (dimer) of two coupled
momenta will still conserve the total momentum and therefore
stay integrable. Consider one of the conditions and rewrite
them using the energy En = p2

n/2 which is assumed to be dis-
tributed according to the Gibbs distribution PE (E ) = βe−βE .
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Here β = 1/h. The resonance condition then reads

|En ± √
EnEn+1| � EJ/2. (B5)

Denoting En+1 = En + 
, assuming |
| � En, choosing the
− sign and noting that the distribution of |
| is still the Gibbs
one P|
|(|
|) = βe−β|
| we arrive at the probability of that
resonance |
| � EJ to be satisfied:

Pr1 = 1
2 (1 − e−EJ /h). (B6)

The probability of satisfying both and therefore encountering
a chaotic resonance amounts to

πr = 1

4
(1 − e−EJ /h)2 ≈ 1

4

(
EJ

h

)2

. (B7)
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