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We systematically construct a series of vector solitary waves in harmonically trapped one-dimensional three-,
four-, and five-component Bose-Einstein condensates. These stationary states are continued in chemical poten-
tials from the analytically tractable low-density linear limit of respective states, as independent linear quantum
harmonic oscillator states, to the high-density nonlinear Thomas-Fermi regime. A systematic interpolation
procedure is proposed to achieve this sequential continuation via a trajectory in the multidimensional space
of the chemical potentials. The Bogoliubov–de Gennes spectral analysis shows that all of the states considered
herein can be fully stabilized in suitable chemical potential intervals in the Thomas-Fermi regime. Finally, we
present some typical SU(n)-rotation-induced and driving-induced dynamics. This method can be extended to
higher dimensions and shows significant promise for finding a wide range of solitary waves ahead.
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I. INTRODUCTION

Solitons are ubiquitous nonlinear excitations in a wide
range of dispersive and nonlinear waves, e.g., in Bose-Einstein
condensates (BECs) [1,2], and nonlinear optics [3]. In par-
ticular, BECs have enjoyed considerable attention over the
past decades, providing an ideal playground for investi-
gating (single and multiple) solitonic structures, including
studies of their generation, stability, interaction, instability,
and associated dynamics and pattern formation [4]. In the
single-component one-dimensional setting, bright [5] and
dark solitons [6] are arguably the most fundamental struc-
tures in attractive and repulsive condensates, respectively. In
higher dimensions, novel topological structures bearing vor-
ticity emerge such as vortices [7], vortex rings [8,9], and even
knots [10]. Moreover, extended dark solitonic structures, e.g.,
ring dark solitons in both two and three dimensions [11,12],
have also been considered.

In parallel, vector solitons in multicomponent settings are
also fascinating. In one-dimensional two-component systems
of repulsive interactions, the dark-bright structure has been a
central point of theoretical and experimental efforts [13–19].
Here a bright component is trapped (and waveguided) by an
effective potential of the dark soliton in the other component.
It is important to note that a bright soliton cannot exist on
its own in repulsive condensates, i.e., under self-defocusing
nonlinearity. More exotic structures such as dark-dark [20,21]
and dark-antidark waves [22] have also been found; see, e.g.,
recent works on magnetic solitons in both binary [23,24] and
spinor [25] condensates. Indeed, there has been a flurry of as-
sociated activities, as can be attested by recent works [26,27].
These solitary waves may naturally undergo dynamics not
accessible in a single-component system [20,28,29]. While
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the two-component systems have been extensively studied
[30,31], there are far fewer studies on systems of three or even
more components [25,32]. In this vein, it is especially relevant
to highlight the fact that recent experimental studies have ren-
dered accessible a wide range of possibilities, including that
of suppressing the effect of spin-dependent interactions [33]
and materializing instantiations of the well-known Manakov
model originally developed in nonlinear optics [34]. While
these recent developments have been predominantly focusing
on two- and three-component systems, it is natural to expect
that generalizations thereof to F = 2 spin systems and up to
five-component states are well within reach [35].

There has been tremendous experimental progress on im-
plementing dark soliton winding patterns, and realizing spinor
condensates. Dark solitons can be routinely generated using
a variety of experimental techniques, enabling an extensive
investigation of their collisions and interactions. Multiple dark
solitons of varying positions and velocities can be generated
using the phase imprinting technique [36–38] using laser
pulses. They can also be created using matter-wave interfer-
ences [39,40]. Moreover, it is possible to controllably produce
dark solitary waves of arbitrary speed [41] in a single com-
ponent condensate using both density and phase engineering
[41–43]. Vector solitary waves can be formed using a spatially
dependent spin interconversion and phase imprinting [33,36].
In [33], a spatially localized spin rotation with simultaneous
density and phase imprinting was achieved using a steerable
laser beam. Spinor condensates can be realized in far de-
tuned optical dipole traps in, e.g., 87Rb spinor condensates
[33,44,45] or 23Na spinor condensates [46,47] in the F = 1
manifold. An F = 2 condensate can be created either directly
[48] or alternatively from the F = 1 manifold using a mi-
crowave excitation [44].

On the theory side, there have been extensive efforts
in generalizing the analytical techniques developed for the
one-component system to multicomponent systems, e.g., the
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inverse scattering, the Bäcklund transformation, the Darboux
transformation, and the Hirota bilinear methods [49–52]. The
generalization is, however, frequently not straightforward and
often extremely elaborate in its analytical form; see [53] for a
modified Darboux transformation and also a relevant discus-
sion. Moreover, these approaches are, by necessity, limited
to the (integrable) one-dimensional homogeneous Manakov
systems [34] where the intra- and interspecies interactions are
equal. This naturally poses the question of developing meth-
ods that could be more straightforwardly generalized beyond
the integrable realm to provide an understanding of the broad
wealth of nonlinear wave states that may become experimen-
tally accessible in this emerging setting of multicomponent
BEC systems.

In the nonintegrable setting, e.g., in the presence of a
harmonic trap, finding numerically exact stationary states and
investigating their near-equilibrium dynamics and dynami-
cal instabilities, if any, are particularly interesting [54]. This
is especially true in higher dimensions. The Bogoliubov–de
Gennes (BdG) spectra are also natural to compute, encom-
passing much of the relevant dynamical information through
the BdG eigenvalues and eigenvectors. Numerical methods
can in principle find stationary solutions in a generic setting.
Recently, a deflation method [55–57] was studied which runs
iteratively at fixed chemical potentials, and the solver is de-
signed such that a new solution, if converged properly, avoids
already found ones by properly modifying the stationary-state
equation to solve. This method has found a remarkable series
of solutions in both one- and two-component systems. How-
ever, the exploration of the solution space is not controlled,
and the method inevitably becomes increasingly expensive as
more states are added to the list of solutions.

An alternative semianalytical method is to construct soli-
tary waves from the known linear limit in a suitable, e.g.,
harmonic, potential using the (chemical potential) parametric
continuation [58–61]. In the linear limit, the nonlinear term is
negligible and the linear problem is fully solvable as different
components decouple into independent quantum harmonic
oscillators. Perturbation analysis suggests, but does not prove,
that a low-density linear state can be continued in chemical
potentials to a weakly nonlinear one, and thereafter to a highly
nonlinear state in the high-density Thomas-Fermi regime; i.e.,
a series of solutions can be constructed interpolating the two
limits. The spirit of the method is therefore to take advantage
of the analytically tractable linear limit by first turning off
the nonlinearity and then gradually adding it back. In fact,
the recent three-dimensional deflation study also partially em-
ployed this idea [57], showing the significance of the method.
This method was successfully applied to the one-dimensional
two-component system, focusing instead on solitonic beat-
ing patterns following a unitary rotation or mixing of the
different components, along with two case examples in the
three-component setting [61]. It is also worth mentioning that
while these states are constructed in the harmonic potential,
further continuation to other potentials, e.g., by interpolating
between two different potentials is possible, showing the flex-
ibility of the method.

The main purpose of the present work is to systemically
construct vector solitary waves from the linear limit for a
general n-component system, motivated in particular by the

above discussion and the recent experimental implementation
of the three-component Manakov model [33]. The availability
of F = 1 and 2 systems [35] prompts us to illustrate the
method for three-, four-, and up to five-component vector
solitary waves, and it is likely that these waveforms can
be implemented experimentally using the currently available
techniques (see Sec. III for a discussion).

An additional motivation is that it is sensible to demon-
strate the effectiveness of the method in 1 + 1 dimensions
before further extending it to higher dimensions, where there
is a “degenerate state problem” (see Sec. IV). This is worth
exploring because there is yet no a priori theoretical guar-
antee that the continuation should be successful and the
waveforms can be stabilized. Our approach is so far suc-
cessful, and a large series of states of increasing complexity
are constructed. Despite the expectation that it typically gets
increasingly harder to stabilize more complex states, bearing
a growing number of the so-called negative energy modes
[4], it is remarkable that all of the states considered herein
can be properly stabilized in suitable chemical potential inter-
vals as they approach the Thomas-Fermi limit. It should be
emphasized that the states constructed herein are genuinely
complex, in the sense that a vector solitary wave typically
cannot be decomposed into a set of elementary vector solitons
such as the dark-dark-bright or dark-bright-bright solitons
[62], although such localized structures can be identified in
certain spatial regimes. To our best knowledge, the majority
of these solitary waves, particularly the highly excited ones
bearing multiple phase windings, have not been studied be-
fore. The large and organized array of vector solitary waves
should provide an excellent platform for studying their de-
tailed properties theoretically and computationally, as well as
experimentally.

Finally, some typical dynamics are illustrated. The diverse
states should be able to access a rich set of dynamical evo-
lution scenarios, considering also their complexity. Indeed,
our direct numerical simulations confirm this expectation.
Here, we only present a few prototypical proof-of-principle
examples for clarity. Specifically, we focus on two types
of dynamics: SU(n)-rotation-induced and driving-induced
breathing dynamics. Both periodic and aperiodic evolutions
are possible and are illustrated.

The presentation is organized as follows. In Sec. II, we
introduce the model, the numerical setup, and the method of
constructing vector solitary waves from the linear limit. Next,
we present our results in Sec. III. Finally, our conclusions and
a number of open problems for future consideration are given
in Sec. IV.

II. MODEL AND METHODS

We first present the mean-field Gross-Pitaevskii equation
and the SU(n) symmetry for n-component condensates with
Manakov interactions, and the numerical methods used for
finding stationary states, stability analysis, and dynamics.
Then we discuss the method of constructing stationary vector
solitary waves from the linear limit using the chemical po-
tential continuation, and the scaling of the number of solitons
with the principle or maximum quantum number.
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A. Computational setup

In the framework of the lowest-order mean-field the-
ory, and for sufficiently low temperatures, the dynamics of
one-dimensional n-component repulsive BECs, confined in a
time-independent trap V , is described by the following cou-
pled dimensionless Gross-Pitaevskii equation (GPE) [4,61]:

i
∂ψ j

∂t
= −1

2
ψ jxx + V ψ j +

(
n∑

k=1

g jk|ψk|2
)

ψ j, (1)

where ψ j, j = 1, 2, . . . , n are n complex scalar macroscopic
wavefunctions. We focus here on the Manakov system of
repulsive interactions gi j = 1 for simplicity, but the numer-
ical setup is not limited to this constraint. Indeed, both the
linear limit continuation and the driving-induced dynamics
are not limited to Manakov interactions in any particular
way. Interestingly, even the SU(n)-induced dynamics may
persist for many breathing cycles when the SU(n) symme-
try is only approximately satisfied [20,21,61]. While earlier
spinor condensates [25,32] also contain spin-dependent inter-
actions [35,63], recently spinor condensates with Manakov
interactions became available [33]. Moreover, the work is
also partially motivated by multicomponent nonlinear optical
problems [64]. Nevertheless, we expect that the solitary waves
considered herein should be relevant more broadly, as spin-
dependent interactions are typically quite small, and solitary
waves frequently exist in a much broader setting than the
specific parameters at which they are solved. We discuss devi-
ations from the Manakov limit in the Supplemental Material,
demonstrating the robustness of the methods and the results
presented herein [65].

The condensates, unless otherwise specified, are confined
in a harmonic trap of the form

V = 1
2 x2, (2)

where the trapping frequency is set to 1 by scaling without
loss of generality [61]. Stationary states of the form

ψ j (x, t ) = ψ0
j (x)e−iμ j t (3)

lead to n coupled stationary equations:

−1

2
ψ0

jxx + V ψ0
j +

(
n∑

k=1

g jk

∣∣ψ0
k

∣∣2

)
ψ0

j = μ jψ
0
j , (4)

where μ j is the chemical potential of the jth component.
To connect the model to experiments, we briefly summarize
the transformations leading to Eq. (1) and the units used in
this work, and we refer the interested readers to [61] for
further details. First, the GPE in physical units is reduced
in dimension from three to an effective one dimension by
integrating out the frozen y, z ground states. Next, the one-
dimensional (1D) equation is made dimensionless using the
regular harmonic oscillator scaling in quantum mechanics
[66]. After these steps, the effective trap frequency is 1 and the
effective interaction strength is g1D = 2ω⊥as

ωx�x
, and a final simple

scaling in the wavefunctions by (g1D)1/2 changes the effective
interaction strength to gi j = 1 as well. Here, as, ωx, ω⊥, �x =
(h̄/(mωx ))1/2 stand for the s-wave scatting length, the axial
and transverse trapping frequencies, and the axial harmonic
oscillator length in physical units, respectively. In summary,

our length is measured in units of �x, time in units of 1/ωx, and
the chemical potential in units of h̄ωx. The number of particles
in the jth component is Nj = 1

g1D

∫ |ψ j |2dx. The prefactor in
the atom numbers arises purely from the final mathematical
scaling of the wavefunctions setting effectively gi j = 1.

Equation (1) has n U(1) symmetries; i.e., if (ψ1, . . . , ψn)T

is a solution, then (ψ1eiθ1 , . . . , ψneiθn )T is also a solution,
where {θ j} are real numbers. In the Manakov case, there is
an additional SU(n) symmetry. It is straightforward to show
that

(ψ ′
1, . . . , ψ

′
n)T = U (ψ1, . . . , ψn)T (5)

is also a solution if U is unitary, UU † = I. Note that the total
density profile is invariant upon the rotation, i.e.,

∑
j |ψ ′

j |2 =∑
j |ψ j |2. Because a stationary state typically has a different

chemical potential for each component, the state after rotation
is typically a dynamical one. In order to illustrate this rotation
more clearly, we here provide a concrete example. Consider a
two-component stationary solution [Eq. (3)]; then

ψ ′
1(x, t ) = (

ψ0
1 (x)e−iμ1t + ψ0

2 (x)e−iμ2t
)/√

2, (6)

ψ ′
2(x, t ) = (

ψ0
1 (x)e−iμ1t − ψ0

2 (x)e−iμ2t
)/√

2, (7)

is also a solution for the specific unitary matrix:

U = 1√
2

(
1 1
1 −1

)
. (8)

When μ1 �= μ2, the rotated waves will become dynamical
ones. However, the total density profile remains stationary and
identical to that of the stationary state before rotation.

Our numerical simulations for each solitary wave include
identifying a series of stationary states following a con-
tinuation path in the chemical potential parameter space,
computing the BdG stability spectrum along the path, and
finally conducting dynamics of the solitary waves. The nu-
merical details are summarized in the Appendix for clarity,
and we turn to the linear limit continuation in the next
section.

B. Construct vector solitary waves from the linear limit

The idea of constructing solitary waves from the linear
limit is extremely simple but effective. For completeness,
we start from the one-component setting. In this case, each
harmonic oscillator state |n1〉 with the chemical potential or
eigenvalue n1 + 1/2 can be continued to the Thomas-Fermi
regime containing n1 dark solitons [58]. In this process, the
number of particles, N , is approximately zero near the linear
limit, and then it grows as the chemical potential is increased.
For example, the ground state has a linear limit at μ1 = 0.5
as a faint Gaussian function. As the chemical potential in-
creases, it becomes the Thomas-Fermi ground state. The first
excited state has a linear limit at μ1 = 1.5, and in a similar
process it turns into a single dark soliton state embedded in
the Thomas-Fermi sea. The nonlinear wave stemming from
the linear state |n1〉 contains a total of n1 dark solitons, which
can be conveniently labeled as Sn1 . Here, S stands for a state
or soliton.
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TABLE I. Number of states with distinct quantum numbers from
the linear limit. There are a total of Cn−1

n1
= n1!

(n−1)!(n1−n+1)! states in
the family n1 (the maximum quantum number) for the n-component
system. Note that the asymptotic growth speed is increasingly rapid
as the number of components, n, grows.

n n1 = 0 1 2 3 4 5 6 7 8 9 10

1 1 1 1 1 1 1 1 1 1 1 1
2 1 2 3 4 5 6 7 8 9 10
3 1 3 6 10 15 21 28 36 45
4 1 4 10 20 35 56 84 120
5 1 5 15 35 70 126 210

For a two-component system, the linear limit has two quan-
tum numbers from the two independent harmonic oscillators
|n1, n2〉 [59,61]. The state has its linear limit at (μ1, μ2) =
(n1 + 1/2, n2 + 1/2). We focus here on states n1 > n2 � 0,
as it is not hard to prove that 〈ψ0

i |ψ0
j 〉(μi − μ j ) = 0; i.e.,

if two states are not orthogonal, they must have the same
chemical potential. For example, the state |1, 1〉 can indeed
be continued to the stationary dark-dark soliton, but because
the two components must have the same chemical potential,
the two profiles are in fact identical up to a scaling factor.
This state is therefore somewhat trivial in the sense that it
can be obtained by splitting the corresponding single dark
soliton state of the one-component system. Note that if ψ0

is a one-component stationary state, then (c1ψ
0, c2ψ

0)T is
a stationary state of the two-component Manakov system if
|c1|2 + |c2|2 = 1. Such splitting can be readily generalized: if
we have an n-component stationary state, we can split any of
the components in the same way to get an (n + 1)-component
stationary state. Therefore, we focus here on irreducible states
where all the pertinent quantum numbers are distinct. The
two-component system was recently systematically explored
in [61]. The low-lying states are S10, S20, and S21 correspond-
ing to the well-known single dark-bright, the in-phase two
dark-bright, and the out-of-phase two dark-bright structures,
respectively.

The procedure can be readily generalized to n-component
systems. Specifically, we can continue the harmonic oscil-
lator state |n1, . . . , nn〉 to the solitary wave Sn1,...,nn , where
again n1 > · · · > nn � 0. In this work, we explore the three-
component setting systematically, and further study some
prototypical low-lying states in four- and five-component sys-
tems. It should be noted that the number of states grows very
rapidly with the increasing principle quantum number n1 in
multicomponent systems. It is straightforward to show that the
number of states in the family n1 for the n-component system

is given by Cn−1
n1

= n1!
(n−1)!(n1−n+1)! ∼ nn−1

1
(n−1)! as n1 → ∞. The

asymptotic growth rate with n1 is therefore increasingly rapid
as n increases: it is constant for n = 1, linear for n = 2,
quadratic for n = 3, and so on. The numbers of low-lying
states are summarized in Table I. In this work, we exhaust
all the states in the three-component system up to n1 = 4,
and study some typical higher-lying states up to n1 = 10. In
four- and five-component systems, we study the respective six
lowest-lying states. We see below that these state profiles are
already quite complex.

III. NUMERICAL RESULTS

A. Vector solitary waves from the linear limit

We start from the three-component system. The first few
low-lying states S210, S310, S320, S321, and their BdG spectra
are depicted in Fig. 1. All the solitary waves studied herein are
also illustrated in yet larger sizes in the Supplemental material
for better clarity [65]. The first observation is that these states
exist, and all of them contain certain unstable modes (the red
curves of the spectra are for the real part of the eigenvalues
λr and instabilities; the blue curves are for the imaginary part
of the eigenvalues λi and stable modes). By contrast, the one-
component dark soliton and the two-component dark-bright
soliton and even the in-phase two dark-bright solitons appear
to be very robust structures [61]. Similarly, the stability tends
to be improved as a state moves towards the Thomas-Fermi
limit, and there are suitable chemical potential intervals where
these solitary waves are fully stable. It should be noted that
the instabilities are very weak though for these low-lying
structures; the real part of the eigenvalues is enlarged by
a factor of 10 in Fig. 1 for ease of visualization, i.e., the
maximum growth rate is only about 0.3/10 = 0.03 (cf. the
dimensionless trapping frequency 1).

In order to gain more insight on the structures, we examine
the total density profile (as an effective density potential)
and the density profiles of the trapping first component and
the trapped second and third components, shown in the bot-
tom panels of Fig. 1. The phase part is not plotted because
the stationary wavefunctions here are real valued, and the
wavefunction of any component changes sign whenever it
crosses a node or a dark soliton. Interestingly, the total density
profiles are quite different among the structures; they also
do not exhibit a Thomas-Fermi structure, but local density
minimums are found in all cases, in line with [67]. In state
S210, there is a double-well potential structure; the two peaks
of the second component concentrate at the two wells while
the third component is trapped at the center by the edges of the
double well. Note that each component is also trapped by the
external harmonic potential. The state S310 has three density
wells: the two peaks of the second component occupy the
side wells while the peak of the third component concentrates
in the central well. The state S320 also has three wells, but
the side ones are deeper. Here, the second component has
three peaks that sit in the three wells; the central peak is
the most prominent. The third component has two prominent
peaks concentrated in the two side wells. It also has a finite
weight with a barely peak structure in the central well. The
state S321 has a single funnel-like potential trapping altogether
both the second and third components with three and two
peaks, respectively. These five peaks of the two components
are organized alternatively, with the side peaks larger and the
central peaks smaller.

Next, there are a total of six states in the family n1 = 4,
S410, S420, S421, S430, S431, and S432, as illustrated in Fig. 2.
The former two states are relatively robust, while the latter
four states are more prone to instabilities. Nevertheless, all of
these states can be suitably stabilized. Similarly, the total den-
sity profile (not shown) again varies among the structures, and
local density minimums are found and they are correlated with
the density peaks of the trapped second and third components.
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FIG. 1. Top: The BdG spectra λ of the states S210, S310, S320, and S321, respectively, along a linear trajectory from the respective linear
limits (n1 + 0.5, n2 + 0.5, n3 + 0.5) to a typical large-density limit (20,18,16) in the (μ1, μ2, μ3) parameter space. Red (the low-lying bubbles)
and blue points are for the (unstable) real and (stable) imaginary parts of the eigenvalues, respectively. These states all feature wide ranges of
spectral stability in chemical potentials. Middle: Typical configurations at μ1 = 20 are depicted for the respective states above, and the three
components are in turn plotted in red, green, and blue. A larger version is also shown in the Supplemental Material [65]. Bottom: The total
density profile (black line) and the density profiles of each component are depicted, suggesting that the total density provides an effective
trapping potential and the density peaks of different components tend to avoid each other due to the intercomponent repulsions.

It is clearly impossible to exhaust all of the states, and we
turn to representative ones in the following. We emphasize
that this is only due to the large number of states available, and
in this work we have not encountered any linear state that can-
not be continued to its corresponding nonlinear counterpart. It
seems that for a given n1 the lowest-lying structure, i.e., Sn110,
has the best stability, in agreement with the two-component
setting [61]. In the following, we therefore focus on such
states for simplicity up to n1 = 10. In addition, we also con-
sider the state S531 which contains a central dark-dark-dark
structure; this is the lowest-lying state where all the quantum
numbers are odd. These states are summarized in Figs. 3 and
4. These states too can be fully stabilized, and we do not
repeatedly mention this fact every time as this is true for all
the structures we studied.

We can readily identify the well-known building blocks
of the localized dark-dark-dark, dark-dark-bright, and dark-
bright-bright structures [32,53] in the obtained states. The
central part of S531 is a dark-dark-dark soliton, while the
other two structures are rather common. For example, the
central part of S210 is a dark-bright-bright soliton and the
central part of S310 is a dark-dark-bright soliton, and such
structures are also prevalent off the center. It is perhaps even
more interesting that the decomposition of a solitary wave
into an array of localized structures is, however, frequently
not relevant, contrary to one- and two-component structures.
One striking example is the state S1010: the third component
is highly localized and the “lattice” is consequently rather
heterogeneous. The second component fills the density dips of

the dark soliton lattice at the sides while the third component
fills the density dips around the center; the third component
essentially disappears at the sides of the lattice, rendering the
sides effectively two-component dark-bright lattices.

As the states get increasingly complex, they also become
harder to stabilize, which appears to be a generic feature [61].
There are more unstable modes and the growth rates are also
larger. The state S1010 becomes relatively robust only when
μ1 � 50. As the number of components grows, the spectrum
is also more sensitive to the particular choice of the final
chemical potentials or the continuation path, compared with
one- and two-component systems. We find that a structure
tends to be more readily stabilized if the peak densities, which
are correlated with the respective chemical potentials, do not
vary significantly between adjacent components.

Finally, the linear limit continuation can be readily applied
to four- and five-component systems, despite that the induced
solitary waves inevitably become increasingly complex in
their structures, and their numbers also grow much more
rapidly (see Table I). Here, we only present the six lowest-
lying states for each setting in Figs. 5 and 6, respectively.
While none of these structures is fully robust in general, which
is not surprising as this is already the case for three compo-
nents, it is nevertheless remarkable that all of them again can
be fully stabilized in suitable chemical potential intervals.

It is clearly beyond the scope of this work to explore
the detailed properties of the (large array of) solitary waves
continued from the linear limit, which are important in their
own rights. Future work can focus on their structures with
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FIG. 2. Same as Fig. 1 but for the n1 = 4 family of states S410, S420, S421, S430, S431, and S432, respectively. The final chemical potentials
are (24,22,20), except for the S430 state. The state does not become fully stable along this trajectory, but can be stabilized when we extend it
further into the Thomas-Fermi regime. Here, its final chemical potentials are only slightly larger (26,22,20).

particle picture descriptions, e.g., using the variational method
[58]. Their modes of instabilities and symmetry-breaking bi-
furcations are also interesting to explore. Next, we turn to their
diverse dynamics.

B. SU(n)-induced and driving-induced dynamics

Numerous dynamical scenarios are expected [30], and here
we present only a few proof-of-principle dynamics of these
solitary waves. We focus on two types as mentioned previ-
ously: one is the SU(n)-induced beating dynamics [20,61,67]
and the other is driving-induced dynamics [28]. Both lead to
oscillatory dark solitons, but they have quite different features
and mechanisms. For the driving-induced dynamics, we apply
a constant force to the “bright solitons,” i.e., to the component

stemming from the |0〉 state. For the SU(n)-induced dynamics,
we use for simplicity the following symmetric SU(2) (for a
subrotation) and SU(n) rotations:

U2×2 = 1√
2

(
1 1
1 −1

)
, (9)

U3×3 = 1√
3

⎛
⎝1 1 1

1 w1 w2

1 w2 w1

⎞
⎠, (10)

U4×4 = 1

2

⎛
⎜⎝

1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

⎞
⎟⎠, (11)
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FIG. 3. Same as Fig. 1 but for a few higher-lying states S510, S531, S610, and S710, with final chemical potentials (24,22,20), (24,22,20),
(26,22,20), and (30,24,22), respectively. Note that the state S531 has all odd quantum numbers, and the center is a dark-dark-dark structure.

U5×5 = 1√
5

⎛
⎜⎜⎜⎝

1 1 1 1 1
1 z1 z2 z3 z4

1 z2 z4 z1 z3

1 z3 z1 z4 z2

1 z4 z3 z2 z1

⎞
⎟⎟⎟⎠, (12)

where wk = exp(i2kπ/3), k = 1, 2, and zk = exp(i2kπ/5),
k = 1, 2, 3, 4. While these matrices are clearly specific, it is
worth mentioning that any SU(n) matrix works and they may
likely produce yet more breathing patterns.

We first illustrate both types of dynamics for the S210 state;
the results are summarized in Fig. 7. The first panel illus-
trates an SU(3)-induced beating pattern, and each component

contains two dark solitons. This dynamics is coincidentally
periodic as the chemical potentials here satisfy μ1 − μ2 =
μ2 − μ3. In more general settings the dynamics would not
be periodic, such as the SU(3) beating pattern of the S310

state shown below, which at least has a much longer period.
The second panel shows a subspace SU(2)-induced beating
pattern mixing the first and the third components, producing
the out-of-phase two dark-dark beating pattern. It is inter-
esting that the second component sits exactly still while the
other two components are very dynamical. This is as expected
because the SU(n) rotation does not change the total density
profile. More generally, for a subspace SU(n) rotation, the un-
rotated components will similarly remain stationary. The third
panel shows a driving-induced oscillation. Here, we apply a

FIG. 4. Same as Fig. 1 but for three highly excited states S810, S910, and S1010, with final chemical potentials (50,36,32), (50,36,32), and
(100,70,64), respectively. Here, the depicted configurations are at μ1 = 50 instead. Note the different scaling factors for the real part of the
eigenvalues. It is interesting that the third component is mostly concentrated in the center, while the second component fills the off-center
density dips of the dark soliton lattice, rendering the “lattice” rather heterogeneous.
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FIG. 5. The first six low-lying four-component states S3210, S4210, S4310, S4320, S4321, and S5210 with final chemical potentials (24,22,20,18),
(24,22,20,18), (24,22,20,18), (30,24,20,16), (32,28,26,22), and (32,28,26,22), respectively. The depicted states are at μ1 = 20, and the fourth
component is shown in cyan.

force F = 0.1 to the third component along the negative x
axis. Note that this component is somewhat locally trapped
by the dark soliton of the second component. This is like a
dark-bright structure (focusing on the latter two components);
upon driving, due to the negative mass of the dark soliton,
the central soliton propagates against the driving potential. It
then decelerates, stopped by the driving potential, and then
reverses its motion and finally closes a cycle. This is similar
to the two-component dark-bright AC oscillation in [28] but
with simple Manakov interactions in our setting. Here, the
dynamics is more complicated due to the presence of the first
component. The two dark solitons therein are also slightly
excited (e.g., its out-of-phase oscillation mode). The bright
component dynamics is slightly “rugged” as it is influenced
by the central mass of the first component (note that this is
particularly the case when the bright soliton oscillates back to

the trap center). Nevertheless, the prominent oscillation in the
latter two components is pretty robust, and the solitary wave
structures are well preserved.

The second row shows the same dynamics but for the
S310 state. The SU(3)-induced beating pattern has three dark
solitons in each component, and, as mentioned above, the
dynamics is no longer periodic (or at least has a much longer
period) upon a close inspection. The subspace SU(2) rotation
is applied to the second and third components, producing a
simple dark-dark beating pattern. Similarly, the first compo-
nent stands completely still while the other two components
undergo dynamics. The driving-induced AC oscillation is
much cleaner, and all the components are genuinely and co-
herently excited compared with that of S210. This is because
the central structure is a dark-dark-bright structure rather than
a dark-bright-bright structure as in the S210 state. It is easier to
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FIG. 6. The first six low-lying five-component states S43210, S53210, S54210, S54310, S54320, and S54321 with final chemical potentials
(24,22,20,18,16), (24,22,20,18,16), (28,24,20,18,16), (32,28,24,22,20), (50,46,41,36,30), and (50,42,38,36,34), respectively. The depicted
states are at μ1 = 20, and the fifth component is shown in pink.

balance when two dark solitons are trapping a bright soliton
than when one dark soliton traps two bright solitons when one
bright soliton is driven.

The third row is for the S1010 state. In the SU(3)-induced
beating pattern, there are ten dark solitons in each component.
Interestingly, the central breathing dynamics differs from that
of the sides. This is also reflected in the subspace SU(2)-
rotation-induced dynamics in Fig. 7(h) where the central dark
solitons breathe while the side ones are essentially stationary
in the first and third components. These are clearly conse-
quences of the heterogeneous structure of the S1010 state itself.

The final panel, Fig. 7(i), shows the driving-induced AC os-
cillation. The dynamics is more complex as there are multiple
dark and bright solitons involved, e.g., the two bright peaks are
clearly not symmetric (note that the peak density on the right
is much higher). Nevertheless, the oscillation remains robust
despite that the structure is much more complex.

Next, two examples are illustrated for each SU(4)- and
SU(5)-induced beating dynamics in Fig. 8. These patterns
are pretty complicated, and the dark soliton velocities are
highly asynchronized; i.e., they do not reach their minimum
or maximum speeds simultaneously. Note that these patterns
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FIG. 7. Top: SU(3)-induced dark soliton beating patterns: (a) For the state S210 at μ1 = 20, each component contains two dark solitons
due to the intercomponent mixing. (b) An SU(2)-induced out-of-phase dark-dark beating pattern; here, the first and the third components are
mixed. (c) We apply a driving force along the negative x axis to the third component, producing the dark-bright AC oscillation in the second
and third components; note that the first component is also excited. Middle: The same but for the S310 state at μ1 = 16. Here, there are three
solitons in each component in (d), and the SU(2) rotation mixes the second and the third components. In (f), all components are excited in
the AC oscillation, as the central structure is a dark-dark-bright soliton. Bottom: The same but for the S1010 state at μ1 = 70. Interestingly, the
rotated dynamics are also quite heterogeneous. For example, in (h) the first and third components are mixed: the central dark solitons undergo
beating dynamics while the side ones are essentially stationary.

are already obtained from very symmetric rotations; if the
rotation was less symmetric, the patterns would become even
more complicated. Here, the beating patterns again can be ei-
ther periodic or aperiodic depending on the specific chemical
potentials. It is also possible to study subspace rotations and
driving-induced dynamics and so on, and we do not investi-
gate these further here.

Finally, we discuss promising experimental implementa-
tions of these solitary waves and their dynamics, considering
the tremendous control presently available in manipulating
cold atoms. Reference [41] illustrates that it is possible to
controllably produce dark solitary waves of arbitrary speed
in a single-component condensate using both density and
phase engineering [41–43]. Vector solitary waves can then be

generated in multicomponent systems using the techniques
recently pinioned in [33], where a spatially localized spin
rotation with simultaneous density and phase imprinting can
be achieved with a steerable laser beam. It is worth men-
tioning that while we have constructed the waves using the
chemical potential continuation, experimentalists can directly
implement a profile in a stable regime. Additionally, the
SU(n)-induced dynamics can be initialized either directly or
alternatively one can first prepare a stationary state and then
mix the components using Rabi oscillations [68]. The driving
force to one component can be implemented using a Stern-
Gerlach inhomogeneous magnetic field, e.g., when the atoms
are in hyperfine states |20〉, |10〉, and |11〉 in an optically
trapped three-component condensate.
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FIG. 8. Top: SU(4)-induced beating patterns for the states (a) S3210 and (b) S4210 at μ1 = 20; each component contains three and four dark
solitons, respectively, due to the intercomponent mixing. Bottom: SU(5)-induced beating patterns for the states (c) S43210 and (d) S53210 at
μ1 = 20; each component contains four and five dark solitons, respectively. The (a) and (c) dynamics are periodic due to the special chemical
potentials; the (b) and (d) dynamics at least have much longer periods.

IV. CONCLUSIONS AND FUTURE CHALLENGES

In this work, we presented a systematic construction of
stationary vector solitary waves from their linear limits in
three-, four-, and five-component Bose-Einstein condensates
with repulsive Manakov interactions. We reveal their wave-
forms and also find suitable chemical potential intervals where
they can be fully stabilized. Their waveforms are much more
complex than the one- and two-component counterparts. For
example, a solitary wave typically cannot be decomposed as a
collection of elementary vector solitons, and there are also in-
teresting emerging structures like a heterogeneous lattice. The
number of waves also scales much faster with respect to the
principle quantum number n1 as the number of components n

increases, asymptotically as nn−1
1

(n−1)! . Some SU(n)-induced and
driving-induced dynamics producing dark soliton oscillation
patterns are also illustrated. These robust and rich structures
and their versatile dynamics are ideal for future theoretical
investigation and experimental implementation.

Our work also demonstrates the effectiveness of the
method of constructing solitary waves from the linear limit.
The work can be extended in various directions, even in the
present one-dimensional setting. First, studying cases away
from the Manakov limit is interesting; one can look for, e.g.,

dark-antidark states [22]. Second, it is also interesting to study
the cases where the masses of the different components are
distinct. Here, a component with a smaller quantum number
may trap a component with a larger quantum number depend-
ing on the mass ratios [69]. Third, it is highly interesting to
include also the spin-dependent interactions.

Another interesting research track is to continue from the
integrable analytical limit [49–52]. Here, asymmetric station-
ary states are available. If a state settles to constants in the ±∞
limits, we can gradually turn on a strong but finite box poten-
tial to render the condensates finite, and then continue the state
further to the harmonic trap using, e.g., an interpolation in the
potentials. It should be noted that parametric continuation can
start from any analytically tractable limit; there is no reason
the linear limit should be the starting point. Our preliminary
results suggest this is possible. This is significant in that it
makes a bridge between the integrable limit and the trapped
settings. Future work should examine whether this may gen-
erate asymmetric waves in the harmonic potential.

The work should be naturally extended to higher dimen-
sions, where the method is much more versatile because of
the emergence of degenerate states at the linear limit and the
additional freedom of asymmetric traps. It should be noted
that there has already been a number of such studies on
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particular states, including quite “complicated” multiple vor-
tex ring structures in three dimensions [70]. Here, our focus
is different. The question is not how to construct a partic-
ular state based on physical insight, but rather to look for
well-defined rules to construct solitary waves again system-
atically, regardless what solitary waves come out. Obviously,
each linear state is a good candidate for continuation. Next,
mixing degenerate states may produce novel solitonic struc-
tures; this is very different from the one-dimensional setting
as bound states therein cannot degenerate. For example, in
a two-dimensional symmetric trap, states |nxny〉 = |10〉 and
|01〉 are degenerate; each produces a dark soliton stripe state.
By contrast, the (|10〉 ± i|01〉)/

√
2 linear states produce a

single vortex [7] and antivortex state of unit charge, respec-
tively. Similarly, the linear state (|20〉 + |02〉)/

√
2 yields a

dark soliton ring and so on, demonstrating the diversity of the
possibilities.

The first step is to find all possible sets of degenerate states;
this can be readily solved and can even be visualized using the
lattice planes of the quantum number “lattice.” The nontrivial
part is how to mix a set of degenerate states. Proper rules
should be articulated such that one can efficiently generate
as many distinct solitary waves as possible yet following a
simple procedure. One possibility is that for any set of de-
generate states of size k, we can choose any m � k states
out of the set and mix them using different coefficients, e.g.,
±1,±i. If a distinct state is found, it should be continued
and also added to the degenerate set. More sophisticated
rules or numerical refinements should be considered, and we
do not discuss this further here. Our preliminary results on
the one-component two-dimensional system suggest that this
conceptually straightforward strategy of continuation from the
linear limit systematically appears to be very powerful and no
less efficient than the current state-of-the-art methods [55–57]
with its own distinct features, and it is capable of producing
a (very) large array of solitary waves ahead. Research work
along these lines is currently in progress, and will be reported
in future publications.
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APPENDIX: NUMERICAL DETAILS AND THE BDG
ANALYSIS

In this Appendix, we present the numerical details, in-
cluding the BdG stability analysis of the n-component GPE.
A stationary state, given a proper initial guess as detailed
below, is computed using a finite element method for the dis-
cretization of space and the iterative Newton method towards
convergence. The linear oscillator states are used as the initial
guess for a stationary state near but not at the linear limit,

and the converged state is then served as the initial guess
for the next nearby chemical potentials and so on. We use
a linear “trajectory” for simplicity in the multidimensional
�μ = (μ1, . . . , μn)T parameter space; i.e., given the linear
limit chemical potentials �μi and the final (chosen) chemical
potentials �μ f , the trajectory is given by �μ = �μi + ε(�μ f − �μi ),
where ε ∈ (0, 1] is a parameter interpolating the two points. If
�μi and �μ f are given, it is sufficient to specify a point by either
ε or any of the chemical potentials, e.g., μ1 as we do in this
work. To find the first weakly coupled stationary state, we set
the initial chemical potentials approximately O(0.01) away
from the linear limit. The final point is empirically chosen
such that the maximum densities do not vary significantly
between adjacent components, while keeping the order of the
chemical potentials unchanged; i.e., we keep μ1 > · · · > μn.
In fact, the continuation of states is pretty robust and straight-
forward in the one-dimensional setting; the careful selection
of the final chemical potentials is to help find spectrally stable
states.

The BdG stability spectrum is computed for each station-
ary state along the trajectory. The BdG analysis is a linear
stability analysis of a stationary state, and we now calculate
the BdG matrix. First, we introduce the following perturbation
Ansätze around the stationary states of Eq. (3):

ψ j (x, t ) = e−iμ j t
{
ψ0

j (x) + ε(a j (x)eλt + b∗
j (x)eλ∗t )

}
, (A1)

where ε � 1. Upon substituting Eq. (A1) into the GPE of
Eq. (1), we obtain at order O(ε) an eigenvalue problem of the
form

Mv = λv, (A2)

where v = (a1, b1, . . . , an, bn)T and the matrix M is given by
the following compact form:

M = �[D + Ḡ · (ψ̄ψ̄†)], (A3)

where

� = diag[−i, i, . . . ,−i, i], (A4)

D = diag[L1 + U1,L1 + U1, . . . ,L j + Uj,L j + Uj, . . .],

(A5)

L j = −1

2

∂2

∂x2
+ V − μ j, (A6)

Uj =
∑

k

g jk

∣∣ψ0
k

∣∣2
, (A7)

Ḡ = kron(G, ones(2, 2)), Gi j = gi j, (A8)

ψ̄ = (
ψ0

1 , ψ0∗
1 , . . . , ψ0

n , ψ0∗
n

)T
. (A9)

Here, C = A · B denotes the element-by-element multiplica-
tion, i.e., Ci j = Ai jBi j ; ones(2, 2) is a 2 × 2 matrix with all
elements equal to 1; and the kron(A, B) operator expands the
A matrix, where each element Ai j is replaced by the block
matrix Ai jB. One can readily check that when n = 3, the ma-
trix correctly restores the BdG matrix of the three-component
GPE [61].

For each stationary state, we compute the first 100
low-lying eigenvalues in magnitude and the eigenvectors,
which correspond to the low-lying excitation modes. The
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eigenvalues are generally complex: λ = λr + iλi. If there are
modes with λr > 0, the state is dynamically unstable with re-
spect to perturbations. On the other hand, if all the eigenvalues
are entirely imaginary, the state is robust and dynamically sta-
ble. As the states get more excited, i.e., containing more dark
soliton phase windings, the number of unstable modes stem-
ming from the linear limit tends to increase, which requires
higher chemical potentials to suppress the instabilities. This
consequently requires both a larger domain (due to a larger
Thomas-Fermi radius) and a finer spacing (due to a smaller
healing length) for a fixed prescribed accuracy; i.e., it gets
increasingly expensive to fully stabilize more excited states.

We select spectrally stable states at suitable chemical
potentials for SU(n)-induced [20] and driving-induced [28]
dynamics. For the former dynamics, different components
are mixed [according to Eq. (5) at, e.g., t = 0] produc-
ing (a)periodic beating patterns depending on the specific

chemical potentials. It is worth emphasizing that the rotation
operation itself is not described by the GPE, and is applied
only once, after which the rotated fields continue the evolution
according to the GPE again. Indeed, the respective norms are
typically changed by the rotation operation. Experimentally,
one can either directly imprint the after-rotation field profiles
or alternatively start from a stationary state and then mix
components with spin-interconversion Rabi oscillations [68].
For the driving dynamics, we suddenly turn on at t = 0 a
constant driving force F > 0 along the negative x axis to
one component; i.e., the component experiences an additional
linear potential of VD = Fx. This can be implemented experi-
mentally using an inhomogeneous magnetic field (see Sec. III
for more discussions). In this work, we drive the “bright”
component which has no node, producing approximately peri-
odic orbits [28]. Our dynamics are integrated using the regular
fourth-order Runge-Kutta method.
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