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Generalized Haus master equation model for mode-locked class-B lasers
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Using an asymptotic technique, we develop a generalized version of the class-B Haus partial differential
equation mode-locking model that accounts for both the slow gain response to the averaged value of the field
intensity and the fast gain dynamics on the scale comparable to the pulse duration. We show that unlike the
conventional class-B Haus mode-locked model, our model is able to describe not only Q-switched instability
of the fundamental mode-locked regime but also the leading edge instability leading to harmonic mode-locked
regimes with the increase of the pump power.
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I. INTRODUCTION

The first successful generation of a stable continuous train
of passively mode-locked laser pulses was reported almost 50
years ago, in a dye laser with a saturable dye [1]. From then
on, passive mode-locking has been recognized as a very pow-
erful technique for generating high-quality picosecond and
subpicosecond pulses with fast repetition rates, and ongoing
efforts are still devoted to the design of improved devices that
produce shorter pulses.

Owing to the early theoretical analyses of New [2] and
Haus [3,4], the essential physical process responsible for pas-
sive mode-locking is well understood. If the absorber saturates
more quickly than the gain medium on arrival of a pulse, a
short temporal window of positive net gain is opened, en-
abling the pulse amplification necessary to compensate for
round-trip losses. The net gain then quickly becomes negative
again as a consequence of the saturation of the gain medium,
combined with the relaxation of the absorber back to it its
unsaturated state if the latter is fast enough. This process
favors emission in the form of narrow pulses.

This basic physical picture has been confirmed by nu-
merical and analytical studies of passively mode-locked laser
models of various complexities [5–16]. The early work cited
above [3,4] originated a highly successful, universally adopted
model for pulse amplification and shaping that is now known
as the Haus master equation [17]. It is a partial differential
equation (PDE) that describes the temporal evolution of the
pulse profile with successive round trips. Coupled to appro-
priate rate equations for the gain and absorber dynamics,
it provides a model that is able to reproduce and quantify
the pulse amplification scenario described above. Due to
its mathematical simplicity, Haus master equation has been
tremendously useful in understanding passive mode-locking.
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The same mechanisms that are at play in passive mode-
locking are also responsible for a detrimental but practically
unavoidable physical effect known as Q-switching instability
[18–25] of a mode-locked regime. This process is the hallmark
of class-B lasers, where the photon lifetime in the cavity is
comparable to or shorter than the gain recovery time and
characterized by the buildup of a modulation of the laser
response with a period typically extending over many round
trips. Understanding the origin of Q switching instability in
a mode-locked laser and determining the conditions under
which it can be avoided is of primary importance for the
successful generation of regular trains of mode-locked pulses.
Theoretical studies based on Haus master equation have been
very useful to this end [19,20,23,26,27]. However, the ability
of the model to describe Q-switching requires some particular
care in the formulation of the rate equation for the gain.
The successful formulation is one where the gain recovery is
assumed to be much slower than the cavity round-trip time
(class-B laser) and responds only to an average value of laser
intensity over time.

Unfortunately, this conventional Q-switching-enabled vari-
ant of the Haus model is unable to describe the fast gain
depletion-recovery cycle that accompanies successive pulse
amplifications. Therefore, it cannot account for the gain con-
tribution to pulse shaping, which is a serious shortcoming of
the model. The situation is not too bad if the absorber is fast
enough to follow the pulse intensity profile adiabatically, i.e.,
in the so-called fast-absorber case. This occurs, for example,
when the saturable absorption is provided via additive-pulse
mode-locking [28] or Kerr lensing [29]. Then, the absorber
saturates during pulse amplification and recovers immediately
afterward, which suffice to create the short window of net
gain needed for mode-locking; the contribution from the gain
medium is not essential to the process.

However, the shortcoming mentioned above is critical if
the absorber recovers on a timescale much longer than the
pulse duration (the slow-absorber case). This situation occurs,
for example, in a laser with dye [30] or semiconductor [6]
absorber. In that case, the absorber remains saturated for a
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while after the passing of a pulse so that, in the absence
of a significant depletion of the gain medium, the net gain
would remain positive for a time interval significantly longer
than the pulse duration. This scenario is incompatible with
the simple idea that the net gain remains positive for only a
short time, thereby favoring narrow pulses. It is also certainly
questionable from a physical point of view, as a positive net
gain outside of the temporal boundaries of the pulse, and the
amplification of the residual field that would result, is gener-
ally thought to favor a detrimental buildup of a macroscopic
field, leading to the eventual destruction of the mode-locking
pattern. This phenomenon is known as background instability
[11].

The problem has been partly identified in Ref. [6], where it
has been stated that absorber saturation alone cannot explain
the mode-locking of a semiconductor laser. The full absorber
saturation-and-recovery cycle, they argued, should be taken
into account in the description of the amplification mecha-
nism, implying that a semiconductor laser cannot be analyzed
under the usual slow-absorber approximation, neglecting the
slow recovery processes on a timescale comparable to the
pulse duration. Their nonapproximate treatment of the prob-
lem indeed solved the issue at hand and led to a physically
consistent picture of the pulse amplification cycle. However,
their theory still lacks the ability to account for a fast response
of the gain medium, which we regard as a limitation of the
model rather than a physical reality. Numerical studies based
on delay differential equation (DDE) model indeed suggest
that the gain medium does respond on the pulse timescale,
even in class-B lasers [11].

The purpose of this work is to overcome the shortcoming
of the the conventional class-B laser Haus model [23], which
does not reveal any gain dynamics on the pulse timescale.
Using an approach based on multiscale expansion, we derive
a simple model for the gain dynamics that generalizes the
conventional formulations and which, coupled to Haus master
equation, describes both Q switching and the gain depletion-
recovery cycle in a satisfactory way. The benefit is that a single
version of Haus model allows the study of both phenomena.
Unlike the empirical extended Haus mode-locking model of
Ref. [31], our model is derived using a multiscale approach
and the gain evolution on the slow timescale is included
as an additional equation rather than a boundary condition.
Furthermore, one can note that the discussion in Ref. [31] is
incomplete since it does not consider the conventional class-
B models of soliton [32] and passive [3,23] mode-locking,
which include slow gain evolution equations. Similar to the
coherent Haus model derived in Ref. [33], our model contains
two separate equations for the slow and fast gain components.
However, our model derived rigorously using the multiscale
method is simpler than that reported in Ref. [33].

We make our objective more precise in Sec. II by introduc-
ing the two conventional versions of the Haus model discussed
above and the underlying assumptions, as well as examining
their respective limitations from a more mathematical point
of view. We define the classifications into class-A and class-B
lasers and into fast and slow absorbers in terms of relative
magnitudes of model parameters, and state the corresponding
usual approximations. We pinpoint one of the assumptions of
the model as the source of its shortcomings. We then derive,

in Sec. III, a generalized model for the gain dynamics with
the limiting assumption relaxed, which is our main result. We
only give the outline of the method; the calculations them-
selves are too lengthy to be included in the main body of
this paper and are relegated to the Appendixes. In Sec. IV,
we check the validity of the new model formulation with
the help of numerical simulations and emphasize its ability
to predict both Q switching and the appearance of harmonic
mode-locking regimes. Conclusions are given in Sec. V.

II. CONVENTIONAL MODEL FORMULATIONS

In order to understand how two different versions of Haus
partial-differential equation model arise for different types
of lasers and why both fall short of including all the rele-
vant physics, it is helpful to review briefly their derivations
from more fundamental principles (see also Appendix A of
Ref. [23] for a more detailed treatment in the particular case of
class-B lasers). Our starting point is a difference-differential
model for passive mode-locking due to Haus [6]:

a(T + r) − a(T ) = 1

2

(
d2 d2

dT 2
+ g − q − k

)
a(T ),

(1a)

dg

dT
= γg(gmax − g) − sgga2, (1b)

dq

dT
= γq(qmax − q) − sqqa2, (1c)

where T represents time, a denotes the instantaneous ampli-
tude of the laser field, and g and q stand respectively for the
gain and saturable losses per round trip. The parameters gmax

and qmax denote their unsaturated values. The parameter r rep-
resents the cold cavity round-trip time (that is, the round-trip
time for a weak fluctuation of the field inside the cavity at
transparency), and d is responsible for the spectral filtering
due to the finite bandwidth of the optical cavity. k represents
the linear cavity losses, so that the net gain per round trip
is given by g − q − k. Finally, γg and γq are the relaxation
rates of the gain and absorber media, and sg and sq are satura-
tion coefficients. Note that although the difference-differential
model (1) is free from the limitations of the PDE Haus models
discussed below, it also has an important drawback: Due to
the presence of the second derivative in the right-hand side
(RHS) of Eq. (1a) the smoothness of its solution is reduced
each round trip. Physically this means that the high-frequency
perturbations of the solution grow with the round-trip number.

A. Field equation

Haus partial-differential master equation is easily derived
as a limit of the difference-differential field equation (1a) for
a large cavity bandwidth and a weak net gain. To this end, we
introduce a formal smallness parameter ε, in terms of which
we define the scales of the gain and absorber variables g and
q and of the pulse duration measure d by performing the
following substitutions in the model (1):

g → ε2g, gmax → ε2gmax, (2a)

q → ε2q, qmax → ε2qmax, (2b)
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k → ε2k, (2c)

d → εd. (2d)

We further introduce a two-scale expansion for the time vari-
able:

d

dT
= ∂

∂t
+ ε2 ∂

∂τ
, (3)

in terms of which the advanced variable in the field equation
(1a) can be expressed as

a(T + r) = a(t + r, τ + ε2r)

� a(t + r, τ ) + ε2r
∂a

∂τ
(t + r, τ ). (4)

Substituting the scaling (2) and then the expansions (3) and
(4) into the difference-differential equation (1a) and keeping
corrections only to the order of ε2 gives

a(t + r) − a(t ) + ε2r
∂a

∂τ
(t + r)

= 1

2
ε2

(
d2 ∂2

∂t2
+ g − q − k

)
a(t ). (5)

Finally, equating separately the coefficients of like powers of
ε on either side of Eq. (5) gives the following two equations:

r
∂a

∂τ
= 1

2

(
d2 ∂2

∂t2
+ g − q − k

)
a, a(t + r) = a(t ). (6)

The first one is the Haus partial-differential master equation,
and the second one provides a periodic boundary condition
for it.

Note how Eq. (6) involves the two different timescales
t and τ as independent variables. The validity of this two-
dimensional representation of time relies on the property of
quasicontinuous pulse evolution between successive round
trips. This means that the temporal profile of the pulse inside
the cavity varies little from one round trip to the next, as a
consequence of the weak net gain assumption. The difference
between the amplitudes of two successive emitted copies of
the pulse in the left-hand side of Eq. (1a) then appears in
Eq. (6) approximated as a continuous derivative, where τ thus
represents the slow time variable in terms of which the pulse
evolution and shaping processes are described (or, more gen-
erally, any process that takes place over several round trips).
In contrast, the role of the fast time variable t is to express
the instantaneous configuration of the field in the cavity at a
particular stage of its evolution, as well as any other process
that occurs on the timescale of the round trip or faster. The
periodic boundary condition in Eq. (6) reflects the approx-
imate periodicity of the pulse train over a few round trips.
Equation (6) is the simplest possible formulation of Haus
master equation. Extensions exist that account for the complex
nature of the field amplitude a (to include phase dynamics)
and other physical effects (such as group velocity dispersion,
Kerr effect, or linewidth enhancement factors) [17]. However,
the specific problem addressed in this paper does not require
such extensions (nor does it preclude their use).

B. Absorber equation

The gain g and absorber q must be described by their own
evolution equations in order to provide a closed dynamical
system together with Haus master equation (6). The absorber
equation is obtained trivially by substituting Eqs. (2) and (3)
into Eq. (1c) and then retaining only the leading-order terms
in ε, which gives an equation that is formally identical to
Eq. (1c), but with T replaced with t . Furthermore since this
equation is linear in q, its general solution is the sum of
a periodic contribution with the same period as a2 and an
exponentially decaying term that lasts only for a few round
trips. With the restriction to solutions in which the transient
contribution has already died out, we can thus impose periodic
boundary condition on q. Therefore, we get

∂q

∂t
= γq(qmax − q) − sqqa2, q(t + r) = q(t ). (7)

Two cases are usually distinguished about the timescales
involved in Eq. (7). The first is that of a fast absorber,
which refers to a situation where the absorber relaxes on a
timescale much shorter than the pulse duration: γ −1

q � d .
This timescale relationship allows the adiabatic elimination
of the absorber variable q as an explicit function of the field
intensity a2, which is achieved by setting the left-hand side of
the absorber rate equation (7) to zero and solving it for q. This
yields

q = qmax

1 + γ −1
q sqa2

. (8)

The other distinguished case is that of a slow absorber, when
the absorber relaxes on a timescale much longer than the pulse
duration but comparable to the round-trip time or shorter: d �
γ −1

q � r. This situation often justifies the neglecting of the
relaxation term γq(qmax − q) in Eq. (7) during the absorber
depletion stage, so that the explicit solution for q is now a
function of the cumulative field energy up to time t :

q = q1 exp

(
−sq

∫ t

t1

dt a2

)
, (9)

where q1 represents the absorber state just before the pulse
arrival, and t1 is the corresponding instant in time. Equation
(9) holds for the duration of a pulse; after that, the neglected
relaxation process takes over as the laser field vanishes. Note
that for both fast and slow absorbers, the relaxation process is
assumed to occur on a timescale not longer than the round-trip
time and is consistently described in Eq. (7) in terms of the fast
time variable t rather than the slow time variable τ .

C. Gain equation

For the gain medium, a similar dichotomic classification
based on the relaxation rate γg exists, but the reference
timescale is different. A laser for which the gain relaxation
takes place on a timescale comparable to the round-trip time
or slower (γ −1

g � r) is called a class-A laser. In contrast,
a laser whose gain medium relaxes over many round trips
(γ −1

g � r) is called a class-B laser. This classification will
be used to determine which time variable (t or τ ) is involved
in the description of the gain relaxation process. Unlike the
absorber rate equation, we shall see that there is no single
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formulation of the rate equation for the gain that will handle
both cases, so one must choose from the outset which kind of
laser is involved.

1. Gain equation for a class-A laser

In a class-A laser, the gain recovery time is not that long
compared to the round-trip time. The derivation of the gain
rate equation thus does not require any particular assumption
on the relaxation and saturation rates γg and sg, and is entirely
parallel to that of the absorber rate equation (7). We obtain

∂g

∂t
= γg(gmax − g) − sgga2, g(t + r) = g(t ). (10)

Together, Eqs. (6), (7), and (10) form a closed system for the
field, absorber, and gain medium in a class-A laser.

The validity of Eq. (10) does not extend to class-B lasers,
however. A simple argument for this is that a correct class-B
laser model should reduce, in the absence of fast mode-
locking dynamics, to the classical pair of rate equations that
describes a single-mode emission [19,20,34]. But while drop-
ping the dependence in the fast time variable t in Eq. (6) gives
the correct rate equation for the field a, dropping it in Eq. (10)
gives a simple algebraic equation from which the gain can be
solved as a function of the field intensity:

g = gmax

1 + γ −1
g sga2

, (11)

instead of the expected rate equation. In fact, so far as t-
independent solutions are considered, the explicit expression
(8) for q holds no matter whether the absorber is fast or slow,
so Eqs. (8) and (11) can be both substituted into the field rate
equation to give a single closed rate equation for the field
amplitude a which cannot demonstrate oscillatory behavior.
This provides evidence (in the particular case of single-mode
emission) that Q switching cannot arise from the class-A for-
mulation (10) of the gain rate equation. Note, however, that
self-Q-switched mode-locking was shown to be possible in a
dissipative soliton multimode laser described by cubic-quintic
complex Ginsburg-Landau equation [35].

2. Gain equation for a class-B laser

A different equation for the gain is therefore required for
a proper description of Q switching in a class-B laser. In
order to account for the slowness of the gain relaxation and
saturation processes, we must supplement the scaling (2) with
the following substitution relations:

γg → ε2γg, sg → ε2sg. (12)

Substituting Eqs. (2) and (12) into Eq. (1b) then gives

dg

dT
= ε2[γg(gmax − g) − sgga2]. (13)

The structure of Eq. (13) justifies the application of an aver-
aging method [36]. This consists in taking the gain variable
g as independent of the fast time variable t , expressing the
time derivative in the left-hand side in terms of the slow time
variable τ (using the relation τ = ε2T ), and averaging the

right-hand side over one period in t . We thus obtain

dg

dτ
= γg(gmax − g) − sggr−1

∫ r

0
dt a2. (14)

The form (14) of the gain equation was used successfully
in Ref. [23] to predict Q switching. For particular solutions
independent of the fast time t , Eq. (14) reduces to the cor-
rect single-mode rate equation, so Eq. (14) passes the simple
validity test that the class-A gain equation (10) did not pass.
However, Eq. (14) involves only the mean intensity over one
round trip, so according to it, the gain cannot respond to fast
field variations. Although consistent with the assumption that
the gain medium is much slower, this introduces a serious
new limitation in the model. Indeed, consider a mode-locked
class-B laser with a slow absorber. In view of Eq. (9), the net
gain g − q − k during the passing of a pulse is given by

g − q − k = g − q1 exp

(
−sq

∫ t

t1

dt a2

)
− k, (15)

where g and q1 are independent of t . This expression is a
monotonously increasing function of t , consistently with the
fact that the only dynamical process taken into account by
Eq. (15) is the absorber saturation, which only contributes to a
gradual increase of the net gain. As argued in the introduction,
the monotonous net gain evolution is not confirmed (at least
for common operating conditions) by numerical simulations
of the DDE mode-locked laser model, which suggest to the
contrary that some fast dynamics of the gain medium does
play a significant role in shaping the net gain profile, even in
class-B lasers [11].

III. IMPROVED MODEL FORMULATION

We have shown in the previous section that both the Q-
switching-enabled gain model (14) and the class-A gain model
(10) suffer shortcomings when applied to class-B lasers.
While Eq. (10) is unable to predict Q-switching, Eq. (14) is
unable to describe the fast response of the gain medium to the
passing of a pulse. The two models in fact miss part of the
physics for opposite reasons: In Eq. (14), the gain medium is
not fast enough to follow the fast intensity variations, whereas
in Eq. (10) it is not slow enough to endow the system with the
necessary inertia to develop slow oscillations.

Since both Eqs. (10) and (14) are obtained as limits of the
more general Eq. (1b), the key to obtaining a unified model
capable of describing both phenomena is to drop some of the
scaling assumptions (2) and (12). To identify which ones can
be retained and which are to be relaxed, we note that part of
the success of the more complex model studied in Ref. [11]
stems from its extended validity into the regime of strong
amplification that typically holds in semiconductor lasers.
This observation suggests reconsidering the appropriateness
of the weak-gain assumption (2a). A strong enough pumping
of the gain medium may indeed be required to compensate
for its slow responsiveness to intensity variations and create
a modulation the gain profile of sufficient depth to induce a
non-negligible contribution to pulse shaping. Moreover, both
the pumping rate and the lasing threshold usually influence
the range of variation of the gain, which hints at the need to
drop the weak cavity loss assumption (2c) too. In this section,
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basing on a set of assumptions weakened along those lines,
we develop a generalized model for the gain dynamics with
the desired properties.

Before proceeding, we note that the derivation of
difference-differential model (1) from fundamental principles
already incorporates an assumption of weak gain and losses
[6] (as is manifest from their linearity in g, q, and k). One
may therefore legitimately question its appropriateness as a
starting point for an analysis that is intended to retain validity
for a larger range of gain than the classical theories presented
in Sec. II. To settle this point, we consider also the DDE model
used in Ref. [11], which holds for arbitrary gain and losses:(

1 + d
d

dT

)
a(T + R)

= K
1
2 exp

[
1

2
(g − q)

]
a(T ), (16a)

dg

dT
= γg(gmax − g) − sg[exp(g) − 1] exp(−q)a2, (16b)

dq

dT
= γq(qmax − q) − sq[1 − exp (−q)]a2, (16c)

where a(T ) is the electric field envelope at the entrance of the
absorber medium, g(T ) and q(T ) are gain and loss introduced
by the amplifying and absorber sections, respectively, and T
is time. R is the cold cavity round trip time, d is the inverse
spectral filtering width, and K is the attenuation factor per
cavity round trip. The parameters gmax and qmax describe the
unsaturated gain and absorption, while sg and sq are the satu-
ration factors of the corresponding sections. For simplicity, we
have omitted in Eqs. (16) the linewidth enhancement factors
introduced in Ref. [11] to describe semiconductor lasers and
assumed that a is real. However, all the calculations below
can be trivially generalized to the complex case when the
linewidth enhancement factors are present.

In view of Eq. (16a), the quantity g + ln(K ) represents the
gain above linear cavity loss. Let us introduce new variable n,
such as

n
(

1 − n

4

)
= g + ln (K ). (17)

Close to the threshold, we can consider the following scaling:

n → εn, (18a)

q → ε2q, qmax → ε2qmax, (18b)

d → εd, (18c)

γg → ε2γg, sg → ε2sg (18d)

with small ε. Equation (18a) can be viewed as a weakened
form of the low-gain assumption (2a), as it allows the gain
variations to cover a larger range (on the order of ε instead
of ε2). Also, we allow arbitrarily large values of the pumping
term gmax and of the linear losses | ln K|. In all other respects,
the scaling (18) is identical to Eqs. (2) and (12) together.
Substituting the expression for g obtained from Eq. (17) to-
gether with the relation R = r − εd into Eqs. (16), applying

the scaling law (18), and keeping only the lowest order terms
in ε gives

a(T + r)−a(T ) = 1

2

(
ε2d2 d2

dT 2
+ εn − ε2q

)
a(T ) + O(ε3),

(19a)

dn

dT
= ε[Pg − εγ gn − (Sg + εsgn)a2] + O(ε3),

(19b)

dq

dT
= γq(qmax − q) − sqqa2 + O(ε2), (19c)

where we have used the relation a(T + r) = a(T ) + O(ε) and

Pg = γg[gmax + ln (K )], γ g = γg − 1
2 Pg,

Sg = (K−1 − 1)sg, sg = 1
2 (3K−1 − 1)sg. (20)

Similarly, substituting g = n + k into Eqs. (1) and using
the scaling (18) we get a system equivalent to Eqs. (19) up
to O(ε2) corrections. This level of accuracy is sufficient to
justify all calculations in this paper, which establishes the
equivalence of the models (1) and (16) in the limit (18).

The equations (19) have been used to derive a generalized
class-B laser version of the Haus master equations. Note that
since all quantities involved in the absorber equation (19c)
are scaled as in Eqs. (2) and (12), the asymptotic absorber
equation (7) thus remains valid in the limit considered here, so
Eq. (1c) does not require any further analysis. From now on,
we focus all our efforts on dealing with the remaining field
equation (19a) and gain equation (19b). Because the calcu-
lations are too lengthy, they are relegated to the Appendixes
where a multiscale analysis is applied to Eqs. (19) with small
ε in order to obtain the generalized version of the Haus master
equations coupled to the gain rate equations. Namely, we
obtain

r
∂a

∂τ
= 1

2

(
d2 ∂2

∂t2
+ n − q

)
a, a(t + r) = a(t ), (21)

which are just Eq. (6) expressed in terms of the gain above
threshold n together with Eqs. (7) and the system

∂n

∂t
= Sg

(
r−1

∫ r

0
a2dt − a2

)
, (22a)

dn

dτ
= Pg − γ gn − (Sg + sgn)r−1

∫ r

0
a2dt, (22b)

where n = r−1
∫ r

0 ndt represents the average gain over one
round trip and the parameters Pg, γ g, Sg, and sg are defined
by Es. (20).

The rate equation (22b) is similar to the conventional gain
rate equation (14) for a class-B laser presented in Sec. II, in
that it involves the field intensity averaged over one round-trip
time and is not sensitive to the details of the mode-locked
emission pattern. Those two equations would in fact be com-
pletely equivalent were it not for the presence of a different
saturation coefficient sg in Eq. (22b) and for the fact that
Eq. (22b) describes only the mean value of the gain over one
round trip. Based on the knowledge of the evolution of this
mean value, Eq. (22a) determines the full depletion-recovery

014215-5



MICHEL NIZETTE AND ANDREI G. VLADIMIROV PHYSICAL REVIEW E 104, 014215 (2021)

cycle of the gain. The formulation (21) of Haus master equa-
tion does not involve the t-independent solution n of Eq. (22b)
directly, but the t-dependent solution n of Eq. (22a) that
averages to n. In that sense, Eqs. (22) extend Eq. (14) by
accounting for the fast gain dynamics on a timescale compa-
rable to the duration of a mode-locked pulse while retaining
on average the slow dynamics of Eq. (14) responsible for Q
switching.

The correction (20) to the saturation coefficient finds its
justification in the multiple-scale expansion of the advanced
term a(T + r) in Eq. (19a). According to the calculations of
Appendix A, limiting the expansion to the first derivative as
in Eq. (4) is not valid anymore in the limit (18). The second
derivative does play a role in the analysis, and leads to a
contribution to the net gain that is found to be equivalent to
an effective decrease of the gain saturability.

Substituting n = g − k with k = Sg/sg into Eqs. (21) and
(22), rescaling the field amplitude a → a/

√
Sg in the resulting

equations, and combining them with the absorber equation
(7), we get

r
∂a

∂τ
= 1

2

(
d2 ∂2

∂t2
+ g − q − k

)
a, a(t + r) = a(t ),

(23a)

∂q

∂t
= q0 − γqq − sqqa2, q(t + r) = q(t ), (23b)

∂g

∂t
= r−1

∫ r

0
a2dt − a2, (23c)

dg

dτ
= g0 − γ gg − g(kr)−1

∫ r

0
a2dt, (23d)

g = r−1
∫ r

0
gdt, (23e)

where g0 = Pg + kγg, q0 = γqqmax, and sq = sq/Sg. After sub-
stitution g → g Eqs. (23a), (23b), and (23d) become formally
equivalent to the conventional class-B Haus model.

IV. NUMERICAL RESULTS

An algorithm for solving numerically the extended Haus
model that incorporates the gain equations (23c), (23d), and
(23e) should proceed as follows. An initial condition for this
problem is the profile a(t, τ0) of the field in the cavity at
τ = τ0, which is periodic in t with period r, together with the
single value g(τ0) of the mean gain at τ = τ0. The absorber
depletion-recovery profile q(t, τ0) is then determined from
Eq. (23b) and the gain depletion-recovery profile g(t, τ0) is
computed from Eq. (23c). Since any solution of Eq. (23c)
automatically has the same period as a2, the periodicity of
g(t, τ0) does not have to be imposed explicitly. However,
Eq. (23c) determines its solutions only up to an arbitrary
additive constant, which is to be fixed by the integral condition
(23e). The knowledge of q(t, τ0) and g(t, τ0) then provides
enough data to compute the field profile a(t, τ0 + dt ) one
time step dt later, using Haus master equation (23a) together
with its periodic boundary condition. Likewise, the mean gain
g(τ0 + dt ) one step later is computed from Eq. (23d). Starting
data are then available for the next integration step.

FIG. 1. Pulse peak intensity as a function of the pump parameter
g0 obtained using the generalized Haus model, Eqs. (23). QSML,
FML, and HML denote Q-switched, fundamental, and harmonic
(with two pulses per cavity round trip) mode-locking regimes, re-
spectively. Parameter values are r = 2.5, k = 0.519, q0 = 1.0, γg =
7.5 × 10−3, γq = 0.2, sq = 7.0, d = 0.02.

We have solved the generalized Haus model (23) numer-
ically using the split-step method with 1024 Fourier modes.
The resulting bifurcation diagram presenting the evolution of
pulse peak intensity with the increase of the pump parameter
g0 is shown in Fig. 1. Black dots in this figure correspond
to peak intensities max{a2 : 0 � t � r} evaluated at equidis-
tant points in τ after the transient time τtr = 5000 for each
given g0. It is seen that apart from the fundamental mode-
locked (FML) regime with a single pulse per cavity round
trip, the model demonstrates harmonic mode-locking (HML)
regime with two pulses per cavity round trip time, as well as
Q-switched mode-locking (QSML) regime with periodically
oscillating pulse peak intensity corresponding to a cloud of
points in Fig. 1. The slow time evolution of the pulse peak
intensity in the QSML regime is shown in Fig. 2(a) together
with the fast time evolution of the intensities of the FML and
HML regimes; see Figs. 2(b) and 2(c), respectively.

The number of mode-locked pulses under the envelope
shown in Fig. 1(a) depends on the value of the small parameter
ε which enters Eq. (3). Since this parameter is absent in the
resulting equations (23), to recover it additional information
is necessary. For example, in Ref. [35] a related parameter
was extracted from the experimental data. Note that strongly
asymmetric Q-switching pulses with a sharp leading and
steep trailing edge were observed experimentally in passively
mode-locked solid-state lasers operating in QSML regime
(see, e.g., Refs. [37,38]), where the asymmetry of the pulses
increases with the total linear cavity losses. Similarly, the
Q-switching pulses in Fig. 3(a) calculated numerically using
the generalized Haus model with smaller k, q0, and g0 are
less asymmetric than those shown in Fig. 2(a). The evolution
of the mode-locked pulse intensity a2(t, τ ) during one pulse
of Q-switching oscillations is illustrated in Fig. 3(b) on the
(t, τ ) plane. One can see from this figure how the intensity and
the width of a mode-locked pulse are changing in the course
of Q-switching oscillations. Furthermore, it is seen that the
mode-locked pulses are slowly drifting with τ along the t axis.

A bifurcation diagram similar to that shown in Fig. 1, but
calculated using the conventional class-B Haus model, which
neglects the fast gain variation on the pulse width timescale,
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FIG. 2. Time traces obtained by numerical integration of the
generalized Haus model, Eqs. (23). (a) g = 0.3, pulse peak power of
the QSML regime as function of slow time τ . (b) g0 = 1.0, intensity
a2 of the fundamental mode-locked regime as function of the fast
time t . (c) g = 3.0, intensity a2 of the harmonic mode-locking regime
with two pulses per cavity round trip as a function of the fast time t .
Other parameters are the same as in Fig. 1.

is shown in Fig. 4. This model can be obtained by substitut-
ing g → g into Eqs. (23a), (23b), and (23d). It is seen that
although the conventional model describes the QSML and
FML regimes rather well, it fails to describe the appearance
of HML regime, which emerges with the increase of the pump
parameter g0. Furthermore, the conventional model predicts
slightly slower growth of the pulse peak intensity with g0

and broader mode-locked pulses than the generalized Haus
model (23).

Time dependence of the net gain parameter g − q − k [see
Eq. (23a)] and field intensity a2 on the fast time t is shown
in Figs. 5 and 6 for the generalized and conventional class-B
Haus models, respectively. It is seen from Fig. 5(a) that in
the generalized class-B Haus model with the pump parameter
g0 = 1.0 the net gain window corresponds to a short time
interval when the pulse intensity is large. For larger pumps
[see Fig. 5(b) corresponding to g0 = 3.0], however, positive
net gain appears before the pulse triggering the so-called
leading-edge instability [11], which eventually gives rise to
a harmonic mode-locking regime. Since in the conventional
class-B Haus model the gain is independent on the fast time
t the net gain parameter can only monotonously decrease
between the pulses due to the absorber recovery. Therefore,
this model cannot demonstrate the development of leading
edge instability with the increase of the pump parameter; see
Figs. 6(a) and 6(b). Furthermore, since the fast gain saturation
is absent in the conventional model, the net gain window is

FIG. 3. QSML solution obtained by numerical integration of the
generalized Haus model, Eqs. (23). (a) Pulse peak intensity of the
QSML regime as function of slow time τ . (b) Pulse intensity a2 as
function of two variables fast time t and slow time τ . Brighter color
corresponds to a higher intensity a2. k = 0.182, g0 = 0.1, q0 = 0.7,
r = 10. Other parameters are the same as in Fig. 1.

limited by the absorber recovery only. This is why the pulse
widths obtained with the conventional model are broader than
those of the generalized model (compare Figs. 6 and 5). Note
that the physical mechanism of the development of the multi-
pulse regimes reported in the soliton mode-locked lasers [32]
is different from the discussed above and requires the presence
of chromatic dispersion and Kerr nonlinearity terms in the
model equations.

FIG. 4. Bifurcation diagram similar to that shown in Fig. 1, but
obtained with conventional class-B Haus model. QSML and FML
denote Q-switched and fundamental mode-locking regimes, respec-
tively. Parameter values are the same as in Fig. 1.
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FIG. 5. Pulse intensity a2 (black line) and net gain (gray line)
obtained with the generalized Haus model (23) as functions of the
fast time t . (a) g0 = 1.0; (b) g0 = 3.0. Other parameters are the same
as in Fig. 1.

V. CONCLUSIONS

Although, unlike the DDE mode-locking model, the Haus
master equations are based on low gain and loss approxi-
mation, which limits the parameter range of their validity,

FIG. 6. The same as Fig. 5 but obtained with the conventional
class-B Haus model. (a) g0 = 1.0; (b) g0 = 3.0. Other parameters
are the same as in Fig. 1.

they are widely used and serve as an efficient tool for the
analysis of mode-locked devices, such as fiber and solid-state
lasers. This is not only due to their simplicity and availability
of well-developed tools for analytical and numerical analy-
sis of nonlinear PDEs but also because of the possibility of
the straightforward inclusion of the group velocity dispersion
into the master equations. In contrast, the inclusion of the
chromatic dispersion into the DDE mode-locking models is
less straightforward; see Refs. [39,40]. Another limitation
of the PDE Haus model is that unlike difference-differential
Haus equations (1), the development of adequate PDE models
of mode-locked class-B lasers requires a careful formula-
tion of the equations describing gain dynamics on different
timescales. In particular, the class-A version of the Haus mas-
ter equations (6), (7), and (10) fails to describe Q-switching
instability of the single-mode regime. The conventional class-
B model (6), (7), and (14), which accounts for the slow
timescale evolution of the gain, is capable of describing Q-
switching instability but fails to predict the effect of gain on
the pulse shaping as well as the pulse leading-edge instability,
resulting in a transition to harmonic mode-locking regimes
with the increase of the pumping parameter. On the other
hand, the solution of the difference-differential Haus model
(1), which is free from these limitations, loses smoothness
with increasing round trip number and hence exhibits an insta-
bility at large frequencies. Here, using a rigorous asymptotic
expansion technique, we have derived a generalized version
of the Haus PDE model including the equations for the slow
and fast scale gain evolution, which are simpler than those
reported in Ref. [33]. By neglecting the gain evolution on the
fast timescale, our generalized equations can be transformed
into the conventional class-B Haus model. Our numerical
simulations indicate that the generalized model allows us to
describe both the Q-switched mode-locking and the develop-
ment the leading edge instability, resulting in the appearance
of a harmonic mode-locking regime.
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APPENDIX A: MULTIPLE-SCALE ANALYSIS OF EQS. (19)

We first introduce a multiple-scale expansion for time. By
analogy with Eq. (3), we name the fastest timescale t and the
slower ones τ1 and τ2:

d

dT
= ∂

∂t
+ ε

∂

∂τ1
+ ε2 ∂

∂τ2
+ O(ε3). (A1)

The advanced variable a(T + r) in the field equation (19a)
can be expressed in terms of the various timescales in the

014215-8



GENERALIZED HAUS MASTER EQUATION MODEL FOR … PHYSICAL REVIEW E 104, 014215 (2021)

expansion (A1) as follows:

a(T + r) = a(t + r, τ1 + εr, τ2 + ε2r) =
[

1 + εr
∂

∂τ1

+ ε2

(
r2

2

∂2

∂τ 2
1

+ r
∂

∂τ2

)]
a(t + r, τ1, τ2) + O(ε3).

(A2)

We further expand

a = a0 + εa1 + ε2a2 + O(ε3), (A3a)

n = n0 + εn1 + ε2n2 + O(ε3). (A3b)

Substituting Eqs. (A1) and (A2) and then Eqs. (A3) into
Eqs. (19) and equating the coefficients of like powers of ε

separately lead to a hierarchy of linear problems. A study
of their solvability conditions will provide a set of equations
equivalent to Eqs. (19) in the limit of small ε.

APPENDIX B: O(ε0) PROBLEM

The O(ε0) problem is

a0(t + r) − a0(t ) = 0, (B1a)

∂n0

∂t
= 0, (B1b)

and gives a periodic boundary condition for the field am-
plitude a0 and the information that the leading-order gain
component n0 does not vary on the fastest timescale t .

1. O(ε1) problem

The O(ε1) problem is

a1(t + r) − a1(t ) =
(

−r
∂

∂τ1
+ 1

2
n0

)
a0, (B2a)

∂n1

∂t
= −∂n0

∂τ1
+ Pg − Sga2

0. (B2b)

The validity of the expansions (A3) for all times requires
that a1 and n1 be bounded functions of t . This imposes the
vanishing of the right-hand side of Eq. (B2a) and the vanishing
of the average of the right-hand side of Eq. (B2b) over all t ,
which leads to the following solvability conditions:

r
∂a0

∂τ1
= 1

2
n0a0, (B3a)

∂n0

∂τ1
= Pg − Sg̃a 2, (B3b)

where ã is the quadratic average field amplitude over one
round trip:

ã(τ1, τ2) =
√

r−1

∫ r

0
dt a2

0(t, τ1, τ2). (B4)

The quantity â defined by

a0 = ã̂a (B5)

thus represents the emission pattern normalized so that

r−1
∫ r

0
dt â 2 = 1. (B6)

It will be advantageous to express the field variable a0

everywhere in terms of the decomposition (B5), as we will
find ã and â to be governed separately by their own evolution
equations. First, the O(ε0) equation (B1a) for the field trans-
lates to a periodic boundary condition for â:

â(t + r) = â(t ). (B7)

Next, substituting Eq. (B5) into the solvability condition
(B3a) for the field gives

r

(
∂ ã

∂τ1
â + ã

∂ â

∂τ1

)
= 1

2
n0̃âa. (B8)

Multiplying both sides of Eq. (B8) by â, integrating over t ,
and using the normalization condition (B6) further yields

r
∂ ã

∂τ1
= 1

2
n0̃a, (B9)

which, together with the solvability condition (B3b) for the
gain, defines a closed system for the average field amplitude
ã and leading-order gain n0. This system is a conservative os-
cillator that describes Q switching and admits the first integral

H (τ2) = (2r)−1n2
0 + Sg̃a 2 − Pg ln

(
P−1

g Sg̃a 2). (B10)

The slow evolution of the Q-switching energy H on the slow-
est timescale τ2 is as yet undetermined.

Substituting Eq. (B9) for ã back into Eq. (B8) gives

∂ â

∂τ1
= 0, (B11)

which means that the normalized emission pattern â does not
vary on the timescale τ1 of Q switching. Finally, substituting
the solvability conditions (B3) and the decomposition (B5)
back into the O(ε1) problem (B2), we obtain

a1(t + r) − a1(t ) = 0, (B12a)

∂n1

∂t
= Sg(1 − â 2 )̃a 2. (B12b)

Equation (B12a) is a periodic boundary condition for a1.
Equation (B12b) is an evolution equation for the small gain
correction on the fast timescale t . Because its right-hand side
averages to zero over one round trip, its solutions n1 are
periodic with period r.

Finally, by multiplying both sides of Eq. (B12b) by n1 and
integrating over one period in t , we find an identity that will
be useful later on: ∫ r

0
dt n1 =

∫ r

0
dt â 2n1. (B13)

2. O(ε2 ) problem

The O(ε2) problem is

a2(t + r) − a2(t )

=
(

−r
∂

∂τ1
+ 1

2
n0

)
a1 +

[
− r2

2

∂2

∂τ 2
1

− r
∂

∂τ2

+ 1

2

(
d2 ∂2

∂t2
+ n1 − q

)]
a0, (B14a)
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∂n2

∂t
= −∂n1

∂τ1
− 2Sga0a1 −

(
∂

∂τ2
+ γ g + sga2

0

)
n0.

(B14b)

The following calculations involve many variable changes
and make heavy use of the field amplitude decomposition
(B5), of the normalization condition (B6), of the Q-switching
oscillator equations (B3b) and (B9), and of which variable is
independent of which time scale. For the sake of concision,
we omit from now on any reference to those in most places
where they are invoked.

Boundedness of a2 and n2 in t requires the vanishing of the
right-hand side of Eq. (B14a) and of the average of the right-
hand side of Eq. (B14b) over all t , leading to the solvability
conditions(

r
∂

∂τ1
− 1

2
n0

)
a1 − 1

2
n1̃âa

=
[
− r2

2

∂2

∂τ 2
1

− r
∂

∂τ2
+ 1

2

(
d2 ∂2

∂t2
− q

)]̃
âa

(B15a)

∂

∂τ1
r−1

∫ r

0
dt n1 + 2Sg̃ar−1

∫ r

0
dt âa1

= −
(

∂

∂τ2
+ γ g + sg̃a 2

)
n0. (B15b)

Those can be rewritten as(
r
∂a′

∂τ1
− 1

2
n′

)̂
a

=
[
−rã −1 ∂ ã

∂τ2
+ 1

2

(
d2 ∂2

∂t2
− q

)]̂
a, (B16a)

∂n′

∂τ1
+ 2Sg̃a 2a′ = −

(
∂

∂τ2
+ γ g + sg̃a 2 + 1

2
n0

∂

∂τ1

)
n0,

(B16b)

in terms of the effective saturation coefficient sg given in
Eq. (20) and of the auxiliary variables a′, a′, n′, and n′ defined
as

a′ = ã −1â −1a1, a′ = r−1
∫ r

0
dt â 2a′, (B17a)

n′ = n1 − r

2
(Pg − Sg̃a 2) − 1

4
n2

0, n′ = r−1
∫ r

0
dt n′.

(B17b)

Multiplying both sides of Eq. (B16a) by â, integrating over
one period in t , and using the identity (B13) yields, together
with Eq. (B16b), the following linear t-independent inhomo-
geneous system for two unknowns ã′ and ñ′:

r
∂ ã′

∂τ1
− 1

2
ñ′ = −rã −1 ∂ ã

∂τ2
− 1

2
r−1

∫ r

0
dt â 2q, (B18a)

∂ ñ′

∂τ1
+ 2Sg̃a2ã′ = −

(
∂

∂τ2
+ γ g + sg̃a 2 + 1

2
n0

∂

∂τ1

)
n0,

(B18b)

where we have defined

ã′ = a′, (B19a)

ñ′ = n′ − d2r−1
∫ r

0
dt

(
∂ â

∂t

)2

. (B19b)

Fredholm’s solvability condition requires that the right-hand
side of the system (B18) be orthogonal to the solutions of the
adjoint homogeneous problem. After a few calculations, we
find that this condition can be written in matrix form as∫ T1

0
dτ1[−2(Pg − Sg̃a 2) n0]

×
[ −rã −1 ∂ ã

∂τ2
− 1

2 r−1
∫ r

0 dt â 2q

−(
∂

∂τ2
+ γg + sg̃a 2 + 1

2 n0
∂

∂τ1

)
n0

]
= 0, (B20)

where T1 denotes the period of the Q-switching oscillator as
defined by Eqs. (B3b) and (B9). Using the expression (B10)
for the Q-switching energy H , Eq. (B20) simplifies to

r
dH

dτ2
= T −1

1

∫ T1

0
dτ1

[
(Pg − Sg̃a 2)r−1

∫ r

0
dt â 2q

− (γ g + sg̃a 2)n2
0

]
. (B21)

Equation (B21) determines the slow evolution of the Q-
switching oscillation cycle. Its right-hand side involves the
normalized emission pattern â, whose evolution is as yet un-
determined. We therefore now need an equation for â.

To this end, we multiply both sides of Eq. (B18a) by â and
subtract it side by side from Eq. (B16a), obtaining

râ
∂ â′

∂τ1
=

[
−r

∂

∂τ2
+ 1

2

(
d2 ∂2

∂t2

+ n̂′ + r−1
∫ r

0
dt â 2q − q

)]̂
a, (B22)

where we have defined

â′ = a′ − ã′, (B23a)

n̂′ = n′ − ñ′. (B23b)

Boundedness of â′ in τ1 requires the vanishing of the average
of the right-hand side of Eq. (B22) over all τ1, leading to the
following solvability condition:

r
∂ â

∂τ2
= 1

2

[
d2 ∂2

∂t2
+ n̂

+ T −1
1

∫ T1

0
dτ1

(
r−1

∫ r

0
dt â 2q − q

)]̂
a, (B24)

where we have defined

n̂ = T −1
1

∫ T1

0
dτ1n̂′. (B25)

Equation (B24) provides an equation for â that depends on n̂.
A complementary equation for n̂ in terms of â can be

derived from the fast gain equation (B12b) using the relations
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(B17b), (B19b), (B23b), and (B25) between the various aux-
iliary gain variables:

∂ n̂

∂t
= Sg(1 − â 2)T −1

1

∫ T1

0
dτ1̃a 2. (B26)

APPENDIX C: ASYMPTOTIC FORM OF EQS. (19)

We now summarize the results of the multiple-scale anal-
ysis of Appendix A and collect all the obtained asymptotic
equations in a single place, renaming the leading-order gain
component n0 as

n0 = ñ (C1)

for the sake of notation uniformity. According to Eq. (B5),
the field amplitude a can be decomposed to leading order as
the product of a slow-varying envelope ã and of a normalized
emission pattern â,

a = ã̂a, (C2)

both governed by their own evolution equations.
Equations (B24) and (B26) form a system that couples the

emission profile â to some fast gain component n̂:

r
∂ â

∂τ2
= 1

2

[
d2 ∂2

∂t2
+ n̂

+ T −1
1

∫ T1

0
dτ1

(
r−1

∫ r

0
dt â 2q − q

)]̂
a, (C3a)

∂ n̂

∂t
= Sg(1 − â 2)T −1

1

∫ T1

0
dτ1̃a 2, (C3b)

where T1 is the Q-switching period, to be defined more
precisely below. Equation (C3a) bears some similarity to
Haus master equation (6), while Eq. (C3b) determines the
depletion-and-recovery profile of the gain over one round
trip. In view of Eqs. (B11) and (B25), â and n̂ do not vary
on the Q-switching timescale τ1, so they do not contain any
information about Q-switching oscillations. In order to form a
well-posed problem, the partial-differential system (C3) must
satisfy some boundary conditions or other constraints. Those
are provided by Eqs. (B6) and (B7):

â(t + r) = â(t ), (C4a)

r−1
∫ r

0
dt â 2 = 1. (C4b)

Equation (C4a) is a periodic boundary condition for the emis-
sion pattern â. The solution n̂ of the fast gain equation (C3b)
is defined up to an additive contribution that depends only on
the slowest timescale τ2, and whose value is to be adjusted so
that the normalization condition (C4b) holds for all τ2.

Coupled equations for the slow-varying field amplitude
ã and the leading-order gain component ñ are provided by
Eqs. (B3b) and (B9):

r
∂ ã

∂τ1
= 1

2
ñ̃a, (C5a)

∂ ñ

∂τ1
= Pg − Sg̃a 2. (C5b)

In view of Eqs. (B1b) and (B4), ã and ñ do not vary on
the fast timescale t . Equations (C5) define a conservative
oscillator whose orbits describe Q-switching cycles. Those are
characterized by the values H of a first integral provided by
Eq. (B10):

H = (2r)−1ñ 2 + Sg̃a 2 − Pg ln
(
P−1

g Sg̃a 2
)
. (C6)

The Q-switching period T1 can be computed as the period
of ã and ñ in τ1 according to Eqs. (C5). The evolution of ã
and ñ on all timescales, and thus the full Q-switching dynam-
ics, is completely determined by the additional knowledge
of the evolution of the Q-switching energy H on the slowest
timescale τ2. It is provided by Eq. (B21):

r
dH

dτ2
= T −1

1

∫ T1

0
dτ1

[
(Pg − Sg̃a 2)r−1

∫ r

0
dt â 2q

− (γ g + sg̃a 2 )̃n 2

]
, (C7)

where sg is given by Eq. (20).
Finally, the system (C2)–(C7) is closed by its coupling to

the absorber equation (7). The asymptotic equations (C2)–
(C7) can be useful in their own right as they would provide
a good starting point for an all-analytical bifurcation study of
mode-locked class-B lasers (though such a study falls outside
of the scope of the present paper). They are not the final result
of the present analysis, however. Keeping in mind that our
goal is to find a generalized gain model to be coupled to Haus
master equation (6), we note that Eqs. (C2)–(C7) present the
drawback of not involving the physical field and gain variables
directly. The relations between those and the asymptotic dy-
namical variables are in fact rather complicated. As a second
step in the analysis, therefore, we perform various transfor-
mations (given in Appendix D) to recast Eqs. (C2)–(C7) into
a much more physically transparent form. This procedure is
not a strict application of asymptotic analysis as it involves in-
homogeneous transformations (i.e., the summing of quantities
proportional to distinct powers of ε). Nevertheless, it satisfies
our goal by yielding Haus master equation coupled to a new
model for the gain dynamics.

APPENDIX D: EQUIVALENCE OF EQS. (21) AND (22) TO
EQS. (C2)–(C7) IN THE LIMIT (18)

Equations (C2)–(C7) involve the three independent time
variables t , τ1, and τ2. Our first step toward casting them into
the form of (21) and (22) consists in recombining τ1 and τ2

into a single slow-time variable τ . To this end, our strategy is
to propose the following multiple-scale expansion for τ :

d

dτ
= ∂

∂τ1
+ ε

∂

∂τ2
+ O(ε2), (D1)

and then devise (by means of educated guesswork) a set of
equations in the t and τ variables that admit Eqs. (C2)–(C7)
as a limit for small ε. We then explicitly check the correctness
of that limit to establish formally the equivalence of the two
formulations. This can be viewed as a multiple scale analysis
applied backwards.
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First, the equations (C3) for â and n̂ suggest

r
∂ â

∂τ
= 1

2
ε

[
d2 ∂2

∂t2
+ n̂′ + r−1

∫ r

0
dt â 2q − q

]̂
a, (D2a)

∂ n̂′

∂t
= Sg(1 − â 2 )̃a 2 (D2b)

as equivalent for small ε. It is indeed easily checked that
the application of an averaging method to Eq. (D2a) yields
Eq. (C3a) with the definition (B25) for n̂ in terms of n̂′,
and that the combination of Eqs. (B25) and (D2b) leads to
Eq. (C3b).

Next, Eq. (C7) for the slow evolution of Q-switching oscil-
lations suggest modifying the conservative oscillator (C5) as
follows:

r
∂ ã

∂τ
= 1

2

(
ñ − εr−1

∫ r

0
dt â 2q

)̃
a, (D3a)

∂ ñ

∂τ
= Pg − Sg̃a 2 − ε(γ g + sg̃a 2 )̃n. (D3b)

We now check that Eqs. (C5)–(C7) are a limit of Eqs. (D3) for
small ε as follows. We substitute the expansions (D1) and

ã = ã0(1 + ε̃a′) + O(ε2), ñ = ñ0 + ε̃n′ + O(ε2) (D4)

into Eqs. (D3) and equate separately the coefficients of like
powers of ε, obtaining a hierarchy of problems for the co-
efficients of the expansions (D4). The O(ε0) problem is
equivalent to Eqs. (C5). The O(ε1) problem is

r
∂ ã′

∂τ1
− 1

2
ñ′ = −rã−1

0

∂ ã0

∂τ2
− 1

2
r−1

∫ r

0
dt â 2q, (D5a)

∂ ñ′

∂τ1
+ 2Sg̃a 2

0 ã′ = −
(

∂

∂τ2
+ γ g + sg̃a 2

)
ñ0, (D5b)

and is formally identical to Eqs. (B18) with the sole exception
of the absence of the last term in Eq. (B18b). By the same
reasoning as in Appendix A, therefore, a solvability condition
for Eqs. (D5) is provided by Eq. (B20) with the last term of
the second element of the column vector removed. Because
that term vanishes in the integration over one period in τ1,
however, the presence of this term does not matter, and the
solvability condition simplifies to Eq. (B21).

The analysis so far establishes that in the limit for small
ε, the two timescales τ1 and τ2 can be recombined into a
single time variable τ by replacing the equations (C3) for â
and n̂ with Eqs. (D2) and the equations (C5)–(C7) for ã and ñ
with Eqs. (D3). We now want to cast the two field equations
(D2a) and (D3a) into a single equation for the combined field
amplitude a given by Eq. (C2). To this end, we multiply both
sides of Eq. (D2a) by ã and both sides of Eq. (D3a) by â and
add the two resulting equations. Keeping in mind that ã does
not depend on t , we obtain

r
∂a

∂τ
= 1

2

(
εd2 ∂2

∂t2
+ n − εq

)
a, (D6)

where we have defined

n = ñ + ε̂n′. (D7)

Equation (C4a) further yields a periodic boundary condition
for a:

a(t + r) = a(t ). (D8)

An equation for the recombined gain variable n is then
obtained by differentiating both sides of Eq. (D7) with respect
to t , substituting Eq. (D2b), and keeping in mind that ñ does
not depend on t :

∂n

∂t
= εSg

(
r−1

∫ r

0
dt a2 − a2

)
, (D9)

where we have combined the field decomposition (C2) and the
normalization condition (C4b) to express ã 2 as follows:

ã 2 = r−1
∫ r

0
dt a2. (D10)

Equation (D9) alone determines n only up to an additive
contribution that depends only on τ . An extra constraint is
required to obtain a well-posed problem, and provided by
differentiating both sides of Eq. (D7) with respect to τ and
integrating over one period in t , which gives

r−1
∫ r

0
dt

∂n

∂τ
= Pg − Sg̃a 2 − ε(γ g + sg̃a 2)r−1

∫ r

0
dt ñ

+ εr−1
∫ r

0
dt

∂ n̂′

∂τ
. (D11)

Now, note that the equation (D2b) for n̂′ and the normalization
condition (C4b) imply that n̂′ is periodic in t with the same
period as â 2. A useful relation can be obtained by multiplying
both sides of Eq. (D2a) by â and both sides of Eq. (D2b) by n̂′
and integrating the two resulting equations over one period in
t . This gives∫ r

0
dt n̂′ =

∫ r

0
dt â 2n̂′ = d2

∫ r

0
dt

(
∂ â

∂t

)2

, (D12)

which, in view of Eq. (D2a), further entails∫ r

0
dt

∂ n̂′

∂τ
= O(ε). (D13)

Substituting the expression (D10) for ã 2, the expression for ñ
obtained from Eq. (D7), and Eq. (D13) into Eq. (D11) gives

∂n

∂τ
= Pg − Sgr−1

∫ r

0
dt a2

− ε

(
γ g + sgr−1

∫ r

0
dt a2

)
n + O(ε2), (D14)

where n = r−1
∫ r

0 ndt represents the average gain over one
round trip.

Finally, neglecting O(ε2) terms in (D9) and introducing the
new variables m = n + Sg/sg and m = n + Sg/sg and in we
can rewrite Eqs. (D6), (D8), (D9), and

r
∂a

∂τ
= 1

2

(
εd2 ∂2

∂t2
+ m − εq − k

)
a, a(t + r) = a(t ),

(D15)

∂m

∂t
= εSg

(
r−1

∫ r

0
dt a2 − a2

)
, (D16)
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∂m

∂τ
= Pg − Sgr−1

∫ r

0
dt a2 − ε

(
γ g + sgr−1

∫ r

0
dt a2

)
n.

(D17)

Equations (D6), (D8), (D9), and (D14) together are asymp-
totic to Eqs. (C2)–(C7) in the limit for small ε. [The O(ε2)

corrections in Eq. (D14) can be safely neglected without in-
validating this result.] On the other hand, the same Eqs. (D6),
(D8), (D9), and (D14) can be obtained by carrying out the sub-
stitutions (18) and τ → ε−1τ into Eqs. (21) and (22), which
proves the equivalence of Eqs. (21) and (22) to Eqs. (C2)–(C7)
with the scaling (18).
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