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Topological charge-density method of identifying phase singularities in cardiac fibrillation
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Spiral waves represent the key motifs of typical self-sustained dynamical patterns in excitable systems such
as cardiac tissue. The motion of phase singularities (PSs) that lies at the center of spiral waves captures many
qualitative and, in some cases, quantitative features of their complex dynamics. Recent clinical studies suggested
that ablating the tissue at PS locations may cure atrial fibrillation. Here, we propose a different method to
determine the location of PSs. Starting from the definition of the topological charge of spiral waves, we obtain
the expression of the topological charge density in a discrete case. With this expression, we can calculate the
topological charge at each grid in the space directly, so as to accurately identify the position of PSs.
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I. INTRODUCTION

Excitable media, such as cardiac tissue and some chemical
media, can support a large amplitude excitation wave under
a superthreshold stimulus. Following the wave, there is a
refractory period during which a new excitation cannot be
induced. Spiral waves in excitable media have great effects
on diverse physical, chemical, and biological systems [1–3].
In cardiology, such self-sustained waves play an essential role
in tachycardia and fibrillation [4,5].

Spiral waves can be stationary, meandering, or even
degenerate into multiple unstable rotating waves. The spa-
tiotemporal behavior of spiral waves has been extensively
quantified by tracking the trajectory of their phase singu-
larities (PSs), i.e., the core of spiral waves. The analysis
of PS dynamics is thus important for exploring the mecha-
nisms of cardiac fibrillation [6]. Recently, clinical studies have
suggested that ablating the tissue at PS locations may cure
fibrillation of the cardiac atria [7].

For numerical simulations, locating the intersection point
of the isocontours of the two-state variables is a classic
method to determine the position of the PS [8–10]. Though
robust and suitable for numerical simulations, the two-state
variables needed in this method are not experimentally ac-
cessible. Only one dependent variable (generally voltage V )
is usually recorded in experiment. Therefore, how to use one
variable to detect the PS has aroused widespread concern.

In this paper, a charge-density method of identifying PSs
using only one variable is proposed. First, according to the
definition of the topological charge of spiral waves, we derive
the expression of the topological charge density in a discrete
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case. Then, using the discrete expression of the topological
charge density, we directly and accurately calculate the topo-
logical charge at each grid in two-dimensional system space:
the topological charge at PSs will be +1 or −1 while others
are 0, which helps us distinguish the PSs clearly. We illustrate
the principle of this method and give its comparison with the
convolution method [11,12].

II. METHODS

A. Model simulations

First, we consider the classic two-variable FitzHugh-
Nagumo (FHN) model [13,14] described with the following
equations:

∂V

∂t
= 1

ε

(
V − V 3

3
− W

)
+ D∇2V, (1a)

∂W

∂t
= ε(V + β − γW ), (1b)

where V is the fast (voltage) variable while W is the slow
(gating) variable; D is the diffusion coefficient; ε, β, and γ

are model parameters. In this paper, we set D = 1.00, ε =
0.22, β = 0.70, and γ = 0.80. The whole simulation based on
Eq. (1) is running in a 512 × 512 array with no-flux boundary
conditions, whose spatial discretization �x = �y = 0.05 and
temporal discretization �t = 0.0005. Note that, in clinical us-
age, such high spatial resolution can’t be achieved. Therefore,
in order to improve the authenticity of simulation, we take a
sample every four grids, which means we only obtain a spiral
wave in the range of 128 × 128 grids with Lx = Ly = 25.6,
as illustrated in Fig. 1(a). Figure 1(a) is a snapshot which
describes the spatial distribution of the fast variable V of a
meandering spiral wave generated by the FHN model.
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FIG. 1. FHN model was used to simulate spiral waves with ε =
0.22, β = 0.70, and γ = 0.80. (a) The spatial distribution of the fast
variable V of a meandering spiral wave. Panels (b)–(f) show the
distribution of the topological charge ρ(i, j)�x2 in two-dimensional
space. The coordinates of PSs identified by different methods are
marked in these figures respectively. (b) Convolution method with
Sobel 3 × 3 convolutional kernels. (c) Convolution method with
nabla 3 × 3 convolutional kernels. (d) Convolution method
with nabla 2 × 2 convolutional kernels. (e) Charge-density method
with 3 × 3 arrays. (f) Charge-density method with 2 × 2 arrays.

B. Phase mapping

Phase mapping is a technique to assess the complexity
of the dynamics. This approach is applicable to numerical
simulations, optical mapping experiments as well as electrical
recordings. The phase at each point represents the state of each
moment, so it is significant to obtain the actual phase map-
ping. PSs are points where all values of the phase converge
and correspond to the core of spiral waves. Experimentally,
one can calculate the phase with only one state variable (gen-
erally voltage V ) by using a reconstructed state space [15],
which is formed by V (t ) and V (t+τ ). The pseudo-EMD
(PEMD) [16] is an effective way to detrend the fast variable
V , and we will use it to process the data before calculating the
phase.

First of all, we construct the envelope of the maximum
and the minimum of V (t ), marked Vmax(t ) and Vmin(t ),
respectively. The envelope midline Vmean(t ) then is computed

by

Vmean(x, y, t ) = Vmax(x, y, t ) + Vmin(x, y, t )

2
. (2)

We finally detrend V (t ) by computing

V ′(x, y, t ) = V (x, y, t ) − Vmean(x, y, t ). (3)

By the same operation on V (t + τ ), we obtain

V ′(x, y, t + τ ) = V (x, y, t + τ ) − Vmean(x, y, t + τ ) (4)

as well. The expression of the phase for each grid using
V ′(t + τ ) and V ′(t ) is

φ(x, y, t ) = arctan 2[V ′(x, y, t + τ ),V ′(x, y, t )], (5)

where the function arctan 2 will return a value of the phase
within (−π,+π ]. We will use Eq. (5) in the following calcu-
lation and set the time delay τ as 0.2T (T is the period of the
spiral wave).

C. Charge-density method

The neighboring elements of PSs exhibit a continuous pro-
gression of the phase which is equal to ±2π around them
[15]. This is described in terms of the topological charge
[17–19] defined as

nt = 1

2π

∮
�

�k · d�l, �k = ∇φ, (6)

where � represents a closed curve surrounding the PS.
Whether the line integral is +2π or −2π , i.e., nt = +1 or
nt = −1, depends on the chirality of the spiral [20]. Specifi-
cally, using Stokes’ theorem, we transform Eq. (6) into

nt = 1

2π

∫∫
S

(∇ × �k) · ẑdσ , (7)

where the surface S is surrounded by � in Eq. (6). Thus, the
charge density can be expressed as

ρ(x, y) = 1

2π
(∇ × �k) · ẑ. (8)

In the meantime, according to the topological current the-
ory [21,22], it is rigorously proven that [23]

ρ(x, y) = δ[V ′(t + τ )]δ[V ′(t )]D0(V ′/x), (9)

where D0(V ′/x) = ∂xV ′(t )∂yV ′(t + τ ) − ∂yV ′(t )∂xV ′(t + τ )
is the Jacobian determinant and δ is the Dirac delta function.

As shown in Ref. [23], we know that

ρ(x, y) = ntδ(x − xps)δ(y − yps). (10)

Under the condition of discrete data,

δ(x − xps)δ(y − yps) → δi,i∗δ j, j∗/�x2,

which means that Eq. (8) can be rewritten as

ρ(i, j) = 1

2π
[(∇ × �k) · ẑ]i, j = ntδi,i∗δ j, j∗/�x2. (11)
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Thus,

ρ(i, j)�x2 = 1

2π
[(∇ × �k) · ẑ]i, j�x2 = ntδi,i∗δ j, j∗ , (12)

where ρ(i, j)�x2 represents the topological charge within
the area of �x2 centered on (i, j). Using Eq. (12), we can
calculate ρ(i, j)�x2 at each grid. According to the above

theoretical analysis, if the grid is a PS, i.e., (i∗, j∗), the value
of ρ(i, j)�x2 will be +1 or −1. Otherwise, the value of
ρ(i, j)�x2 is 0.

When we use the charge-density method for numerical
simulation, it is performed as follows: The gradient of the
phase is defined by a finite difference operation in the x and y
directions:

∂φ

∂x

(
i + 1

2
, j + 1

2

)
= φ

(
i + 1, j + 1

2

) − φ
(
i, j + 1

2

)
�x

, (13a)

∂φ

∂y

(
i + 1

2
, j + 1

2

)
= φ

(
i + 1

2 , j + 1
) − φ

(
i + 1

2 , j
)

�x
. (13b)

After that,

∂2φ

∂y∂x

(
i + 1

2
, j + 1

2

)
=

∂φ

∂y

(
i + 1, j + 1

2

) − ∂φ

∂y

(
i, j + 1

2

)
�x

, (14a)

∂2φ

∂x∂y

(
i + 1

2
, j + 1

2

)
=

∂φ

∂x

(
i + 1

2 , j + 1
) − ∂φ

∂x

(
i + 1

2 , j
)

�x
, (14b)

and

[(∇ × �k) · ẑ]i+ 1
2 , j+ 1

2
= ∂2φ

∂y∂x

(
i + 1

2
, j + 1

2

)
− ∂2φ

∂x∂y

(
i + 1

2
, j + 1

2

)
,

so, we rewrite Eq. (12) as

ρ

(
i + 1

2
, j + 1

2

)
�x2 = 1

2π

[
∂2φ

∂y∂x

(
i + 1

2
, j + 1

2

)
− ∂2φ

∂x∂y

(
i + 1

2
, j + 1

2

)]
�x2. (15)

It should be ensured that the value of the phase change between two grids is within the range (−π,+π ] [24].
If we want to calculate ρ(i + 1

2 , j + 1
2 )�x2, we need the phase nearby (i + 1

2 , j + 1
2 ) in the range of 2 × 2 arrays. Figure 1(f)

is obtained by the charge-density method with 2 × 2 arrays and the result is straightforward: in the field of ρ(i + 1
2 , j + 1

2 )�x2,
there is only one peak equal to +1 and others are 0, which is consistent with the above derivation. So we can clearly identify the
location of the PS and mark its coordinate in the picture.

We can also expand the range from 2 × 2 to 3 × 3 arrays if we define the gradient of the phase in this way:

∂φ

∂x
(i, j) = [φ(i + 1, j) − φ(i, j)] + [φ(i, j) − φ(i − 1, j)]

2�x
, (16a)

∂φ

∂y
(i, j) = [φ(i, j + 1) − φ(i, j)] + [φ(i, j) − φ(i, j − 1)]

2�x
, (16b)

where the value of the phase change between two adjacent
grids is within the range (−π,+π ] and

∂2φ

∂y∂x
(i, j) =

∂φ

∂y (i + 1, j) − ∂φ

∂y (i − 1, j)

2�x
, (17a)

∂2φ

∂x∂y
(i, j) =

∂φ

∂x (i, j + 1) − ∂φ

∂x (i, j − 1)

2�x
. (17b)

Therefore,

ρ(i, j)�x2 = 1

2π

[
∂2φ

∂y∂x
(i, j) − ∂2φ

∂x∂y
(i, j)

]
�x2. (18)

The result obtained by 3 × 3 arrays [see Fig. 1(e)] is
slightly different from that of 2 × 2 arrays [see Fig. 1(f)]:
there are four peaks equal to +0.25 and others are 0. It can

be explained as follows: When we use the phase nearby (i, j)
in the range of 3 × 3 arrays, Eq. (11) should be rewritten as

ρ(i, j) = 1

2π
[(∇ × �k) · ẑ]i, j = ntδi,i∗δ j, j∗/(2�x)2,

that is,

ρ(i, j)�x2 = 1
4 ntδi,i∗δ j, j∗ .

Thus, the peak value is indeed +0.25 and there are four
peaks equal to +0.25. This makes sure that the surface
integral of Eq. (7) is equal to +1. In other words, the charge-
density method with 3 × 3 arrays identifies four points with
ρ(i, j)�x2 = 0.25 and the PS is located in the center of these
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FIG. 2. Simple schematics are used to illustrate the charge-
density method and the convolution method. (a) Using charge-
density method with 3 × 3 arrays obtains four points marked by
black squares with ρ(i, j)�x2 = 0.25. The center of these four points
is identified as a PS (black dot). (b) Using convolution method
with nabla 3 × 3 convolutional kernels identifies four PSs which are
marked by black stars and the real PS (black dot) is located in the
intersection of these PSs.

points, as shown in Fig. 2(a). So we mark the coordinate of
the center point in Fig. 1(e) as the position of the PS.

D. Convolution method

For comparison, we use the convolution method developed
by Bray et al. [11,12] to identify the location of a PS, which
has been widely used since proposed [25–29]. They proposed
that the line integral of Eq. (6) can be expressed as a convolu-
tion operation:

(∇ × �k) · ẑ ≡ lim
S→0

1

S

∮
�

�k · d�l ∝ (∇x ⊗ ky + ∇y ⊗ kx )/�x.

(19)
Combining Eq. (19) with Eq. (11), we get

ρ(i, j) = 1

2π
(∇x ⊗ ky + ∇y ⊗ kx )/�x,

that is,

ρ(i, j)�x2 = 1

2π
(∇x ⊗ ky + ∇y ⊗ kx )�x, (20)

where kx and ky are ∂φ

∂x and ∂φ

∂y , respectively; ⊗ is convolution
operation, and

∇x =
⎡
⎣−1/2 0 1/2

−1 0 1
−1/2 0 1/2

⎤
⎦, ∇y =

⎡
⎣ 1/2 1 1/2

0 0 0
−1/2 −1 −1/2

⎤
⎦

(21)

are Sobel 3 × 3 convolutional kernels [11].
The value of the convolution operation Eq. (20) should

be ±1 and its sign depends on the chirality of the rotation.
However, the value of Eq. (20) with Sobel 3 × 3 convolution
kernels not only is not strictly ±1 at a PS, but also is not
equal to 0 at other points, as shown in Fig. 1(b). Therefore,
we think Sobel 3 × 3 convolution kernels are not suitable for
determining PSs.

Actually, Sobel 3 × 3 kernels were first used in image
edge detection, not PS detection. And later, Bray changed
the kernels used in the convolution method, named nabla

kernels [12], which are derivative operators similar to Prewitt
operators used in image processing [30] and which are appro-
priate for evaluating the differential form of the curl operation.
Therefore, in this paper, we will use the following two kinds
of convolution kernels to locate PSs, the result of which will
be compared with that of the charge-density method:

nabla 3 × 3 kernels [12],

∇x =
⎡
⎣1 0 −1

1 0 −1
0 0 0

⎤
⎦, ∇y =

⎡
⎣−1 −1 0

0 0 0
1 1 0

⎤
⎦, (22)

and nabla 2 × 2 kernels [12],

∇x =
[

1 −1
0 0

]
, ∇y =

[−1 0
1 0

]
. (23)

Figures 1(c) and 1(d) illustrate the results performed by the
convolution method with nabla 3 × 3 kernels and nabla 2 × 2
kernels, respectively. We know from Fig. 1(c) that the con-
volution method with nabla 3 × 3 kernels identifies four PSs
close together. But the real PS is located in the intersection
of these PSs, as shown in Fig. 2(b). We mark the coordinate
of the intersection of these PSs in Fig. 1(c) as the position of
the real PS. In line with expectations, the convolution method
with nabla 2 × 2 kernels only obtains one point whose nt is
+1 while other points are 0, so we distinguish the PS point
clearly [see Fig. 1(d)].

III. RESULTS

A. PS trajectory

After the theoretical analysis, here is a comparison of
the charge-density method and the convolution method. We
record the PS trajectories obtained by four different methods,
including the convolution method with nabla 3 × 3 kernels,
the convolution method with nabla 2 × 2 kernels, the charge-
density method with 3 × 3 arrays, and the charge-density
method with 2 × 2 arrays. We don’t use the convolution
method with Sobel 3 × 3 kernels due to its imperfect result as
shown in Fig. 1(b). All the PS trajectories are generated with
the FHN model with the same parameters as those in Fig. 1
and PS points are recorded once per time unit. The results
show that all these trajectories obtained by the four methods
are exactly the same as each other, which reveals the fact that
these four methods have the same performance in this case
(see Fig. 3).

B. Noise

In practice, there are many factors that affect the accu-
racy of data. Among all the factors, the influence of noise
[24,31] can’t be ignored. In order to study the effect of
noise, the FHN model’s parameters are the same as those
in Fig. 1 while we add spatiotemporal white noise σ (x, y, t )
[31] to the right side of Eq. (1a), in which 〈σ (x, y, t )〉 =
0, 〈σ (x, y, t )σ (x′, y′, t ′)〉 = ηδ(x−x′)δ(y−y′)δ(t−t ′).

We set the value of the noise amplitude as 0.004, i.e.,
η = 0.004. The influence of noise on the spiral wave is seen
in Fig. 4(a). Because of noise, the result of the convolu-
tion method with Sobel 3 × 3 kernels [Fig. 4(b)] gets even
worse. Nevertheless, the convolution method with nabla 3 × 3
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FIG. 3. One of the four identical trajectories obtained by four
different methods. PS points are recorded once per time unit from
140 to 260 time units. All these four methods lead to the exactly same
trajectories, and for brevity, it just shows the trajectory obtained by
the charge-density method with 3 × 3 arrays.

kernels, the convolution method with nabla 2 × 2 kernels,
the charge-density method with 3 × 3 arrays, and the charge-
density method with 2 × 2 arrays, as shown in Figs. 4(c)–4(f),
respectively, still identify the PSs accurately. It is further
found that the PS trajectories obtained by these four methods
are strictly identical when under the same amplitude, which
means that these four methods have the same performance
under the same noise amplitude. Taking the trajectories ob-
tained by the charge-density method with 3 × 3 arrays as an
example, Fig. 5 illustrates the variation of trajectories under
different noise amplitudes. When the noise is weak, e.g., η =
0.0002, the overall PS trajectory of the spiral wave is roughly
the same as that in the case of no noise as shown in Fig. 3,
but there are differences in details [see Fig. 5(a)]. With the
increase of noise amplitudes, the overall PS trajectory changes
gradually. When the noise is strong enough, e.g., η = 0.004,
the PS trajectory changes significantly with the direction of
the motion obviously shifted.

Meanwhile, we also take the PS-detecting error rate as
the standard to judge whether the method is good enough.
First, we have to define the PS-detecting error rate [25,32]: the
number of false results (false-positive plus false-negative PSs)
divided by the total number of recording times. When the PS
is not detected at the position where it actually exists, or when
the number of the PSs detected exceeds their actual numbers,
we regard such results as false results. For the methods with
3 × 3 arrays, when the four grids around the PS are not close
together as shown in Fig. 2, it is also regarded as false results.
At the same time, we take the PS position obtained by manual
verification as the “gold standard” to ensure the detection of
the PS properly, as mentioned in Refs. [25,29].

According to this definition, we obtain the error rate of
different methods in the process of tracking PSs. As shown
in Table I, the error rate of the charge-density method and the
convolution method increases with the increase of the noise
amplitude, but their performance is identical under the same
noise amplitude.

FIG. 4. The effect of noise. The FHN model’s parameters are
the same as those in Fig. 1 while the noise amplitude η = 0.004.
(a) The spatial distribution of the fast variable V of a meandering
spiral wave. Panels (b)–(f) show the distribution of the topologi-
cal charge ρ(i, j)�x2 in two-dimensional space. The coordinates
of PSs identified by different methods are marked in these figures
respectively. (b) Convolution method with Sobel 3 × 3 convolutional
kernels. (c) Convolution method with nabla 3 × 3 convolutional ker-
nels. (d) Convolution method with nabla 2 × 2 convolutional kernels.
(e) Charge-density method with 3 × 3 arrays. (f) Charge-density
method with 2 × 2 arrays.

C. Multiple PSs

Sometimes there are multiple spiral waves observed in
the heart during fibrillation, so it is significant to test the
charge-density method’s ability to locate PSs of multiple spi-
ral waves. We carry out the simulation on a larger system
consisting of 1024 × 1024 grids with spatial discretization
�x = �y = 0.05 and temporal discretization �t = 0.0005,
i.e., Lx = Ly = 51.2. And we still take a simple every four
grids and finally, we just obtain multiple spiral waves in the
range of 256 × 256 grids with Lx = Ly = 51.2, as shown in
Fig. 6(a). In this case, the convolution method with Sobel
3 × 3 kernels is still not suitable for identifying the PSs,
whose result is not accurate enough [see Fig. 6(b)]. All the
other methods [see Figs. 6(c)–6(f)] not only identify the loca-
tion of PSs perfectly, but also figure out the rotation direction
of spiral waves. Thus, the charge-density method is an effec-
tive way to identify PSs in the case of multiple spiral waves.
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FIG. 5. PS trajectories obtained by the charge-density method
with 3 × 3 arrays under different noise amplitudes. The initial con-
ditions are the same as those in Fig. 3. PS points are recorded once
per time unit and the time duration is the same as that in Fig. 3.
(a) η = 0.0002. (b) η = 0.0005. (c) η = 0.001. (d) η = 0.004.

D. Spatial resolution

Electric and optical mapping are two well-known methods
that are commonly used for acquiring electrograms during
fibrillation [33]. Even though a relatively high spatial reso-
lution is obtained with optical mapping, it cannot be used in
human heart due to the toxicity of the fluorescent dyes. Elec-
tric mapping has no such limitation and in electric mapping
experiments, the surface of the heart (epi and/or endo) will
be covered with electrode array to record the activity of the
heart for each sampling instant of the acquisition. However,
the number of electrodes is not enough to collect all the details
on the surface of the heart, which means that we only get low
spatial resolution data.

If we want to know whether the charge-density method
is available at low spatial resolution, we have to further re-
duce the spatial resolution to 32 × 32, as shown in Fig. 7(a),
which just records 0.39% of the data from the real system
(512 × 512). Figures 7(b)–7(f) show the results from different
methods. Again the convolution method with Sobel 3 × 3
kernels [Fig. 7(b)] is not suitable. The charge-density method
with 3 × 3 arrays and 2 × 2 arrays identify the PS with the

FIG. 6. Use different methods to identify PSs for multiple
spiral waves. The simulation, in the range of 256 × 256 grids,
used the same model and parameters as those in Fig. 1. (a)
The spatial distribution of the fast variable V of multiple spi-
ral waves. Panels (b)–(f) show the distribution of the topological
charge ρ(i, j)�x2 in two-dimensional space. The coordinates of
PSs identified by different methods are marked in these figures re-
spectively. (b) Convolution method with Sobel 3 × 3 convolutional
kernels. (c) Convolution method with nabla 3 × 3 convolutional ker-
nels. (d) Convolution method with nabla 2 × 2 convolutional kernels.
(e) Charge-density method with 3 × 3 arrays. (f) Charge-density
method with 2 × 2 arrays.

coordinate (8.4, 13.2), as well as the convolution method with
nabla 3 × 3 kernels and nabla 2 × 2 kernels. We record the PS
trajectories obtained by these four different methods at this
spatial resolution and find that all the trajectories are exactly
the same. As shown in Fig. 8, the trend of the trajectory is
similar to that in Fig. 3.

At the same time, in order to better understand the per-
formance of various methods in low spatial resolution, we
investigate the PS-detecting error rates under the 32 × 32

TABLE I. PS-detecting error rates caused by noise.

Convolution method Convolution Method Charge-density method Charge-density method
nabla 3 × 3 nabla 2 × 2 3 × 3 arrays 2 × 2 arrays

η = 0.0002 0.00% 0.00% 0.00% 0.00%
η = 0.0005 1.67% 1.67% 1.67% 1.67%
η = 0.001 2.50% 2.50% 2.50% 2.50%
η = 0.004 5.00% 5.00% 5.00% 5.00%

014213-6



TOPOLOGICAL CHARGE-DENSITY METHOD OF … PHYSICAL REVIEW E 104, 014213 (2021)

FIG. 7. The effect of spatial resolution. The FHN model’s
parameters are the same as those in Fig. 1 while the spatial
resolution reduced from 128 × 128 to 32 × 32. (a) The spatial
distribution of the fast variable V of a meandering spiral wave.
Panels (b)–(f) show the distribution of the topological charge
ρ(i, j)�x2 in two-dimensional space. The coordinates of PSs
identified by different methods are marked in these figures re-
spectively. (b) Convolution method with Sobel 3 × 3 convolutional
kernels. (c) Convolution method with nabla 3 × 3 convolutional ker-
nels. (d) Convolution method with nabla 2 × 2 convolutional kernels.
(e) Charge-density method with 3 × 3 arrays. (f) Charge-density
method with 2 × 2 arrays.

spatial resolution as shown in Table II. All these four methods
work well with 0% error rates. Note that only 8 × 8 elec-
trodes are available in clinical usage currently [7], so we also
calculate the PS-detecting error rates under the 8 × 8 spatial
resolution in Table II, which shows that the charge-density
method has the error rate of 2.5% as well as the convolution
method.

FIG. 8. One of the four identical trajectories obtained by four
different methods with low spatial resolution (32 × 32). PS points
are recorded once per time unit and the time duration is the same
as that in Fig. 3. All these four methods lead to the exactly same
trajectories, and for brevity, it just shows the trajectory obtained by
the charge-density method with 3 × 3 arrays.

E. Luo-Rudy model

Aiming to apply the charge-density method to cardiac data,
we use the Luo-Rudy model [34] to simulate spiral waves in
the heart, which is described with the following equation:

∂V

∂t
= − Iion

Cm
+ ∇ · (D∇V ), (24)

where V is the transmembrane potential. Cm = 1 μF/cm2

is the membrane capacitance and D = 0.001 cm2/ms is the
diffusion constant. Iion is the total ionic current density of
the membrane and all the parameters refer to Ref. [35].
Equation (24) is integrated using the Euler method with
spatial discretization �x = �y = 0.0075 cm and temporal
discretization �t = 0.00125 ms. The whole simulation is run-
ning in a 512 × 512 array with no-flux boundary conditions.
Then we take a sample every eight grids to obtain a spiral
wave in 64 × 64 arrays with Lx = Ly = 3.84 cm, as illus-
trated in Fig. 9(a). The result of the convolution method with
Sobel 3 × 3 kernels [Fig. 9(b)] is not satisfactory while the
convolution method with nabla 3 × 3 kernels [Fig. 9(c)] and
nabla 2 × 2 kernels [Fig. 9(d)] identify the PS accurately. Note
that the charge-density method with 3 × 3 arrays in Fig. 9(e)
still locates four points with an average nt of 0.25 and the
center of these points is the PS. The charge-density method
with 2 × 2 arrays in Fig. 9(f) identifies the PS directly. From
Figs. 9(e) and 9(f), we know that the charge-density method
works well when applied to cardiac data.

TABLE II. PS-detecting error rates for different spatial resolution.

Convolution method Convolution method Charge-density method Charge-density method
nabla 3 × 3 nabla 2 × 2 3 × 3 arrays 2 × 2 arrays

32 × 32 0 0 0 0
8 × 8 2.5% 2.5% 2.5% 2.5%
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FIG. 9. Luo-Rudy model was used to simulate spiral waves in
cardiac tissues. All parameters are chosen the same as those in
Fig. 3A(a) in Ref. [35]. (a) The spatial distribution of a spiral wave
in cardiac tissues (64 × 64). Panels (b)–(f) show the distribution of
the topological charge ρ(i, j)�x2 in two-dimensional space. The
coordinates of PSs identified by different methods are marked in
these figures respectively. (b) Convolution method with Sobel 3 × 3
convolutional kernels. (c) Convolution method with nabla 3 × 3
convolutional kernels. (d) Convolution method with nabla 2 × 2
convolutional kernels. (e) Charge-density method with 3 × 3 arrays.
(f) Charge-density method with 2 × 2 arrays.

PS trajectories of spiral waves generated with the Luo-
Rudy model are obtained by four different methods, including
the convolution method with nabla 3 × 3 kernels, the convo-
lution method with nabla 2 × 2 kernels, the charge-density
method with 3 × 3 arrays, and the charge-density method with
2 × 2 arrays. All of these four methods get the same patterns.
Namely, the PSs recorded during a long time series give rise
to a flowerlike pattern with outward petals (see Fig. 10).

We also calculate the PS-detecting error rates of four dif-
ferent methods in the case of coarser resolution. Table III

FIG. 10. One of the four identical trajectories obtained by four
different methods with Luo-Rudy model. All these four methods lead
to the exactly same trajectories, and for simplicity, it just shows the
trajectory obtained by the charge-density method with 3 × 3 arrays.

illustrates the error rates of different methods under the 32 ×
32 and the 8 × 8 spatial resolution. No matter what the spa-
tial resolution is, the performance of these four methods is
identical. Note that, when the spatial resolution reduces from
32 × 32 to 8 × 8, the error rate increases from 0.0% to 8.0%.

IV. DISCUSSION AND CONCLUSION

From the previous discussions and comparisons, we find
that the charge-density method and the convolution method
have the same good performance when they are applied
to detecting PSs in different situations. Nevertheless, the
charge-density method and the convolution method have
the following differences: (1) The charge-density method in
Eq. (12) is strictly derived in theory and the algorithm used
in numerical simulation is unique; however, the convolution
method in Eq. (20) has neither a strict derivation nor a unique
algorithm, whose results depend on the convolution kernels:
nabla kernels are effective for identifying PSs while Sobel
kernels are not suitable. (2) The charge-density method, com-
pared with the convolution method, is easier to understand and
calculate.

In conclusion, we have developed a different approach for
identifying the locations of PSs. Based on the topological
current theory and the definition of the topological charge
of spiral waves, we derive the expression of the topological
charge density in a discrete case. According to this discrete
expression, we can not only directly and accurately calculate
the topological charge at each grid in the two-dimensional
system space, but also theoretically obtain that the topological

TABLE III. PS-detecting error rates for different spatial resolution.

Convolution method Convolution method Charge-density method Charge-density method
nabla 3 × 3 nabla 2 × 2 3 × 3 arrays 2 × 2 arrays

32 × 32 0 0 0 0
8 × 8 8.0% 8.0% 8.0% 8.0%
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charge at PSs will be +1 or −1 while others are 0. With
the charge-density method, we can locate the position of PSs
accurately by simple calculations. In order to illustrate the
robustness of the charge-density method, we further apply this
method to the cases of noise, low spatial resolution, multiple
spiral waves, and the Luo-Rudy model, and it turns out that
the charge-density method is effective in all of these cases.
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