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Deep reinforcement learning (RL) is a data-driven, model-free method capable of discovering complex control
strategies for macroscopic objectives in high-dimensional systems, making its application toward flow control
promising. Many systems of flow control interest possess symmetries that, when neglected, can significantly
inhibit the learning and performance of a naive deep RL approach. Using a test-bed consisting of the Kuramoto-
Sivashinsky equation (KSE), equally spaced actuators, and a goal of minimizing dissipation and power cost, we
demonstrate that by moving the deep RL problem to a symmetry-reduced space, we can alleviate limitations
inherent in the naive application of deep RL. We demonstrate that symmetry-reduced deep RL yields improved
data efficiency as well as improved control policy efficacy compared to policies found by naive deep RL.
Interestingly, the policy learned by the symmetry aware control agent drives the system toward an equilibrium
state of the forced KSE that is connected by continuation to an equilibrium of the unforced KSE, despite
having been given no explicit information regarding its existence. That is, to achieve its goal, the RL algorithm
discovers and stabilizes an equilibrium state of the system. Finally, we demonstrate that the symmetry-reduced
control policy is robust to observation and actuation signal noise, as well as to system parameters it has not
observed before.
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I. INTRODUCTION

The recent explosive growth in machine-learning research
has led to a large set of data-driven algorithms that map inputs
to outputs by learning patterns and building inferences from
the data without the need to hardcode explicit instructions.
A subset of these methods are called semisupervised learn-
ing algorithms, which learn under partial supervision through
feedback from the environment. This subset is dominated by
deep reinforcement learning (RL) algorithms, which, with the
aid of neural networks, are particularly well-suited for tack-
ling complex control problems with elusive optimal policies.
In the past few years, deep RL has garnered the spotlight
by solving complex, high-dimensional control problems and
defeating the best human players in the world in games such
as Go [1] and DOTA II [2], which were once thought to be too
high-dimensional to feasibly solve.

Using a model system, the Kuramoto-Sivashinsky equation
(KSE), that has chaotic dynamics as well as continuous and
discrete symmetries analogous to those found in wall turbu-
lence, the present work takes a step toward application of
deep RL to control of spatiotemporally complex fluid flow
problems, with the ultimate aim being to reduce energy losses
in turbulent flows.

Deep RL offers a potential avenue for discovering active
flow control policies for several reasons. Designing a com-
plex active flow controller via analytical means is, in general,
intractable. Given an array of sensor readings and actuators,
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no obvious strategy exists to analytically develop a concerted
control scheme between the two sets [3]. Furthermore, the
nonlinear complexity and high dimensionality of turbulent
flows render real-time predictive simulations of potential pos-
sible actuations impractical. The bulk of existing active flow
control policies are relatively simple, relying on oscillatory
or constant actuation [4]. These open-loop control policies
are suboptimal in that they do not leverage the full potential
of their action space. Model-based approaches can also face
difficulties. As noted, in many settings solving the govern-
ing equations is too slow for any prediction-based method
to be practical. Reduced-order models aimed to expedite the
modeling process face difficulties in accurately modeling the
nonstationary dynamics caused by the introduction of control,
which can lead to unwanted behavior when far from the target
state [5]. In fact, a well described model of the system may
not always be readily available.

Finally, deep RL offers the ability to discover control
strategies for macroscopic goals, such as minimizing drag
over the entire system, as opposed to traditional control
methods that focus on microscopic goals, such as suppress-
ing certain vortex motions. Indeed, an outstanding challenge
in flow control is the identification of ideal control targets
achievable in specific flow problems [5].

Although current deep RL methods do not provide explicit
performance guarantees, they may discover nontrivial novel
control strategies that when paired with dynamical insight can
serve as guides for the development of more robust novel
controls. In this regard, Deep RL can also be viewed as a
control strategy discovery tool in addition to a data-driven
controller.
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Although we are ultimately interested in controlling the
drag in wall-bounded turbulent flows, the application of deep
RL toward fluid dynamics and spatiotemporal chaotic sys-
tems in general still remains in its nascent stages, with a
handful of advancements sprouting from various niche do-
mains. Deep RL has been utilized to control simple chaotic
dynamical systems such as the Lorenz system [6,7]. Recently,
Ref. [8] demonstrated the deep RL control of the Kuramoto-
Sivashinsky equation by directing the flow from one fixed
point of the system to another with a series of artificial jets.
Other applications of RL involve learning the collective mo-
tion of fish [9,10], maximizing the range of robotic gliders
[11], and optimizing the motion of microswimmers [12]. With
regard to fluid flow control, two recent works have explored
the application of RL in two-dimensional simulations of fluid
flowing over bluff bodies [6,13]. Using data from velocity
sensors, these algorithms learned control policies to reduce
skin-friction drag over the bluff body by actuating jets located
on the cylinders. The flows in these studies however, were
performed at laminar Reynolds numbers, where the dynamics
are simple and low-dimensional. Recently, Ref. [14] demon-
strated the viability of deep RL to learn flow control strategies
experimentally. In this work, the algorithm used data from
a series of towing experiments to learn an efficient control
strategy for spinning a pair cylinders downstream of a larger
cylinder to reduce the drag on the entire assembly. Although
promising, many of these approaches considered flow prob-
lems that exhibit low-dimensional dynamics, lack the rich
system symmetries found in wall-bounded turbulent flows
such as translational and reflection symmetries, and do not
aim to explicitly control the time-averaged energy dissipation
rate. Furthermore, these works do not focus on understanding
dynamically the learned controlled strategies.

Many systems of interest for flow control have symmetries.
Deep learning approaches that respect these symmetries au-
tomatically rather than learn to approximate them from data
are likely to have superior performance, and within the deep-
learning community is a growing body of work demonstrating
the importance of incorporating symmetries of the learning
domain into the deep neural-network (NN) models. For exam-
ple, it has been observed by Ref. [15] that the state-of-the-art
AlexNet NN image classifier [16] spontaneously learns re-
dundant internal representations that are equivariant to flips,
scalings, and rotations when trained on ImageNet data. Other
works, described later in this section, have found that directly
incorporating system symmetries can yield improved learning
and performance results. As many flow geometries of interest
possess a range of system symmetries, it is natural to incor-
porate these symmetries into the deep RL model, which to
our knowledge, has not been demonstrated in deep RL flow
control. Because the state of many flow systems can appear
in a number of symmetric orientations, it is in our interest to
ensure that these dynamically equivalent states are mapped
to dynamically equivalent actions for dynamical and perfor-
mance consistency. Fundamentally, this implies that we seek
deep models that are functionally invariant and equivariant to
the state-action symmetries of the system.

Typically, for a feedforward NN to obtain an invariant and
equivariant functional form, it will need to implicitly learn
weight-sharing constraints [17,18]. It is generally accepted

that these invariances can be learned given sufficient training
data [17] and capacity [19]. However, a consequence of sym-
metry preserving weight constraints is the substantial decrease
in the number of effective free parameters [17,20]. This lowers
the overall network capacity, which means that for an arbitrary
feedforward NN, one will need larger networks and by exten-
sion more training data and computing time to obtain desired
performance and functional properties. This exacerbates an
existing challenge in deep RL algorithms in that they can be
expensive in terms of training data needs. For perspective,
some of the most impressive successes, such as OpenAI 5,
the deep RL model that defeated the best professional teams
in the world in the game DOTA II, required 10 months of 770
Petaflops/s per day of training [2].

To ensure that the invariances and equivariances of the
domain are respected in the learning task, there are primarily
three solution types. The first solution type, data augmenta-
tion, is the simplest. This approach augments the training data
to include additional symmetric permutations of the original
training data with the goal of pressuring the model to implic-
itly learn equivariant representations [16,21]. However, this
method does not guarantee that the model will generalize, nor
does it address the issue in a principled method.

The second solution type is to hard-code the symmetries
into the network architecture itself. Some now ubiquitous
architectures, such as convolutional NNs and recurrent NNs,
have demonstrated success in improving performance by
accounting for translational symmetries. However, for sys-
tems with complex or collections of symmetry groups,
this hard-coding method requires carefully tailoring proper
weight-constraints, designing nondense connections, or incor-
porating new novel NN architectures [17,20,22,23].

The third solution type is accounting for system symme-
tries by applying symmetry transformations to the input prior
to the network or to its encoding features [24–26]. Refer-
ence [26] demonstrated for learning models of systems with
symmetry/invariance properties, such as turbulence and crys-
tal elasticity, these models perform better when invariance
properties are embedded into the training features compared
to when training features were synthetically augmented with
additional symmetric data.

In the present work, we opt for the third solution type,
building the symmetries explicitly around the NN model, in
favor of simplicity while still obtaining explicit symmetric
properties. Although there is a growing number of works seek-
ing to ensure invariance by hard-coding novel architectures,
there is yet to be a general method of applying these into ar-
bitrary concerted network designs (e.g., how does one handle
networks that feed into each other or have multiple input-types
such as actor-critic networks?). We will demonstrate that for
the control task of minimizing system dissipation and power
cost for the Kuramoto-Sivashinsky equation in a parameter
regime exhibiting chaotic dynamics, symmetry-reduced deep
RL yields improved data efficiency, control policy efficacy,
and dynamically consistent state-action mappings compared
to naive deep RL. We further observe that the symmetry-
reduced control policy learns to discover and target a forced
equilibrium, related to a known equilibrium of the system, that
exhibits low dissipation and power input cost, despite having
been given no explicit information of its existence.
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The remainder of this paper is divided into the following:
In Sec. II we introduce the Kuramoto-Sivashinsky equation
and the control task, as well as providing a brief review of
deep RL and a discussion of the implications of the symme-
tries of the state-action space on the learning problem. We
then conclude this section with an outline of our method of
reducing the symmetry of the deep RL problem. In Sec. III we
compare the performance of our symmetry-reduced deep RL
to naive deep RL approaches, investigate the learned control
strategy through a dynamical systems lens, and probe the
robustness of the policy. Finally, we summarize our results in
Sec. IV and provide a discussion of the extension of this work
toward more realistic problems.

II. FORMULATION

A. The Kuramoto-Sivashinsky equation and controls

The Kuramoto Sivashinsky equation (KSE) is given by

ut = −uux − uxx − uxxxx + f (x, t ). (1)

Here f is a spatiotemporal forcing term that will be used
for control actuation. We consider the KSE in a domain
of length L = 22 with periodic boundary conditions as this
system has been extensively studied and exhibits analogous
symmetries to flow systems of interest. The uncontrolled
KSE, f = 0, exhibits rich dynamics and spatiotemporal
chaos, which has made it a common toy problem and proxy
system for the Navier-Stokes equations. The equation is time
evolved with a time step of �t = 0.05 using the same numer-
ical method and code as [8] with a third-order semi-implicit
Runge-Kutta scheme, which evolves the linear second and
fourth order terms with an implicit scheme and the nonlinear
convective and forcing terms with an explicit scheme. Spatial
discretization is performed with Fourier collocation on a mesh
of 64 points. We primarily consider the domain size L = 22.

Importantly, the KSE possesses translational and reflection
symmetries, which are also present in higher dimensional
fluid systems of fluid control interest. Due to the periodic
boundary conditions, the KSE can be naturally expressed in
terms of Fourier modes,

u(x, t ) =
∑

k

Fk exp

(
i2πkx

L

)
. (2)

The real-valued Fourier state space vector of the system can
be described as the following:

F = [b0, c0, b1, c1, . . . ], (3)

where Fk = bk + ick . The dynamics of the unforced KSE with
periodic boundary conditions are equivariant under transla-
tions; i.e., if u(x, t ) is a solution, then so is

u(x + δx, t ) ≡ Tδxu(x, t ), (4)

for any spatial shift δx [27]. In Fourier space, for an arbitrary
state F , its translationally symmetric state differing by a phase
angle of θ can be described by the following operator,

τ (θ, Fk ) = exp(−ikθ )Fk . (5)

Here the phase angle and spatial shift is related by δx =
Lθ/2π . The KSE also has no preferred “drift” direction.

That is, there is a reflection symmetry across x = L/2 such
that if u(x, t ) is a solution, then so is

−u(L − x, t ) ≡ �u(x, t ). (6)

Note the sign change in both position and amplitude. Indeed,
because of the translation symmetry and periodicity, one can
reflect across any value of x. We say that any two states that
are related by the symmetry operations Tδx and/or � are
“dynamically equivalent.” In Fourier space, reflection sym-
metric states are related by a complex conjugation followed
by negation, resulting in a sign change in the real component
bk , yielding the operator,

σ (F ) = [−b0, c0,−b1, c1, . . . ] (7)

[27]. For a flow system with no preferred drift direction or spa-
tial localization, it is natural to choose identical and uniformly
spaced actuators for control. Spatially localized control is
implemented in the KSE with N = 4 equally spaced Gaussian
jets located at X ∈ {0, L/4, 2L/4, 3L/4} as done in Ref. [8],

f (x, t ) =
4∑

i=1

a(t )i√
2πσs

exp

(
− (x − Xi )2

2σ 2
s

)
. (8)

To serve as an analog to energy-saving flow control prob-
lems, we are interested in the minimization of the integral
quantities of dissipation and total power input (required to
power the system and jets) of the KSE system, which are
described by D = 〈u2

xx〉 and Pf = 〈u2
x〉 + 〈u f 〉, respectively.

Here 〈·〉 is the spatial average. The presence of actuators at
fixed positions in the domain modifies the symmetries of the
system; we describe these changes in Sec. II C.

B. Deep reinforcement learning

Reinforcement learning is a model-free, data-driven,
method to learn the mapping function between an observed
state, st , of the environment, and the action, at , that maximizes
the cumulative reward, Rt , by experiencing the consequences
of these state-action pairs. The basic RL process is cyclic: at
time t , the agent samples the state st of the environment and,
in Markovian fashion, outputs an action at , which belongs
to a prescribed range of actions. This action is applied to
the environment for a duration of T = 0.25 and the environ-
ment is evolved forward in time to state, st+1. We note here
the subscript st+1 is equivalent to st+T , but we maintain the
st+1 nomenclature for consistency with RL literature. How
desirably the environment evolved from st to st+1 under the
influence of action at is then quantified by the scalar reward,
rt , and the process repeats. The cumulative reward, Rt , is the
sum of discounted individual reward returns of state-action
pairs,

Rt = rt + γ rt+1 + γ 2rt+2 + . . . + γ n−1rn. (9)

The discount factor, γ , is chosen to be 0 < γ < 1, as events
further into the future are more uncertain than those nearer the
current instant. Here the instantaneous reward, rt , computed
for each observed state-action pair, was chosen to achieve our
aim of minimizing the energy dissipation rate,

rt = −(D + Pf ), (10)
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FIG. 1. Graphical schematic of the KSE flow control problem using deep RL.

where · is the time average over the duration of an actuation
time interval of T .

In our work the environment is the KSE, the state ob-
servation is the state of the KSE, st = u(t ), and the action
output is the control signal to the Gaussian jets, at = a. An
arbitrary state-action mapping function is called the policy
function, P (st ) = at , whereas the optimal policy that max-
imizes reward is denoted as P∗. The P∗ learning problem
is illustrated in Fig. 1, which shows the mapping between st

and at to maximize Rt through principles of RL which will be
described later this section.

In this work we use the deep deterministic policy gradient
(DDPG) algorithm [28], which takes on an actor-critic struc-
ture and serves as the baseline deep RL algorithm from which
we will introduce symmetry-reducing modifications later on.
The DDPG algorithm aims to approximate two key functions
with NNs: the aforementioned optimal policy, P∗, and the
optimal state-action value function, Q∗(s, a). To understand
how to learn these two functions, it is necessary to understand
the Q function, which quantifies the expected cumulative re-
ward when action at is performed on state st given the current
policy P ,

Q(s, a) = E[Rt |st = s, at = a,P]. (11)

We seek the policy P∗ that yields the largest state-action
value Q∗(s, a). That is,

Q∗(s, a) = max
P

E[Rt |st = s, at = a,P]. (12)

Importantly, Q∗(s, a) obeys the Bellman equation [29]:

Q∗(st , at ) = rt + γ max
at+1

Q∗(st+1, at+1). (13)

Obtaining Q∗ by explicitly evaluating all possible state-
action pairs in a continuous state-action space is intractable.
DDPG resolves this difficulty by utilizing NNs to approximate
the Q∗ function and the optimal policy P∗(s), which are also
known as the “critic” and “actor” networks, respectively [28].
The critic and actor networks are parameterized by weights φ

and ψ , respectively,

Q∗(s, a) ≈ Q(s, a, φ), (14)

P∗(s) ≈ P (s, ψ ). (15)

The actor network is generically referred to as the “agent” in
this method. Shown in Fig. 2 is a schematic of the actor-critic
learning cycle. During training, the actor network attempts to
map the state observation to the optimal action. The output

action along with the state observation are then passed to the
critic network, which attempts to estimate the Q-value of the
state-action pair. Note that once training is complete, the critic
network may be discarded and closed-loop control is per-
formed between the actor network and the environment only.

During training the weights of the critic network are up-
dated with the following loss function,

Li(φi) = {[r(st , at ) + γ Q(st+1, at+1, φi )] − Q(st , at , φi )}2,

(16)

which will be minimized when the Bellman equation,
Eq. (13), is satisfied, signaling that the optimal policy has been
approximated. This loss is used for back-propagation through
the critic network and the resulting gradient is utilized in
updating the actor network [28]. The optimization algorithms
implemented in training assume that samples are distributed
independently and identically, which is generally untrue for
data generated from our exploratory trajectories. To mitigate
this, the algorithm is trained on minibatches of experience tu-
ples, et = (st , at , rt , st+1), selected randomly from a memory
cache of past experience tuples. This memory cache technique
is called experience replay and is implemented to combat the
instabilities in Q-learning caused by highly correlated training
sets [29]. The DDPG algorithm used is shown in Algorithm 1.

We utilize actor-critic networks each with dense two
hidden layers of size 256 and 128 with ReLU activation func-
tions. The output layer of the actor and critic networks are
composed of tanh and linear activation functions, respectively.
Increasing the hidden layer size did not appear to strongly in-
fluence overall performance. We employ a rolling experience
replay buffer of generated training data, (st , at , rt , st+1), of
size 500 000 experiences and update with batch sizes of 128.

FIG. 2. Actor-critic learning scheme: During training the actor
and critic network train simultaneously (dashed, solid lines). Once
training is complete, the actor network interacts with the environment
independently as the feedback controller (solid lines).
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Algorithm 1: Deep deterministic policy gradient with experience replay

We trained each agent for 4000 episodes, with each episode
initialized randomly on the unforced KSE attractor and lasting
100 time units (400 actions). For exploration of state-action
space during training we employ Ornstein-Uhlenbeck noise
N [28] to encourage action exploration.

C. State-action space symmetries and the deep RL problem

It is important to now consider the symmetry of the overall
controlled system. As mentioned earlier, the KSE possesses
a continuous translational symmetry and a discrete reflection
symmetry. The presence of N equally spaced actuators breaks
the continuous translation symmetry, leaving only equivari-
ance with respect to shifts of integer multiples of L/N . The
symmetry of the overall controlled system is the intersection
of the symmetry group operations, which in this problem are
simply the discrete translational shift τN (defined precisely
below) and reflection operations. Thus, any state of the system
is 2N-fold degenerate, or equivalently any state can appear in

2N dynamically equivalent forms. The impact this degeneracy
has on learning the optimal policy is twofold. First, the P
function should map dynamically equivalent states to dynam-
ically equivalent actions, which requires the actor network
to learn to be an equivariant function with respect to the
total controlled system’s 2N symmetries, e.g., τN [P (s, ψ )] =
{P[τN (s), ψ]}. Second, the Q function should be invariant to
discrete translations and reflections of the state-action input,
which requires the critic network to learn to be an invariant
function of dynamically equivalent state-action pairs, e.g.,
Q(s, a, φ) = Q(σ (s), σ (a), φ).

Because NNs are not intrinsically equivariant nor invariant,
naive NNs must learn and internally approximate the optimal
policy 2N times, one for each of the 2N dynamically equiv-
alent sectors of state-action space. The implications of this
are twofold. First, this requirement to learn redundant policies
within the same network can be viewed as an implicit weight
constraint that not only exhausts network capacity, but also
requires an ergodic exploration of all of state-action space
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FIG. 3. (a) For the initial condition s0, the optimal controlled trajectory following the optimal policy P∗ leads to state s f . For simplicity,
τ4(s) = τ4(π/2, s). Given a translation of the s0 by τ4, following the optimal policy P∗(s) should yield a dynamically equivalent trajectory
translated by π/2. (b) A policy that does not have symmetry enforced, P (s), yielding dynamically nonequivalent trajectories.

to generate sufficient training data. Inaccuracies in properly
estimating the Q function lead to poor approximations in
the optimal policy, and ultimately poor training and control
performance. Second, in tow with control performance, if the
policy approximation is unable to map dynamically equivalent
states to dynamically equivalent actions, the policy cannot be
the optimal policy. An illustration of this in a cartoon-world
example is shown in Fig. 3, which possess a τ4 (discrete
translational shift) symmetry. Note that given dynamically
equivalent states, the optimal policy, shown in Fig. 3(a),
should produce dynamically equivalent trajectories as a con-
sequence of producing dynamically equivalent actions. A
suboptimal approximation of the optimal policy that does not
respect symmetry, shown in Fig. 3(b), yields dynamically
nonequivalent actions, and thus dynamically nonequivalent
trajectories and final states despite being given dynamically
equivalent initial conditions.

Our method to circumvent these limitations is to move the
deep learning problem to a symmetry-reduced subspace. We
accomplish this by reducing the translational symmetry of the
state observation via a modification of the method of slices
[27], followed by a reflection symmetry reduction operation
to obtain a discrete translational and reflection-reduced state.
This symmetry-reduced state is then passed to the agent,
which then outputs the corresponding optimal symmetry-
reduced action. The previously removed symmetries are
then reintroduced to the output actions prior to implemen-
tation to ensure that they respect the true orientation of the
system.

We first reduce discrete translational symmetries with a
modified method of slices. This operation moves all state
observations to the same discrete reference phase while pre-
serving the relative location of the N actuators to the original
and discrete translation-reduced state. The phase angle of the
state can be calculated via Eq. (17),

θ1 = arctan2(b1, c1), (17)

where arctan2(b, c), not to be confused with arctan2(b), is
the 2-argument arctangent function that returns the phase of

a complex number and is bounded by −π and π . To pre-
serve the uniqueness of a state-action pair, i.e., the relative
location of the state to the N spatially fixed actuators, the
state phase angle, θ1, is rounded up to the nearest discrete
phase, θN ,

θN = 2π

N
ceil

(
θ1

2π/N

)
. (18)

The Fourier state, F , is moved into the discrete translation-
reduced subspace via the discrete translational reduction
operator, F̂k = τN (θN , Fk ), where

τN (θN , Fk ) = exp(ikθN )Fk . (19)

In the discrete translation-reduced subspace, F̂ preserves the
relative location with respect to the actuators. The result-
ing real-valued Fourier state space vector in the discrete
translation-reduced subspace is then

F̂ = [b̂0, ĉ0, b̂1, ĉ1, b̂2, ĉ2, b̂3, ĉ3, . . . ]. (20)

Within the discrete translation-reduced subspace, reflection
symmetric states are related by the following reflection oper-
ator with respect to N ,

σN (F̂ ) = exp

(
2π

N
ik

)
σ (F̂ ). (21)

For N = 4, the discrete translation-reduced reflec-
tion operator is defined as the following repeating
sequence,

σ4(F̂ ) = [−b̂0, ĉ0,−ĉ1,−b̂1, b̂2,−ĉ2, ĉ3, b̂3, . . . ]. (22)

We note that the sign of ĉ2 is the first unique value that can
distinguish between two reflection symmetric states within
the discrete translation-reduced subspace and thus construct
a reflection indicator function ρ = sign(ĉ2). The reflection
operator, σ4, is then applied if the indicator value ρ < 0 to
collapse reflection symmetric states into a common half of the
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FIG. 4. Flow diagram of discrete-symmetry reduced deep reinforcement learning. State observations have discrete translational symmetries
reduced by τ4, followed by a reflection symmetry reduction by σ4. The symmetry reduced state is then passed to the agent, which outputs a
symmetry reduced action. The previously removed reflection and translational symmetries are reintroduced to the output action before being
implemented in the environment.

discrete translation-reduced subspace:

˘̂F =
{
σ4(F̂ ), if ρ < 0,

F̂ , otherwise.
(23)

The resulting discrete translational and reflection-reduced
Fourier state, ˘̂F , is then Fourier transformed back to the real
domain and passed to the deep RL agent as the state ob-
servation. A schematic of this symmetry reduction process
is shown in Fig. 4. By performing the appropriate trans-
formations to the state, the deep RL agent learns purely
within a discrete symmetry-reduced subspace, and thus out-
puts discrete symmetry-reduced actions, ˘̂a. As a result,
the agent trains with symmetry-reduced experiences, ˘̂et =
(˘̂st , ˘̂at , rt , ˘̂st+1). We highlight here that the reward in our par-
ticular learning problem is constructed from quantities that
are invariant to the symmetry transformations of the system
(e.g., the dissipation of a particular state is the same regardless
of its discrete-translational orientation). However, if one were
interested in specifically targeting a state, utarget, and wanted to
use a distance metric as the reward, r = −||u − utarget||, then
that calculation must also be performed in the transformed
space as well, ˘̂r = −|| ˘̂u − ˘̂utarget||. Importantly, because the
output actions are symmetry-reduced actions, we must ensure
they respect the orientation of the true state of the system
before we apply them to the environment. This requires that
the reverse symmetry operations that were applied to the state
be applied to the actions prior to actuation. The control signal
generated by the agent is therefore reflected if ρ < 0, then
rotated by NθN/2π , before being applied to the system. This
ensures that dynamically equivalent states receive dynami-
cally equivalent actions. Note that in this work the actor-critic
deep RL model is inserted in “training domain,” but generally
any deep RL model may be chosen. Additionally, because
the RL agent is isolated within the reduced space in this
reformulated learning problem, the networks can be updated
without back-propagating through the transform functions
and these functions can be thought of as simply pre- and
postprocessing mechanisms around the actor-critic network

ensemble. The symmetry-reduced DDPG algorithm is shown
in Algorithm 2.

III. RESULTS

Section III A presents a quantitative comparison between a
naive (i.e., “symmetry-unaware”) agent, a naive agent trained
with augmented data, and a symmetry-reduced agent. The
learned control strategy and its dynamical significance are
characterized in Sec. III B, while Sec. III C examines a clas-
sical LQR approach to control for this problem. Comparison
with the RL results provides some insight into why the RL
algorithm learns the policy that it did. Finally, in Sec. III D, the
robustness of the agent to input-output noise and perturbations
to system parameters is evaluated.

A. Performance comparison

To illustrate the importance of discrete symmetry reduc-
tion, the naive and symmetry-reduced agents are tested with
dynamically equivalent initial conditions, which are related
by a translation of half the domain and a reflection opera-
tion. That is, we use initial conditions u0(x) and TL/2�u0(x).
The resulting trajectories controlled by the naive agent are
shown in Figs. 5(a) and 5(b), which exhibit distinctly different
structures between the two. The dynamically nonequivalent
trajectories are a product of the naive agent being unable to
map dynamically equivalent states to dynamically equivalent
actions. This dynamic inequality is due to the inherent diffi-
culty for the NNs to consolidate and learn identical optimal
sub-policies for each symmetric sector of state-action space
(i.e., it is unable to become equivariant to symmetry-related
state-action pairs), which is further exacerbated by the sys-
tem’s chaotic nature.

To aid the implicit learning of dynamically equivalent
state-action mappings, we also trained naive agents with addi-
tional synthetic training data, produced by applying symmetry
operations to the originally generated data. Agents trained
with this augmented data set will be called augmented naive
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Algorithm 2: Deep deterministic policy gradient with symmetry reduction

agents. Shown in Figs. 5(c) and 5(d) are trajectories controlled
by an augmented naive agent beginning with dynamically
equivalent initial conditions. This augmented naive agent also
produces dynamically nonequivalent trajectories, which indi-
cate that it fails to learn dynamically equivalent state-action
mappings.

In contrast, the symmetry-reduced agent, given dynami-
cally equivalent initial conditions, will produce dynamically
equivalent actions and therefore dynamically equivalent con-
trolled trajectories, which are shown in Figs. 5(e) and 5(f). We
highlight here that the two controlled trajectories are identical
and only differ by the symmetry-orientations of their initial
conditions. As the initial conditions were reflected, the blue
regions in Fig. 5(e) correspond to the red regions 5(f) and vice
versa. As the initial conditions were also translated by L/2,
the trajectories differ by a spatial shift of L/2. For example,
the upward drifting red region of the transient in Fig. 5(e) cor-
responds to the downward drifting blue region of the transient
of Fig. 5(f). Note that these equivalent structures appear at the

same temporal location but differ by only a translation and re-
flection. To further demonstrate this point, shown in Fig. 5(g)
is the invariant quantity of dissipation, D, for the trajectories
shown in Figs. 5(e) and 5(f). As D does not depend on the
orientation of the state, D is the same for both trajectories.
As a result, the symmetry-reduced method inherently yields
improved performance variance and robustness to initial con-
ditions over the naive method, as the controlled trajectories
of the naive agent depends on the orientation of the state
while the symmetry reduced method does not. Additionally,
while the dynamics of the naively controlled system remain
chaotic, those with the symmetry-aware controller evolve to
a low-dissipation steady state, a phenomenon that we analyze
further in Sec. III B.

To demonstrate this improved performance, the naive and
symmetry-reduced agent are tested to control 100 random
initial conditions sampled from the attractor of the unforced
KSE. The controlled trajectory duration is extended to 250
time units, 2.5 times the 100 time unit duration experienced
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FIG. 5. Pairs of controlled trajectories with dynamically equivalent initial conditions (translated by L/2 and reflected) controlled by the (a,
b) Naive agent, (c, d) augmented naive agent, and (e, f) symmetry- reduced agent. (g) The dissipation of the trajectories of panels (e) and (f).

during training, to examine the robustness of the policies
beyond the training time horizon. The mean and standard
deviation of D + Pf of the 100 controlled trajectories are
shown in Fig. 6 with respect to time. Notably, the addi-
tion of symmetry-reduction yields controlled trajectories with
significantly lower mean D + Pf and tighter variance than
compared to the naive and augmented agents. Furthermore,
the symmetry-reduced agent reaches its low D + Pf target
state in a much shorter time than the naive agents.

The advantage of symmetry-reducing the RL problem also
appears in training. In Fig. 7, the mean reward return of 10
models is shown for each RL method with respect to train-
ing episode. The symmetry-reduced agents not only reaches

greater reward returns than compared to the naive agents
given the same amount of training, but they do so in signif-
icantly fewer training episodes, demonstrating the enhanced
efficiency in training data usage. This improved training ef-
ficiency is a result of the symmetry-reduced agents only
needing to learn one symmetric sector of state-action space,
as opposed to the naive agents, which must rely completely
on ergodicity to explore and learn all of state-action space.
Furthermore, the variance in the training reward-return of
the symmetry-reduced agents are much lower than that of
the naive agents. This also highlights the improved policy
robustness, as each episode differs in initial conditions and
noisy actuation perturbations (exploration noise).

FIG. 6. Ensemble mean D + Pf of 100 trajectories controlled by: No control (green), Naive (purple), Augmented naive (blue), and
translation+reflection-reduced (red). Each initial condition is randomly initialized on the KSE attractor. Standard deviation of each ensemble
is shaded in its respective color.
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FIG. 7. Ensemble training reward (10 models each) vs episode for: Naive (purple), Augmented Naive with synthetic symmetric data (blue),
and translation+reflection-reduced (red). The reward variance of the last 1000 episodes is shown in the inset.

We also comment that the augmented naive agents with
the additional synthetic symmetric training data exhibited
improved early training performance compared to the naive
agents. However, at the end of training, the augmented
naive agents ultimately achieve similar reward returns as the
naive agents without synthetic training data.

B. Characterizing the learned control solution

We noted above that the symmetry-aware agent drives
the system from chaotic dynamics to a steady state. Fig-
ure 8(a) illustrates such a controlled trajectory, along with
the control action f (t ) in Fig. 8(b), and the D(t ), Pf (t ) in
Fig. 8(c). In this figure, control action begins at t = 100.
Qualitatively, the control action occurs in two phases. The first
phase, approximately t = 100 to t = 180, is characterized by
complex transient actuations that navigate the system to the
neighborhood of a steady state. The second phase, approxi-
mately t = 180 and onward, is characterized by an essentially

constant forcing profile with an extremely small time depen-
dent residual corresponding with stabilizing the equilibrium
state. We denote this “constant” forcing as f = α22, where α

denotes the forcing profile and the subscript corresponds to the
respective domain length L, and the steady state as uα22 . When
control is removed the system returns to its original chaotic
dynamics.

To understand the appearance of this steady state in the
controlled system, we first note that at L = 22 in the absence
of control, the KSE has a number of unstable steady states,
some of which lie in the vicinity of the chaotic attractor [30].
To investigate the dynamical connection between the state
uα22 found with the RL agent with forcing profile f = α22

and the uncontrolled KSE, continuation was performed be-
tween the final forced system to the unforced system. We
accomplished our forcing continuation by iteratively Newton-
solving for an equilibrium solution that satisfies Eq. (1) with
initial solution guess of uα22 and forcing profile f0 = α22.
The resulting solution, Eα22 , was then used as an initial guess

FIG. 8. (a) Symmetry-reduced agent controlled trajectory vs time. The controller is turned on at t = 100. (b) Forcing profile vs time.
(c) The dissipation and total power cost as a function of time. For reference the dissipation of E1 is included.
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FIG. 9. (a) Force-continuation solutions from f = α22 (red) to f = 0 (purple), yielding equilibrium solutions from Eα22 to E1 (dots).
(b) The leading eigenvalues of the KSE linearized around Eα22 and E1.

for a system with slightly reduced forcing amplitude. The
process was repeated until f = 0, where the solution con-
verged to an equilibrium solution of the unforced KSE. The
solutions found for incremental scalings of f = α22 are shown
in Fig. 9(a), which converge to a known solution of the KSE
denoted by Ref. [30] as E1. Interestingly, E1 is the lowest-
dissipation solution known aside from the trivial zero solution,
and Eα22 exhibits even lower dissipation and power input than
E1. The discovered Eα22 solution corresponds to the E1 solu-
tion modified by the “jets” in a manner that smooths its peaks,
leading to weaker gradients and thus lower dissipation.

Shown in Fig. 9(b) are the leading eigenvalues of the E1
and Eα22 solutions, demonstrating that they are both linearly
unstable. As the Eα22 solution is linearly unstable, we note that
the agent maintains this state with oscillatory-like adjustments
that are several orders of magnitude smaller than the mean
actuation about f = α22.

Importantly, nowhere in the algorithm was Eα22 explicitly
targeted—the algorithm discovers and stabilizes an underly-
ing unstable steady state of the dynamical system, despite
having been given no information about such solutions. Sta-
bilizing an underlying steady state of the dynamical system
is an efficient strategy as it requires less control effort than
brute-forcing the system to a region of state space where it
would not naturally reside. We speculate that this “strategy” of
finding and stabilizing an unstable recurrent solution (steady
state, periodic orbit) might arise in RL control of a wide
variety of systems displaying complex dynamics. We contrast
this with other recent data-driven control-target identifying
methods, such as Ref. [31], which identifies and stabilizes
periodic orbits by approximating their Poincaré mapping,
whereas here we seek targets defined by macroscopic prop-
erties, and the learned solution turns out to be a recurrent
solution.

C. Comparison to linear quadratic regulator

To compare our learned control policy to a conventional
control method, we compare to linear quadratic regulator
(LQR) [32] given the same control authority. We now consider
the system state as x and the control signal as u where previ-
ously we referred to them as u and a, respectively, to maintain
nomenclature consistency with LQR conventions. The LQR
method seeks to find a gain matrix, K, for a linear state-
feedback controller, u = −Kx, that minimizes the quadratic

cost function J ,

J =
∫ ∞

0
(xT Qx + uT Ru)dt . (24)

for a system whose dynamics are approximated by a set of
linear (or linearized) ODEs ẋ = Ax + Bu, where x is the state
of the system and u the control input. We take Q, the state
cost, and R, the input cost, to be the identity. Importantly, the
target state of LQR, i.e., the state about which the dynamical
model is linearized must be chosen a priori. Although the
KSE possesses nonlinear dynamics, LQR might in certain
situations be able to control the dynamics toward its target,
given sufficiently close initial conditions.

We first consider applying an LQR controller to the trivial
zero solution, which in the interest of minimizing dissipation
and power-input cost, is the natural target as it possesses zero
dissipation and zero power input cost. The trivial zero solution
is known to be linearly unstable. Shown in Fig. 10(a) is a
trajectory of the trivial zero solution given an infinitesimal
perturbation; it evolves to the chaotic attractor. In this case,
we find that LQR cannot stabilize the zero solution. Given the
linearized KSE dynamics and the available control authority,
the LQR approach fails the Popov-Belevitch-Hautus (PBH)
controllability test [32],

rank[A − λI B] = n, ∀λ ∈ C, (25)

where n is the number of rows of A. This indicates that
LQR is not capable of transferring every state to the origin
in finite time. Furthermore, it also fails the PBH stabilizability
test [32],

rank[A − λI B] = n, ∀λ ∈ C : Re[λ] � 0, (26)

which indicates LQR is not capable of reaching the origin
even given infinite time. These results suggest that the zero
solution cannot be controlled by linear means with the current
actuation scheme. We comment that this inability to control
the zero solution is further linked to work performed by
Refs. [33,34], which demonstrated that periodically arranged
actuator or sensor sites in systems with translational or reflec-
tion invariance can detrimentally impact controllability.

Shown in Fig. 10(b) is a trajectory initialized on the zero
solution plus a small random perturbation, and controlled by
the LQR controller designed based on the zero solution. We
observe that this controller is unable to stabilize the trivial
solution. We further note the immediate deviation from the
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FIG. 10. A trajectory initialized on the trivial solution with an infinitesimal perturbation with (a) no additional control, fLQR = 0, and
(b) with a LQR controller, fLQR, based on the zero solution. A trajectory initialized on Eα22 with constant forcing f = α22 and an infinitesimal
perturbation with (c) no additional control, fLQR = 0, and (d) with a LQR controller, fLQR, based on Eα22 .

zero solution, which is a product of a runaway controller, and
emphasize that the resulting dynamics are a product of the
LQR controller reaching the actuator saturation limit (which
we set to be 10 times that available to the deep RL agent).
We comment that although the initial short-time trajectory is
asymmetric, the resulting symmetry of the trajectory is the
product of the saturated controller actuating symmetrically.

We hypothesize that a RL policy attempting to stabilize the
zero solution would likely meet the same issue as the LQR
approach. This may explain why the agent chooses to target
the solution Eα22 . To further investigate, we linearize the KSE,
forced with f = α22 around its steady state Eα22 , and use LQR
to find the gain matrix for this system:

aLQR = −K(u − Eα22 ). (27)

Here aLQR are the control signals produced by LQR, which are
applied to the KSE via Eq. (8) as fLQR. This linear feedback
controller is then applied to the full nonlinear KSE under
constant forcing f = α22,

ut = −uux − uxx − uxxxx + fα22 + fLQR. (28)

Shown in Fig. 10(c) is a trajectory initialized on Eα22 with
constant forcing f = α22 and given an infinitesimal pertur-
bation. In the absence of additional control, the linearly
unstable solution Eα22 eventually evolves to the dynamics of
the forced attractor. Shown in Fig. 10(d) is a trajectory ini-
tialized on Eα22 under constant forcing f = α22 with the LQR
controller fLQR applied. With the addition of the LQR con-
troller, the perturbed Eα22 solution can be maintained. These
observations indicate that one reason why the agent learns
to discover and stabilize Eα22 rather than the zero solution
is because in the limit of approaching an equilibrium solu-

tion the agent will behave approximately linearly, and in that
limit Eα22 can be controlled by linear means while the zero
solution cannot. We reiterate that, while we have found that
an LQR approach can stabilize Eα22 , thus reducing energy
consumption, that approach needed to know the existence and
structure of the steady state a priori, while the RL approach
did not.

D. Robustness

Chaotic systems are characterized by their sensitivity to
noise and changes to system parameters. To assess the ro-
bustness of the agents to measurement and actuation noise,
we tested the performance of our various RL policies, without
additional training, on 100 trajectories of 250 time units with
Gaussian measurement and actuation noise with zero mean
and standard deviation 0.1. The ensemble mean and standard
deviation of the D + Pf trajectories of each agent type is
shown in Fig. 11. Comparison with Fig. 6 reveals that all agent
have comparable performance with or without noise. In par-
ticular the symmetry-reduced agent is capable of maintaining
its high performance compared to the naive and augmented
naive agents.

For the KSE, altering the domain size parameter, L, can
lead to very different dynamics. These distinct dynamics are
shown in Figs. 12(a) and 12(b) for domain sizes of L = 21 and
L = 23, respectively. To assess the robustness of the learned
control policy to changes in L, the symmetry-reduced agent
trained in the domain L = 22 is applied, without additional
training, to control the KSE dynamics at L = 21 and 23. In
these experiments we maintain the same actuator jet param-
eters as was available in L = 22 training (spatial Gaussian

014210-12



SYMMETRY REDUCTION FOR DEEP REINFORCEMENT … PHYSICAL REVIEW E 104, 014210 (2021)

FIG. 11. Ensemble D + Pf vs Time for 100 initial conditions controlled by: Ensemble mean D + Pf of 100 trajectories controlled by: No
control (green), Naive (purple), augmented naive (blue), and translation+reflection-reduced (red). All agents experience Gaussian measurement
noise and actuation noise of mean zero and standard deviation 0.1.

distribution and magnitude range) while maintaining equidis-
tant placement in the new domain sizes. Shown in Figs. 12(c)
and 12(d) are trajectories with the controller turned on at
t = 100, in domain sizes of L = 21 and L = 23, respectively.
We observe that the agent drives both systems to equilibrium-
like states similar to that found in the original domain L = 22.
Furthermore, shown in Figs. 12(e) and 12(f) are D and Pf

of these controlled trajectories; these controlled steady states
again exhibit low dissipation and low power-input. In both
L = 21 and L = 23 the targeted states are also unstable, as
once the controller is switched off the systems return to their
respective typical dynamics. These experiments highlight the
robustness of the control policy to new unseen dynamics as
well as deviations in relative control authority, as the artificial
jets are smaller relative to the L = 23 domain than in the
original L = 22 domain.

To investigate the dynamical connection between the final
targeted states of the L = 21, 23 systems and the original L =
22 system, a two-stage continuation was performed. First,
continuation in the magnitude of the forcing was performed to
determine the connection between the forced systems yielding
Eα21 and Eα23 and their unforced counterparts ( f = 0) of their
respective domain size. The solutions found as f is decreased
to zero are shown in Figs. 13(a) and 13(b) for L = 21 and L =
23, respectively. These results reveal that Eα21 and Eα23 are
the forced counterparts of existing equilibria in the unforced
systems, which we denote as EL21 and EL23, respectively.

We next perform a second continuation, this time in the
domain size, to determine the connection between EL21, EL23

and the original dynamics of L = 22. Solutions are shown
in Fig. 13(c) and Fig. 13(d) respectively, as the domain
size changes. These evolve to the E1 solution of L = 22.

FIG. 12. Typical dynamics for domain sizes of (a) L = 21, (b) L = 23. Controlled trajectory in which the L = 22 symmetry reduced agent
is applied with no additional training at t = 100 in domain sizes of (c) L = 21, (d) L = 23. Dissipation and total power input as a function of
time for the controlled trajectories in domain sizes of (e) L = 21, (f) L = 23.

014210-13



KEVIN ZENG AND MICHAEL D. GRAHAM PHYSICAL REVIEW E 104, 014210 (2021)

FIG. 13. Continuation in forcing and domain size. (a) Forcing continuation from f = α21 (orange) to f = 0 (purple) to yield Eα21 to EL21.
(b) Forcing continuation from f = α23 (orange) to f = 0 (purple) to yield Eα23 to EL23. (c) Domain size continuation from L = 21 (purple) to
L = 22 (blue) to yield EL21 to E1 (dots). (d) Domain size continuation from L = 23 (purple) to L = 22 (blue) to yield EL23 to E1 (dots).

These connections indicate that the symmetry-reduced agent
is also capable of finding and stabilizing the forced E1 solu-
tion in domain sizes it has not seen before. Interestingly, the
equilibria found by the agent, Eα21 and Eα23 , are not simply
spatial dilations or compressions of Eα22 , as Eα21 exhibits four
velocity peaks, while Eα21 exhibits only two. Furthermore, we
comment that the long-time mean actuation profiles utilized
by the agent in the two unseen domain sizes are also distinctly
different than that utilized in L = 22, which indicates the
agent is not just simply imposing the same long-time control
signals it found in its original domain size of training.

IV. CONCLUSIONS

Although deep RL in recent years has demonstrated the
capability of controlling systems with high-dimensional state-
action spaces, its naive application toward spatiotemporal
chaotic systems exhibiting symmetry, which encompasses
many flow geometries of interest, can be limited by NN ar-
chitecture and the cost of exploring the full state-action space.
In this paper we proposed a modification to the general deep
RL learning problem that can better learn control strategies
for chaotic flow problems exhibiting symmetries by moving
the learning problem into a state-action symmetry-reduced
subspace.

Our method alleviates technical demands of NN archi-
tectures in existing deep RL methods such as the need for
the actor and critic networks in DDPG to learn weight
constraints that preserve equivariance and invariance, re-
spectively. From a policy perspective, symmetry reduction
alleviates the need to learn and consolidate the optimal pol-
icy for each symmetric-subspace within a single network,
freeing capacity for approximating the optimal policy while

maintaining a dynamically equivalent state-action mapping.
As the learning problem is performed in the symmetry-
reduced subspace, all training data is also generated within
the symmetry-reduced subspace improving training data effi-
ciency, as the agent no longer requires a complete exploration
of the full state-action space as it would in the naive applica-
tion of deep RL. Although in this work we utilized the DDPG
algorithm, the commentary and conclusions drawn regarding
symmetry reduction of the learning space can be extended to
other deep RL methods.

We demonstrated these ideas by controlling the periodic
KSE to minimize dissipation, a spatiotemporally chaotic
model system for turbulence that exhibits translational and
reflection symmetries. We show that by reducing the sym-
metry of the learning problem we can obtain faster and
more consistent learning. Furthermore, we demonstrate that
the control strategy found by the symmetry-reduced agent
is robust to input and output noise as well as system pa-
rameter perturbations. Finally, we observe that to achieve
the objective of reduced overall power consumption, the
symmetry-reduced agent discovers a low-dissipation equilib-
rium solution of a nontrivially forced KSE. This observation
highlights a potentially important connection to effective con-
trol approaches for drag reduction in turbulent flows, as the
dynamics of turbulence are organized, at least to some extent,
by underlying invariant solutions known as Exact Coherent
States [35].

We further emphasize that conventional controllers typi-
cally target microscopic objectives, such as a priori known
states that exhibit desirable macroscopic properties such as
system dissipation, pressure drop, etc., but these a priori
targets may not always be accessible with the available con-
trol authority. In our experiments here, the symmetry-reduced
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deep RL demonstrates the potential to serve as a discov-
ery tool for alternative solutions with desirable macroscopic
properties. These discovered states might then be utilized as
alternative control targets for conventional controllers when
a priori known states are inaccessible given the available
control freedom.
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