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Optimal and efficient generation of sine-Gordon breathers
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We investigate analytically and numerically whether an optimally designed defect structure can significantly
reduce the threshold for breather train generation by almost two orders of magnitude in a sine-Gordon chain. By
optimizing the parameters of defects based on a variational approach, we show that the decoupling of in-phase
and antiphase branches allows us to independently minimize the driving threshold and reach the goal of emission
of high-amplitude and well-formed breathers by an ultraweak driving. These results not only provide an optimal
way for highly controllable and efficient emission of breathers, but also provide some insights into the mechanism
of breather excitations in such processes as the DNA-protein interaction during transcription.
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I. INTRODUCTION

Solitonic wave objects, stable localized waves usually
balanced by interplay between nonlinearity and dispersion,
present one of the most striking aspects of nonlinear phe-
nomena [1]. Although the existence, stability, and interaction
of solitonic pulses have been widely investigated in recent
decades, the subject of their generation in many branches of
physics remains to be further explored. The creation of bright
solitons in nonlinear optical fibers [2] and, recently, matter-
wave solitons in Bose-Einstein condensates (BECs) [3–5]
marked two milestone achievements in modern experimental
and theoretical studies in this direction [6].

Controllable and efficient generation of solitonic wave
trains is of particular importance in the above-mentioned and
other fields, not only because it is the major player in fre-
quency comb spectroscopy, which has revolutionized time
and frequency metrology [7], but also for its application of
“atom lasers” used to emit coherent atomic beams which are
coherently extracted from a BEC [8,9]. Characterized by how
energy is injected, trains of solitonic wave objects can be
produced in several ways, namely, by preset initial conditions,
imposed fields, boundary driving, etc. Controllable emission
of matter waves burst from a BEC was proposed in [10], how-
ever, bearing the inherent disadvantages of amplitude decay
and uneven spacing between adjacent solitary waves.

For repeated output of temporal dissipative solitons [11],
a continuous wave (c.w.) is pumped into the optical cav-
ity to compensate the resonator loss. Limited by the small
temporal overlap between the ultrashort bright soliton pulse
and the driving c.w. laser, the efficiency of pump-to-soliton
energy conversion is typically very low. Also, controlling
and stabilizing the repetition rate require sophisticated labo-
ratory equipment. Motivated by these challenges, a recycling
strategy based on coupled cavities [12] and a pulsed driving
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approach [13] were proposed to improve the efficiency and
controllability of frequency comb generation.

Revealed by Geniet and Leon [14], supratransmission is a
process by which solitonic pulse trains can be generated by
periodic boundary driving in the bandgap. Most of the atten-
tion was paid exclusively to the prediction of the threshold in
different systems [15–17], but adjusting the threshold, espe-
cially reducing it to a low level, is crucial for pursuing a purer
waveform of solitonic pluses, as well as achieving a higher
efficiency and flexibility for ultrasensitive detectors [18] and
emission of solitonic pulses in a variety of applications.

Our group has proposed a scheme where solitons could
be emitted periodically from a localized resonant wave in-
duced by a mass “impurity” in the β-Fermi-Pasta-Ulam (FPU)
model [19], followed recently by an experimental demonstra-
tion in a coupled pendulum chain [20]. However, an in-depth
approach is still needed to develop a systematic theory for the
proposed scheme, so as to explore the potential of achieving
highly optimal and efficient emission of solitonic wave ob-
jects. To reach this goal, we develop the work presented here,
by adopting a variational approach which makes analytical
analyses possible for optimization. The results obtained by
this approach are quite exciting: (1) the driving threshold is
reduced by almost 2 orders of magnitude, and (2) the am-
plification factor, i.e., the ratio of the amplitude of solitonic
pulses to the driving amplitude, can be as high as 70, whereas
in our previous work [20], the ratio was only about 4. We
therefore believe that the development of the present work is
a big step towards understanding the mechanism of nonlinear
mode excitations.

We select the sine-Gordon model in the present work
to develop our theory, owing to its important applications
in many branches of physics, in particular, in biological
physics [21]. Some of the results revealed by this work,
e.g., the extremely high efficiency of energy conversion to
breathers, would provide some insights into the behaviors of
DNA-protein interaction during transcription. The regulatory
proteins bound to specific sites can be treated as mass [22] or
coupling constant [23] defects. Previous studies mainly focus
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on the interaction between impurity modes and breathers
which have already existed. There still exists a knowledge gap
on how breathers are created from small thermal fluctuations,
which is exactly the problem we deal with in this work. Our
results indicate that, playing the role of large mass defects, the
regulatory proteins could absorb energy from small vibrations
over a wide frequency range and transfer it to high-amplitude
breathers in a continuous way that is highly efficient. The
emitted breathers then propagate along the DNA chain and
regulate the transcription of protein binding sites downstream,
which gives a complete picture of the long-range interaction
effect of regulatory proteins [24]. Of course, our method is
very flexible and extension to the Peyrard-Bishop model [25]
is straightforward simply by modifying the Lagrangian.

II. MODEL AND FORMULATION

Here, we use the same model as in Ref. [14], except for the
nonuniform mass distribution mn, which is governed by

mnφ̈n − c2(φn+1 − 2φn + φn−1) + sin φn = 0, n > −M,

(1)
with the boundary condition and the initial condition

φ−M (t ) = A sin ωt, φn(0) = 0, n > −M, (2)

where A is the the driving amplitude and ω is the forcing fre-
quency lying below the cutoff frequency, i.e., ω < ω0 (which
is scaled to 1). The coupling coefficient c in Eq. (1) is set to 4,
which stands for the strong coupling condition [14]. The mass
distribution mn is given by

mn =
{

m, n = −M + 1,−M + 2, . . . , 0,

1, n = 1, 2, . . . ,
, (3)

where the positive integer M is the number of defects.
The above equations can describe the dynamics of the
boundary-driven Josephson transmission line [26] with junc-
tion capacitance defects and the nonlinear dynamics of the
DNA-protein interaction during transcription [21,22]. If there
is no defect, the system is homogeneous, i.e., m = 1, and
in the linear approximation, it has a pass band 1 < ω <√

1 + 4c2.
Equation (1) could be derived from the Euler-Lagrangian

equation

d

dt

∂L

∂φ̇n
− ∂L

∂φn
= 0, (4)

where the Lagrangian is given by

L =
∞∑

n=−M+1

1

2
mnφ̇

2
n + c2

(
φnφn−1 − φ2

n

) + cos φn − 1. (5)

We assume that the amplitude of φn is sufficiently small
that the nonlinear term can be approximated by the first two
terms of the Taylor expansion, i.e., cos φn − 1 ≈ −φ2

n/2 +
φ4

n/24, so that

L ≈
∞∑

n=−M+1

1

2
mnφ̇

2
n + c2

(
φnφn−1 − φ2

n

) − φ2
n

2
+ φ4

n

24
. (6)

This is the φ4 model that arises in many contexts [27]. Sub-
jected to sinusoidal boundary driving, we look for steady-state

solutions in the form of φn(t ) = un sin ωt , where un is the
amplitude of the response of the nth oscillator. Substituting
it into Eq. (6) and averaging the Lagrangian over one period,
T = 2π/ω, we get the expression of the averaged Lagrangian
L = 1

T

∫ T
0 Ldt ,

L =
∞∑

n=−M+1

1

4
mnω

2u2
n + c2

2

(
unun−1 − u2

n

) − u2
n

4
+ u4

n

64
. (7)

III. A SINGLE DEFECT

First, we investigate the single-defect situation, i.e., M = 1.
Here, we assume the evanescent envelope as our ansatz,

un =
{

A, n = −1,

γ e−κn, n = 0, 1, 2, . . . ,
(8)

where A is the amplitude of the boundary drive, and κ =
2 sinh−1

√
(1 − ω2)/4c2 is obtained by linearizing Eq. (1).

The same treatment is also employed to obtain the interface
soliton solutions in one-dimensional locally coupled lattice
systems [28]. The amplitude of the evanescent wave, γ , is
treated as the variational parameter in the following. Substi-
tuting our ansatz into Eq. (7) yields

L = 1

64(1 − s−4)
γ 4

+ c2A

2
γ +

[
2c2(s−1 − 1) + ω2 − 1

4(1 − s−2)
+ ω2(m − 1)

4

]
γ 2,

(9)

where s = eκ > 1. Applying the Euler-Lagrangian equation
∂L/∂γ = 0, a cubic relation between the driven amplitude A
and the amplitude γ of the evanescent wave is obtained,

A = −αγ (γ 2 − λ), (10)

where the coefficients are given by

α = 1

8c2(1 − s−4)
,

λ = 8[1 − ω2 + 2c2(1 − s−1)](1 + s−2),

+ 8ω2(1 − m)(1 − s−4). (11)

The cubic relation, (10), enables us to investigate the ex-
istence and stability of the stationary modes. Figure 1(a)
shows the bifurcation diagram for γ versus A for three values
of parameter m. Due to the antisymmetry of the function
A(γ ) about the origin, only the positive part of the γ axis
is presented. The curves in the first quadrant represent the
in-phase branches, and the antiphase branches are represented
by the curves in the fourth quadrant. The term “in phase”
means that there is no phase difference between the boundary
driving and the defect (Aγ > 0), while “antiphase” means
a 180◦ phase difference (Aγ < 0). Based on linear stability
analysis [29] and direct numerical simulations, the stable and
unstable branches are identified and represented in Fig. 1(a)
by solid and dashed lines, respectively. At the maximum point
of an in-phase branch at A = A+

th in the first quadrant, there
occurs a typical bifurcation, and stable and unstable in-phase
branches collide and annihilate each other. This bifurcation
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FIG. 1. (a) Dependence of the amplitude A of the drive on the
amplitude γ of the evanescent wave for different m’s at ω = 0.9. The
bifurcation points of the in-phase branch and antiphase branch are
denoted (γ , A+

th) and (γ , −A−
th), respectively. The solid and dashed

lines show the stable and unstable branches of the solutions calcu-
lated from Eq. (10). The circles on each curve represent the results
of numerical simulations, which, of course, are stable. The part of
each curve absent of circles is numerically unstable. (b) Dependence
of the amplitude threshold Ath for breather generation on the mass
m of the defect at ω = 0.9. The solid line represents the theoretical
predictions of A+

th calculated from Eq. (12). The results of numerical
simulations are shown by small filled and open circles, respectively,
corresponding to the instability of the in-phase branch and the an-
tiphase one. Ath takes the value of A+

th for m < 22 and A−
th for m > 22.

The minimum value of the threshold for the breather generation
occurs at the turning point, m = 22, which is slightly smaller than
the predicted m = 23.

point (γ , A+
th ) belonging to the in-phase branch can be derived

by equating the derivative of Eq. (10) with respect to γ to 0,

(γ , A+
th ) =

(√
λ

3
,

2
√

3

9
αλ

3
2

)
. (12)

For an antiphase branch, however, the bifurcation at
(γ , −A−

th) where instability occurs cannot be analytically ob-
tained as above, due to the limit of the cubic approximation.
The driving threshold Ath for breather generation is the larger
one of A+

th and A−
th. For a given m > 1, we observe that the

antiphase branch is much more unstable than the in-phase one,
that is, A−

th � A+
th. Consequently, the threshold for breather

generation is determined by the bifurcation of the in-phase
branch, i.e., Ath = A+

th, which enables us to obtain an extremely
low threshold value Ath simply by minimizing the maximum
of the function A+

th(λ). As seen from formula (11), λ is a linear
function of m with a negative slope, and hence, the optimal
choice of m for a nearly vanishing threshold at which λ = 0 is
given by

m = 1 + 1

1 + s−1

2c2

ω2
+ 1

1 − s−2

1 − ω2

ω2
. (13)

In the limit 1 − ω2 � 1, κ ∝ √
1 − ω2, and the third term

in Eq. (13) can be omitted, so that m ≈ 1 + c2 = 17. For
instance, for ω = 0.9, it follows from formula (13) that the
optimal parameter m = 23. The solid line in Fig. 1(b) shows
the dependence of A+

th on different values of the mass m of
the defect, followed by the numerical simulations marked by
small filled circles.

However, when A+
th approaches 0 for m > 22, the A−

th be-
comes comparable to, and then is greater than, A+

th. In this
situation, the antiphase branch becomes more stable than the
in-phase branch and takes over the threshold for breather
generation, i.e., Ath = A−

th, as represented by the open circles
in Fig. 1(b). As a result, the lowest-amplitude threshold is
achieved at the turning point m = 22, where A+

th = A−
th. In this

way, the driving threshold can never be arbitrarily small and
the optimal value of mass m is slightly smaller than the value
predicted by (13), which are usually the cases for different
frequencies (see Table I).

At the frequency ω = 0.9, the numerical result shows that
the threshold Ath of the driving amplitude A reaches its lowest
value, Ath = 0.03, at m = 22, while our theory predicts the
lowest value at m = 23, showing a satisfactory agreement
between the theoretical prediction and the numerical simu-
lation. Compared with the A∗

th = 1.84 for supratransmission
in [14], the present approach thus achieves a reduction of
the threshold Ath by almost 2 orders of magnitude. Table I
shows that the optimal parameter m of the defect is well
predicted by Eq. (13) at different frequencies. As reported in
the table, the driving threshold is drastically reduced simply
by the introduction of a properly designed defect over a wide
frequency range, ω = 0.8–0.95. Special attention is also paid
to the effect of dissipation. A damping term βu̇n is incorpo-
rated into the equations of the first 20 oscillators in our chain,
with the damping coefficient β set to 0.05. It is shown that the
dissipation only slightly increases the minimal threshold, to
0.09, with the parameter m shifted to 21 at ω = 0.9, and thus
it does not alter the studied nonlinear behavior.

A question naturally arises: Why can the ultralow threshold
be achieved in the sine-Gordon chain but not found in the
previous β-FPU model? To answer this question, we also
present in Fig. 2 the bifurcation diagram of the model in [19]
based on the method presented there, with x0 being the peak
position of the localized waves, A being the driving ampli-
tude, and ω = 1.06 being the driving frequency that slightly
penetrates into the forbidden bandgap (ω > 1). Note that now
the vertical axis represents the driving magnitude, i.e., |A|. As
a result, the antiphase branches, denoted I and II, have been
folded along the x axis into the first quadrant for convenience
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TABLE I. Comparison of the optimal m obtained by the variational approach and by simulations at different frequencies. The thresholds
of supratransmission [14] are also listed (A∗

th) for reference. The slight difference in the threshold value from that in [14] at ω = 0.9 is due to
the different initial conditions.

m Ath A∗
th

Frequency ω Simulation Theory (with defect) (supratransmission [14]) Ath:A∗
th

0.95 19 20 0.04 1.29 1/31
0.90 22 23 0.03 1.84 1/61
0.85 25 26 0.04 2.29 1/57
0.80 28 30 0.07 2.68 1/38

of comparison with the in-phase branches labeled III and
IV. A linear perturbation analysis reveals that branch I is
stable, whereas branches II and IV are always unstable. The
metastable branch III, whose eigenvalues possess very small
real parts, can be stabilized by a very weak damping. As
shown in Fig. 2, the threshold of nonlinear instability is deter-
mined by two coupled maximum points of the curves. When
we attempt to reduce the threshold of the antiphase branch,
for example, decrease m from 0.85 to 0.65, the threshold of
the in-phase branch increases, just like the waterbed effect.
Their trade-off leads to the best choice of m = 0.73 where two
peaks of the curves are of the same height at Ath = 0.46. The
simulations show that the parameters corresponding to the
lowest threshold are m = 0.71 and Ath = 0.46, which agree
well with our analysis. In the case of supratransmission where
m = 1, the antiphase branch dominates whose maximum A∗

th
equals 1.44, which is about three times the threshold of the
defective β-FPU chain. In the sine-Gordon model we explore
in this work, however, there is only one maximum point be-
longing to the in-phase branch for m � 22. This allows us to
minimize the threshold value independently by changing the
value m without considering the unstable antiphase branch at
the same time. In this sense, we say that the in-phase branch is
decoupled from the antiphase branch, enabling a remarkable
reduction of the threshold of supratransmission by almost 2
orders of magnitude.
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m = 0.85

m = 0.73
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FIG. 2. Bifurcation diagram of the β-FPU model [19]. Depen-
dence of the magnitude |A| of the drive on the peak position x0 of
localized waves for m = 0.85 (thick blue line), 0.73 (normal red
line), and 0.65 (thin gray line).

IV. EMISSION OF BREATHER TRAINS

After the investigation of nonlinear instability of the defect
mode, we study in this section the potential for controllable
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FIG. 3. Spatial-temporal evolution of wave fields for (a) m = 22
and (b) m = 1. The vertical axis in (a) and (b) is the time from
t = 4500 to t = 5300 and the horizontal axis represents the first 200
oscillators. Insets: Magnified views of the boxed regions.
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FIG. 4. (a) The time signal of φn detected at site n = 106, (b) its magnified view, and (c) its Fourier components �106(ω) with boundary
driving amplitude A = 0.06 and frequency ω = 0.9. The chain consists of a total number of 700 oscillators with a mass defect m = 22 at
n = 0. (d) The time signal of φn detected at site n = 106, (e) its magnified view, and (f) its Fourier components �106(ω) for a homogeneous
chain (i.e., m = 1) when the driving amplitude A is set to 1.84, which is the threshold value for supratransmission.

generation of breather trains, whose significance has been
clarified in Sec. I. We adopt the Runge-Kutta algorithm to in-
tegrate the discrete sine-Gordon model, Eqs. (1) and (2), with
a single impurity, m0 = 22. The chain initially at rest consists
of a total of 700 oscillators and it is forced by a boundary
driving of the form φ−1 = A sin ωt (1 − exp(−(t/τ )2)), where
τ = 1500 is used to avoid the initial shock. For all simulations
in this work, the damping coefficient of the last 300 units
increases linearly from 0 to 0.1 to suppress the reflection from
the other end.

Figures 3(a) and 3(b) show the spatial-temporal evolu-
tion of the waves for defective and homogeneous chains,
respectively, at the driving frequency ω = 0.9. The driving
amplitude A is taken to be 0.06 for our defective model
and 1.84 for the homogeneous chain, which is the driving
threshold for supratransmission. As shown in Fig. 3(a), the
localized mode around the defect undergoes a strong mod-
ulation on a slower time scale (Ts = 132.6) than the period
of oscillations (T = 2π/ω ≈ 7.0). When absorbing enough
energy from the weak driving, the localized wave splits out
a high-amplitude breather which carries most of the localized
energy away. Once generated, the moving breather of height
4.1 propagates down the chain at an unchanged speed. The
insets are magnified views of the boxed portions, showing the
breathing properties of the moving breathers. The periodical
repetition of the emission process leads to the creation of a
train of well-shaped breathers that are almost equidistantly
separated. Calculated by a total of 90 data points, the mean pe-
riod of emissions is Ts = 132.6 with a standard deviation σs =
3.46. Differently from optical microresonators, this period
is determined by the modulation instability of the localized
wave subjected to external driving and, thus, could be directly
controlled by finely adjusting the driving amplitude A and

frequency ω. One can see that there are no visible waves
other than breathers in the far field, revealing an almost 100%
efficiency of energy conversion to breathers. Another notable
fact is that the amplitude of breathers reaches As = 4.1, while
the driving amplitude A is merely 0.06. Defined by As/A, the
amplification factor approaches 70, which is also an order of
magnitude larger than that in [20], where the ratio is about
4. In the case of supratransmission as shown in Fig. 3(b),
the seemingly irregular nonlinear pulses accompanied by the
background noise are generated much more rapidly, probably
due to the high driving strength, showing the disorder of the
breather train and the low efficiency of energy conversion.

To see the details of the radiated wave field in the time
domain, the time evolution of φ106(t ) under the same driving
conditions as above is presented in Fig. 4(a). Spaced at an
average time interval of 133, the waveforms of breathers are
almost identical, as is clearly shown in the magnified view
in Fig. 4(b). Using the fast Fourier transformation, the cor-
responding Fourier components �106(ω) of the time signal
φ106(t ) recorded in Fig. 4(a) are computed and plotted in
Fig. 4(c). The magnitude of the frequency components has
been normalized to the one at the central frequency ω = 0.52.
We can see a low-noise frequency comb whose components
space the whole range of the pass band at a frequency interval
�ω = 2π/Ts = 0.047. In Figs. 4(d)–4(f), the results for a ho-
mogeneous sine-Gordon chain (i.e., m = 1) are also presented
for comparison, indicating that the emitted pulses are always
accompanied by the quasilinear wave background and other
strong nonlinear modes with a seemingly stochastic frequency
spectrum.

The drastic reduction of the driving amplitude not only
significantly suppresses the undesired waves but also greatly
extends the parameter space for controllable emission of
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FIG. 5. (a) Dependence of γ on the driving amplitude A for M =
6 and m = 2. (b) Prediction (small filled circles) of Ath for different
M’s compared with the numerical results for m = 2. In both (a) and
(b), circles are the data points computed numerically.

breathers, which are crucial for both experimental studies and
applications. Although the driving amplitude is almost 2 or-
ders smaller in magnitude, the heights of generated breathers
are comparable to those of breathers generated via supra-
transmission. All these features indicate that our scheme is
promising for generating superefficient breather trains and
low-noise frequency combs.

V. DEFECT CAVITY

In this section we consider the case of M > 1, i.e., the
existence of multiple identical defects, all with equal m. The
defective part (−M < n � 0) has the cutoff frequency ωc =
1/

√
m, while the cutoff ω0 = 1 for the rest (n > 0). The driv-

ing frequency ω is set to be slightly below ω0 but still greater
than ωc, so that linear waves are permitted in the defect cavity

but are evanescent in the other part (n > 0) of the chain. In this
way, the standing sinusoidal wave in the defective part, called
the “defect cavity” here, couples with the evanescent wave
at the boundary n = 0. The following linear solution of the
coupled model satisfying the continuity condition is adopted
as our ansatz,

un =
{
γ cos kn − η sin kn, n = −M + 1, . . . , 0,

γ e−κn, n = 0, 1, 2, . . . ,
(14)

where (γ , η) are regarded as our variational parameters, and
k, the propagation constant in the defect cavity, is given by
k = 2 sin−1

√
(mω2 − 1)/4c2.

Substituting Eq. (14) into Eq. (7) and using the Euler-
Lagrangian equation ∂L/∂γ = 0, ∂L/∂η = 0, we obtain a
pair of coupled cubic equations of (γ , η), which are somewhat
lengthy but can be solved numerically.

Figure 5(a) shows a typical bifurcation diagram for the
defect cavity, which is obtained for M = 6 and m = 2. Being
the response amplitude at the interface (n = 0), the parameter
γ monotonically increases with the driving amplitude A along
the stable branch, which collides with the unstable one at
A = 0.59 and then vanishes. The stable stationary solutions
are validated by direct simulations represented by circles. It
was shown that the value of A at the bifurcation point cor-
responds to the onset of the nonlinear instability Ath, leading
to the generation of nonlinear modes propagating down the
chain. Figure 5(b) plots the prediction of the driving threshold
Ath for different cavity lengths M. Simulation results agree
quite well with the theoretical prediction in the low-amplitude
region, while for large values of Ath our approximation be-
comes inaccurate. In the case of short cavities, for example,
M = 1 and m = 2, the amplitude of localized waves near the
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FIG. 6. (a) The time signal of φn detected at site n = 100, (b) its magnified view, and (c) its Fourier components �100(ω) detected at
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onset of instability is so high that the cubic approximation in
our model is no longer valid. Our investigation shows that
for M > 6, the nonlinear behaviors in the defect cavity are
quite different, and when M approaches 10, linear resonance
occurs in the defect cavity. Consequently, the localized waves
undergo a strong modulation instead and radiate little energy
to the far field, which is not the scope of this research.

Figure 6(a) shows the time evolution of the oscillation at
site n = 100, and Fig. 6(b) is a magnified portion of the signal.
Since the driving amplitude here is 10 times as large as that of
a single defect, other nonlinear modes and a quasilinear wave
background are also generated, accompanied by the traveling
breathers and corrupting the spectrum as shown in Fig. 6(c).
An attempt is made to take into account the effect of weak dis-
sipation to suppress these undesired waves. As demonstrated
in [30], the dissipation effect sometimes benefits the periodic
production of propagating solitons. Hence the damping term
βu̇n is incorporated in the governing equations, (1), for the
first 20 oscillators near the driving, here with the damping
coefficient β set to 0.05. Simulations are performed under the
same other conditions as stated above. Now a train of “clean”
breathers is emitted in a long time span, as shown in Figs. 6(d)
and 6(e). It should be noted that the modulation of the train’s
envelope, as shown in Fig. 6(d), does not mean variation of
the breathers’ amplitude, but indicates a phase shift between
successive breathers arriving at n = 100, due to the inherent
properties of moving breathers. Again the “clean” moving
breathers give a comblike spectrum, as shown in Fig. 6(f),
where such unwanted components as in Fig. 6(c) are success-

fully suppressed. Of course, the damping dissipation has the
side effect of shifting the central frequency of the comb to
ω = 0.9.

VI. CONCLUSION

We have achieved the highly efficient and controllable
emission of trains of breathers by a boundary driver of ul-
tralow driving threshold in defective sine-Gordon chains. The
efficiency is achieved by optimization of the parameters of
the properly designed defects via the variational approach.
The emitted pulse train consists of a series of high-amplitude,
well-shaped, and equidistant breathers, enabling the genera-
tion of low-noise frequency combs in frequency space. By
the advantage of an ultralow driving amplitude, the flexibility
and efficiency for breather excitation can be greatly improved
without affecting the amplitude of breathers. Moreover, this
gives a reasonable explanation for the breather excitation
from small thermal vibrations in the process of transcription
[21–24]. Applying this scheme to continuous systems will be
the focus of our further work, which we believe could provide
some insights into the related issues in nonlinear optics, BECs,
and other important fields of physics.
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