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Destruction and resurgence of the quasiperiodic shearless attractor
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We consider a dissipative version of the standard nontwist map. It is known that nontwist systems may present
a robust transport barrier, called shearless curve, that gives rise to an attractor that retains some of its properties
when dissipation is introduced. This attractor is known as shearless attractor, and it may be quasiperiodic or
chaotic depending on the control parameters. We describe a route for the destruction and resurgence of the
quasiperiodic shearless attractor by analyzing the manifolds of the unstable periodic orbits (UPOs) which are
fixed points of the map. We show that the shearless attractor is destroyed by a collision with the UPOs and it
resurges after the reconnection of the unstable manifolds of different UPOs.
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I. INTRODUCTION

Two-dimensional area preserving maps are great tools for
studying transport properties of physical systems, usually de-
scribed by a Hamiltonian formulation. A well-known example
of such models is the twist standard map, which shows the
general dynamics of nearly integrable Hamiltonian systems,
as described by the KAM (Kolmogorov, Arnold, Moser) and
Poincaré-Birkhoff theorems. For a given Hamiltonian func-
tion described in action angle variables (I, ϕ), a necessary
condition for the KAM theorem to be valid, is the non-
degeneracy condition ∂2H (I)

∂2I �= 0, which is named the twist
condition for maps. There is a class of maps that violate
this condition, which are called nontwist maps, and they can
present the characteristic of exhibiting more than one invariant
curve, or periodic orbit, with the same rotation number. The
periodic orbits induce isochronous resonances [1], which are
visualized in the phase space as twin chains of islands. This
degeneracy causes topological rearrangements in the phase
space that are unique in nontwist systems, for instance, sep-
aratrices reconnection, meandering tori, and the presence of
the shearless invariant tori, which represents a robust transport
barrier. There are many applications of nontwist systems, as,
for instance, the modeling of magnetic field lines in plasma
confinement devices with reversed magnetic shear [2–5] and
atmospheric zonal flow [6,7].

The generic characteristics of nontwist systems can be
observed in the standard nontwist map (SNM), introduced
in the context of Rossby waves in shear flow [7]. In the
past decades, the SNM has been used for both numerical
and analytical investigations regarding transport properties in
conservative systems [8–11]. Other versions of the SNM have
also been proposed, such as the labyrinthic standard non-
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twist map (LSNM) [12], which may present many shearless
transport barriers.

Conservative systems preserve area in phase space and
when dissipation is introduced the systems start to have con-
tracting areas, so that any initial condition (IC) converges to
asymptotic states called attractors, which can be regular or
chaotic. Chaotic attractors can undergo sudden and qualitative
changes as a system parameter is varied. In [13,14] the authors
showed that those changes occur when the chaotic attractor
collides with an unstable periodic orbit (UPO) (or equiva-
lently, collides with the UPO stable manifold). Such events are
called crises and have been observed in many experimental
setups [15–19]. Different types of crises can be identified
depending on the types of changes the chaotic attractor will
undergo. The two most common types are (i) boundary crisis,
when the chaotic attractor is suddenly destroyed after collid-
ing with a UPO on its basin boundary, and (ii) interior crises,
when there is a sudden enlargement of the chaotic attractor
after it collides with a UPO in the interior of its basin of
attraction.

The effects of dissipation on the shearless barriers have
been initially considered in [20]. As stated in Refs. [20–22],
when dissipation is considered the shearless curve becomes an
attractor on a torus, which was called shearless attractor (SA).
The SA may be quasiperiodic or chaotic, depending on the
control parameters, and two routes to chaos have been recently
reported [21].

In this work we consider the dissipative SNM, in a scenario
in which the SA is quasiperiodic, and we rewrite the map
equations in order to control the positions of the fixed points
of the map. For the parameters we select, there are four fixed
points: two UPOs and two attractors, all of period 1. We
show that one branch of the unstable manifolds of each UPO
accumulates at the SA and that the SA is destroyed when
it collides with a UPO, in a similar fashion as a boundary
crisis for a chaotic attractor. We also show that when the
manifolds of the UPOs interact similarly to the separatrix
reconnection, in the conservative case, the SA reappears. The
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FIG. 1. (a) Phase space of the SNM for a = 0.2 and b = 0.2.
The red curve is the shearless torus. The red point is the initial
condition (x0, y0 ) = (0.5, –0.1396), while the purple and blue dots
correspond to elliptic fixed points and the blue and purple crosses
to hyperbolic fixed points. (b) Rotation number using x0 = 0.5 and
y ε [−0.3, 0.3]. The red dot has y0 ∼ –0.1396, which is the coordi-
nate of the extremum. It corresponds to the red point in (a).

paper is organized as follows, in Sec. II we briefly show the
main characteristics of the conservative SNM, while in Sec. III
we introduce dissipation and abbreviate the map as DSNM;
we also present some of its properties and the SA. In Sec. IV
the results are presented, and the paper is concluded in Sec. V.

II. BASIC CHARACTERISTICS OF THE STANDARD
NONTWIST MAP

The simplest form for the SNM is written as

yn+1 = yn − b sin(2π xn), (1)

xn+1 = xn + a
(
1 − y2

n+1

)
, (2)

where yn ∈ R and xn ∈ [0, 1] are canonical variables. The
parameter b controls the nonlinearity of the system and a
is responsible for the nontwist effects. The nondegeneracy

FIG. 2. Phase space illustrating the reconnection process in the
SNM for a = 0.345 and (a) b = 0.350, before the reconnection, and
(b) b = 0.420 after the reconnection.

condition, or the so-called twist condition for maps, is violated
when | ∂xn+1

∂yn
| = 0 along a curve in the phase space. Con-

sequently, the isochronous resonances emerge in the phase
space. The quantity ω is the rotation number and it can be
numerically estimated from

ω = lim
n→∞

xn − x0

n
, (3)

where the variable x is unbounded. The rotation number char-
acterizes the invariant curves in regions of the phase space
and its global profile allows us to obtain information about
the existence of the robust shearless barrier. The coordinates
of the extrema of the rotation number identify a point over
the shearless curve. In Fig. 1(a) we illustrate the conserva-
tive phase spaces for a = 0.2 = b. We note the isochronous
resonance islands at y = ±1 surrounded by stochastic layers.
We see a set of invariant spanning curves as well around y = 0
and also the shearless curve, which is drawn in red amid them.
The red dot has the coordinates (x, y) = (0.5,−0.1396) and
represents the initial condition that was iterated to generate the
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shearless curve. In Fig. 1(b) we exhibit the rotation number
profile along the line x0 = 0.5 and the range y ∈ [−0.3, 0.3].
We divided this range in 1000 steps and each pair (x0, y) was
iterated n = 1000 times through Eqs. (1) and (2); next we
executed Eq. (3) to have a point in Fig. 1(b). The red circle
in Fig. 1(b) corresponds to a maximum of the rotation number
whose coordinates are the IC used in Fig. 1(a).

In Fig. 2 we illustrate the reconnection of the separatri
ces, for odd-period orbits, and the meandering tori with a =
0.345 and some values of b. As the perturbation is increased,
the twin islands’ chains approach each other and their size
increases. In Fig. 2(a), for b = 0.350, we see the scenario
before the reconnection of the resonances; in Fig. 2(b), for
b = 0.420, we see that, after reconnection, the separatrix of
the lower UPO looped the upper elliptic fixed point, and vice
versa. We also see in Fig. 2(b) the meandering tori, which are
invariant curves that are not functions because for a given x
there is more than one value of y on the same curve.

III. DISSIPATIVE STANDARD NONTWIST MAP

A dissipative version of the SNM is defined as

yn+1 = (1 − γ ) yn − b sin (2πxn), (4)

xn+1 = xn + a
(
1 − y2

n+1

)
, (5)

where γ is responsible for the intensity of the dissipation.
For γ = 0 we recover the area preserving dynamics of the
SNM. For 0 < γ < 1 the map is area contracting and is called
dissipative standard nontwist map (DSNM). For the purpose

of the analysis that we are going to develop it is convenient to
rewrite Eq. (5), so that the DSNM, defined as MD, is

MD :

{
yn+1 = (1 − γ )yn − b sin (2πxn)
xn+1 = xn − a(yn+1 − r1)(yn+1 − r2) , (6)

where r1 and r2 are the location where two isochronous res-
onance islands will appear in the nondissipative phase space.
Choosing r1 = 1 and r2 = −1 we recover Eq. (5) of the map
where the main resonances are located at y = 1 and y = −1.

The fixed points of the DSNM (x∗, y∗) are obtained by
solving the system

y∗ = (1 − γ )y∗ − b sin (2πx∗), (7)

x∗ = x∗ − a(y∗
n+1 − r1)(y∗

n+1 − r2), (8)

whose solutions are

P1,2 = (y∗
1,2, x∗

1,2) =
[

r1,2,
1

2π
sin−1

(
−γ

b
r1,2

)]
. (9)

If r1 = −r2 the cylindrical symmetry of the map is pre-
served, and it can be used to find the coordinates of two
other symmetric fixed points. A transformation T is said to
be a symmetry of the DSMN if T ◦ MD = MD ◦ T holds;
then the map is invariant under T . The symbol ◦ represents
the composition of the maps. It can be easily shown that the
DSNM has the following symmetry transformation [23–25],

S :

{
yn+1 = −yn

xn+1 = xn ± 1
2

; (10)

that is, S ◦ MD = MD ◦ S, since

S ◦ MD :

{
yn+1 = −[ (1 − γ )yn − b sin (2πxn)] = −(1 − γ )yn + b sin (2πxn)

xn+1 = xn − a(yn+1 − r1)(yn+1 − r2) ± 1
2

, (11)

and

MD ◦ S :

{
yn+1 = (1 − γ )(−yn) − b sin

(
2π

(
xn ± 1

2

)) = −(1 − γ )yn + b sin (2πxn)

xn+1 = xn − a(yn+1 − r1)(yn+1 − r2) ± 1
2

. (12)

Applying S to P1,2 we obtain the coordinates of two other fixed points SP1,2:

SP1,2 ≡ S(y∗
1,2, x∗

1,2) =
[
−r1,2,

1

2π
sin−1

(
−γ

b
r1,2

)
± 1

2

]
. (13)

The fixed points are attractors of period 1 or hyperbolic
equilibrium points, also referred to as UPOs. The classifi-
cation is given according to the eigenvalues of the Jacobian
matrix at the fixed points.

It is worth mentioning that when γ = 0 we recover the
conservative scenario of Fig. 1, and the elliptic points of the
resonance islands are the fixed point P2, drawn as a blue circle,
and the fixed point SP2, drawn as a purple circle. Similarly, the
hyperbolic points are the fixed points P1 and SP1.

When dissipation is considered the elliptic fixed points,
the shearless curve, and the chaotic sea of the area preserv-
ing maps are replaced by attractors. The elliptic fixed points
give rise to sinks and it has been shown that the shearless
curve becomes the SA, which may be quasiperiodic or chaotic

depending on control parameters and the chaotic seas may
become chaotic attractors.

The symmetry properties of nontwist maps can be ex-
ploited in order to find the shearless curve [10,11]. For γ = 0,
the DSNM can be decomposed in two maps, named I0 and
I1, so that MD = I0 ◦ I1. Both I0 and I1 are involutions, that is,
I2
0,1 = II, and they are written as

I0 :

{
yn+1 = yn − b sin (2πxn)

xn+1 = −xn ± 1
2

, (14)

I1 :

{
yn+1 = yn

xn+1 = −xn − a(yn+1 − r1)(yn+1 − r2)
. (15)

014207-3



R. SIMILE BARONI AND R. EGYDIO DE CARVALHO PHYSICAL REVIEW E 104, 014207 (2021)

The fixed points of I0 and I1 define symmetry lines, that
are useful in the search of periodic orbits as developed in
Refs. [9–11]. The shearless curve is invariant under the trans-
formations S ◦ I0 and S ◦ I1,

S ◦ I0 :

{
yn+1 = −yn + b sin (2πxn)

xn+1 = −xn ± 1
2

, (16)

S ◦ I1 :

{
yn+1 = −yn

xn+1 = −xn + a(yn+1 − r1)(yn+1 − r2) ± 1
2

(17)

because of that, the fixed points of those transformations
always belong to the shearless curve. Those fixed points are
called indicator points (IPs), and we find

(IP0)1,2 =
(

±b

2
,±1

4

)
, (18)

(IP1)1,2 =
(

0,−ar1r2

2
± 1

4

)
. (19)

When dissipation is introduced, we expect that the in-
dicator points belong to the basin of attraction of the SA,
at least for a range of parameters. In Fig. 3(a) we show
the resulting attractors when a weak dissipation, γ = 0.1, is
added. The elliptic fixed points of the isochronous resonance
islands become two punctual attractors and the shearless curve
becomes a quasiperiodic SA. The coordinates of the point
attractors and of the two UPOs are given by the fixed points
of the map, given by Eqs. (9) and (11). The coexistence of
attractors, as seen here, is known as a multistability scenario.
In Fig. 3(b) we calculate the rotation number, through Eq. (3),
along the line y ∈ [−0.5, 1.0] in a similar fashion as was done
for Fig 1(b), but discarding the transient to make sure the
ICs have converged to an attractor. We see that initially the
rotation number is positive and constant along part of the y
curve, whose ICs converge to the SA. At some point, around
y0 ∼ 0.63, it drops to zero, showing that the ICs from that
point on converge to the point attractor. We note that the SA
has approximately the same rotation number as the shearless
curve of the conservative phase space. The indicator points
are points that belong to the shearless curve. As shown in
Fig. 3, when a weak dissipation is introduced, we obtain a
shearless attractor that has a shape similar to the shearless
curve of the conservative counterpart. Although the indicator
points no longer exist in the dissipative scenario, we expect the
coordinates of the (ex-) indicator points to be on the shearless
attractor, or close enough to it to be in its basin of attraction. In
the next section the indicator points will be used to compute
the bifurcation diagram.

IV. RESULTS AND DISCUSSION

We proceed now to vary r1 and r2 symmetrically, with
r2 = − r1, in order to approach the sinks P2 and SP2, and
the UPOs P1 and SP1 to the shearless attractor and so to
induce topological changes in the phase space. To observe the
changes in the profile of the SA, we compute a bifurcation
diagram for a fixed set of parameters (a, b, γ ). In Fig. 4(a)
we choose as IC the indicator point (IP1)1, given by Eq. (19),

FIG. 3. (a) Attractors of the DSNM for r1 = 1.0 = –r2, a = 0.2,
b = 0.2, and γ = 0.1. The invariant curve is the shearless attractor.
(b) The rotation number profile using x0 = 0.5 and y ε [−0.5, 1.0].
The red dotted line corresponds to the extremum of the rotation
number.

which presumably will be in the basin of attraction of the
shearless attractor when dissipation is considered. Then we
iterate that IC for a long time and plot the last 2000 values
of y for decreasing values of r1, starting from r1 = 1. We can
see that from r1 = 1 to a critical value r1 = 0.635 64 the IC
converges to an attractor that spreads itself over ranges of y
values. For values of r1 between 0.313 31 and 0.635 64, the IC
converges to a point attractor. For a narrow parameter window
in that interval, it converges to an attractor with positive y
coordinate, but as the parameter changes, the IC converges to
another point attractor with a negative y coordinate. For values
of r1 below 0.313 31, the IC converges again to an attractor
that spreads itself over the y values.

In Fig. 4(b) we plot the value of the largest Lyapunov ex-
ponent, λ, of the corresponding orbit shown in the bifurcation
diagram, for each value of r1. The Lyapunov exponent verifies
if two neighboring orbits diverge exponentially from each
other in time. If the orbits diverge, λ > 0 and the dynamics
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FIG. 4. (a) Bifurcation diagram for a = 0.2, b = 0.2, and
γ = 0.1; the black points are the last 2000 iterations of the orbit.
(b) Lyapunov exponent computed for the orbit in the diagram.

is chaotic. Orbits that stay close to each other result in λ = 0
or λ < 0, characterizing quasiperiodic and periodic orbits,
respectively. The Lyapunov exponents were calculated ac-
cording to the Eckmann-Rouelle algorithm [26], defined as

λ j = lim
n→∞

{
1

n
ln

∣∣	(n)
j

∣∣}, j = 1, 2, . . . , (20)

where 	
(n)
j are the eigenvalues of the matrix M =∏n

i=1 J (xi, yi ), with J (xi, yi ) being the Jacobian matrix cal-
culated at the point (xi, yi ).

We see in Fig. 4(b) that the chosen IC shows quasiperi-
odic behavior, λ = 0, when the attractor is not pointlike. This
attractor is the quasiperiodic SA. In Figs. 5(a) and 5(d) the
SA is drawn in red, for r1 = 1.0 and r1 = 0.2. When the SA
disappears, λ sharply drops to a negative value, indicating that
the IC has collapsed into a periodic attractor.

Associated with every attractor there is the corresponding
basin of attraction, which is a region formed by the set of
initial conditions that asymptotically reaches the attractor. In
Fig. 5 we show three attractors in red: two punctual attractors
with coordinates given by the points P2 and SP2 of Eqs. (9)
and (13), and the SA. We also show their respective basins
of attraction for four different values of r1, keeping r2 = −r1.
For the first one, r1 = 1, we can see in the bifurcation diagram
of Fig. 4(a) that the SA exists, and in Fig. 5(a) we see that it
coexists with two punctual attractors. They do not appear in
the bifurcation diagram because the used IC converged to the
SA. The basin of attraction of the SA is shown in gray, while
the basins of attraction of the up and down point attractor are
shown in green and purple, respectively. We also show the
IC used to compute the bifurcation diagram as a blue star,
which is over the SA. In Fig. 5(b), for r1 = 0.6, we have a
configuration where the SA does not exist and the IC con-
verges to the upper point attractor, as seen in Fig. 4(a) and
confirmed by the position of the IC (blue star) in the green

FIG. 5. Attractors of the DSNMs and their basins of attractions
for a = 0.2, b = 0.2, and γ = 0.1. (a) r1 = 1.0, (b) r1 = 0.6, (c)
r1 = 0.4, and (d) r1 = 0.2. In all cases, r2 = −r1.

basin of attraction. In Fig. 5(c) we use r1 = 0.4. The change
of the parameters leads to a rearrangement of the basins of at-
traction and the IC now converges to the down point attractor.
Finally, in Fig. 5(d), we see that the SA is present again; the
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FIG. 6. Basins of attraction of the DSNMs’ attractors for
r1 = 1.0 = –r2, a = 0.2, b = 0.2, and γ = 0.1.

SA resurged. Even though the IC is not over the SA, it is inside
its basin of attraction, so it is possible to see the SA in the
bifurcation diagram of Fig. 4(a). Note that we have extended
the x-axis range from 0 to 2 to aid the visualization of the
basins.

To analyze the mechanism of destruction and resurgence of
the SA, we now analyze the role of the fixed points of the map
and the corresponding manifolds of the UPOs as r1 is varied.
In Fig. 6 we exhibit the basins of attraction of the attractors
of the DSNM for r1 = 1, the same configuration as the one
in Fig. 1(b). The point attractors located at P2 and SP2 are
represented by circles, and the UPOs P1 and SP1 by crosses.
The unstable (stable) manifold of P1 is drawn in red (blue). For
SP1, the unstable (stable) manifold is drawn in black (yellow).

Analyzing the unstable manifold of the UPO P1 we see
that one of its branches goes into SP2’s basin of attraction and
spirals toward SP2. The other branch of the unstable manifold
goes into the SA’s basin of attraction and accumulates over
the attractor itself. We also see that the boundary between the
basins of attraction of the SA and the periodic attractor is well
defined by the stable manifold. The scenario is analogous for
the manifolds of the other UPO, at SP1.

In Fig. 7 we see the basins of attraction and the UPOs
manifolds for (a) r1 = 0.65 and (b) r1 = 0.6. As r1 decreases
the basins of attraction of the sinks become larger as they
approach the SA. Additionally, as the UPOs approach the
SA, we see that the SA bends toward them until it collides
simultaneously with both UPOs on the basin boundary (or,
equivalently, with the stable manifolds) and is destroyed. Af-
ter the destruction of the SA, the basins of attraction of the
sinks fill the whole space and the boundary between them
is defined by the stable manifolds of the UPOs. The UPO’s
unstable manifolds, which accumulated at the SA, now spiral
around the opposite sink. That is, each unstable branch of the
manifolds of each UPO spirals toward a different sink.

This mechanism of destruction of the SA is similar to the
boundary crises that are observed in systems with a chaotic

FIG. 7. Basins of attraction of the DSNMs’ attractors for a=0.2,
b = 0.2, and γ = 0.1. (a) r1 = 0.65 and (b) r1 = 0.6. In all cases,
r2 = −r1.

attractor. A crisis occurs when sudden and qualitative changes
happen to a chaotic attractor as a system parameter is varied.
Specifically, at a boundary crisis the chaotic attractor col-
lides with a UPO on the basin boundary and is destroyed.
The chaotic attractor becomes a nonattracting chaotic set
that generates transient chaos. Concerning the SA destruction
presented here, no nonattractive chaotic set is created and,
therefore, we do not observe any transient chaotic behavior.
To illustrate the resurgence mechanism of the SA, as seen
in the bifurcation diagram of Fig. 4(a) around r1 = 0.30, we
show, in Fig. 8, plots of the point attractors and the UPO’s
unstable manifolds for decreasing values of r1. In Fig. 8(a),
for r1 = 0.65, we see that the SA (drawn in blue) coexists
with two punctual attractors. Decreasing to r1 = 0.60 the SA
does not exist anymore because it has collided with the UPOs.
Upon decreasing r1 even further, the upper UPO approaches
the branch of the lower UPO’s unstable manifold that spirals
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FIG. 8. Stable manifolds of the DSNMs’ UPOs for a = 0.2,
b = 0.2, and γ = 0.1. (a) r1 = 0.65, (b) r1 = 0.60, (c) r1 = 0.38, and
(d) r1 = 0.20. In all cases, r2 = −r1.

into the lower attractor, and the lower UPO approaches the
branch of the upper UPO’s unstable manifold that spirals

into the upper attractor. This is shown in Figs. 8(b) and 8(c),
where we kept only the unstable manifolds of the UPOs, fo
r1 = 0.60 and r1 = 0.38, respectively. In Fig. 8(d) we choose
r1 = 0.20, and we note that the manifolds of the UPOs have
interacted, that is, a collision occurred between the saddle
point and an unstable manifold, and then a meandering SA
appears, drawn in blue. One branch of the unstable manifold
spirals into a sink and the other one accumulates on the SA.
Thus, the SA reappears after the manifolds of the twin UPOs
interact with each other in a similar way to the separatrix
reconnection of the conservative counterpart.

V. CONCLUSION

We described a route for the destruction and resurgence
of the quasiperiodic shearless attractor. The DSNM was pre-
sented in a way that the positions of the fixed points of the map
can be controlled as the parameter r1 is changed, keeping r2 =
−r1 to preserve the symmetry of the map. The fixed points are
(i) a period one attractor and a UPO with positive y coordinate
equal to r1, and (ii) a period one attractor and a UPO with
negative y coordinate equal to r2. We analyze the basins of
attraction of the point attractors, of the SA, and the behavior
of the stable and unstable manifolds of the UPOs. We show
that for each UPO, one branch of the unstable manifold goes
toward a point attractor while the other one accumulates at the
SA. The stable manifolds define the boundaries between the
basins of attraction of the periodic attractors and the SA. We
compute a bifurcation diagram choosing as initial condition
an indicator point of the SNM and we vary r1. Alongside this
diagram we show the Lyapunov exponent of the correspond-
ing orbit in the bifurcation diagram, in order to distinguish
between periodic and quasiperiodic behavior. We see that the
quasiperiodic SA initially exists but upon decreasing r1 it is
destroyed, and the remaining attractors are the periodic ones.
Decreasing r1 even further shows that the SA reappears. To
investigate the mechanism behind this scenario, we analyze
the basins of attraction of the attractors and the manifolds
of the UPOs. We see that approaching the fixed points to the
SA, the basins of attraction of the point attractors grows and
the SA bends toward the UPOs. Eventually the SA collides
with the UPOs and is destroyed in a similar way to a boundary
crisis, in which a chaotic attractor collides with a UPO on the
boundary of its basin of attraction. After the destruction of
the SA, each branch of the unstable manifold of each one of
the UPOs goes into a different point attractor. Approaching the
fixed points even further, the unstable manifold of each UPO
collides with the opposite UPO, and after this intersection the
quasiperiodic SA resurges. This mechanism and these proper-
ties allow us to improve the characterization of this attractor.
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