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Suppression of synchronous spiking in two interacting populations
of excitatory and inhibitory quadratic integrate-and-fire neurons

Kestutis Pyragas, Augustinas P. Fedaravičius , and Tatjana Pyragienė
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Collective oscillations and their suppression by external stimulation are analyzed in a large-scale neural
network consisting of two interacting populations of excitatory and inhibitory quadratic integrate-and-fire
neurons. In the limit of an infinite number of neurons, the microscopic model of this network can be reduced to
an exact low-dimensional system of mean-field equations. Bifurcation analysis of these equations reveals three
different dynamic modes in a free network: a stable resting state, a stable limit cycle, and bistability with a
coexisting resting state and a limit cycle. We show that in the limit cycle mode, high-frequency stimulation of an
inhibitory population can stabilize an unstable resting state and effectively suppress collective oscillations. We
also show that in the bistable mode, the dynamics of the network can be switched from a stable limit cycle to
a stable resting state by applying an inhibitory pulse to the excitatory population. The results obtained from the
mean-field equations are confirmed by numerical simulation of the microscopic model.
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I. INTRODUCTION

Synchronization processes in large populations of inter-
acting dynamical units are the focus of intense research
in physical, technological, and biological systems [1], such
as smart grids [2], Josephson junction arrays [3], coupled
mechanical devices [4], optical networks [5], and neural net-
works [6]. In neural networks, synchronization can play a
dual role. Under normal conditions, synchronization is re-
sponsible for cognition and learning [7,8], while excessive
synchronization can cause abnormal brain rhythms associated
with neurological diseases such as Parkinson’s disease [9],
epilepsy [10,11], tinnitus [12], and others. Various open loop
and closed loop control algorithms have been developed to
suppress unwanted synchronized network oscillations, e.g.,
coordinated reset stimulation [13,14], time-delayed feedback
control [15–17], separate stimulation-registration setup [18],
act-and-wait algorithm [19,20], optimal open loop desynchro-
nization [21], and many others.

A therapeutic procedure clinically approved for the treat-
ment of Parkinson’s disease, essential tremor and dystonia is
a high-frequency (HF) deep brain stimulation (DBS) [22,23].
The mechanism of action of DBS is still poorly understood
[24,25]. Clinical observations show that the effects of le-
sions and DBS of the same target area are similar [26]. This
suggests that HF stimulation suppresses neuronal activity in
the target area. The hypothesis of the local inhibition is also
supported by some experiments in animals [27,28] and in
humans [29,30]. In this context, the effect of HF stimulation
can be explained in terms of stabilization of neuron’s resting
state [31]. However, there is no clear theoretical understanding
of how HF stimulation affects synchronization processes in
neural networks.

Recent advances in dynamical systems theory have al-
lowed us to better understand the effects of synchronization

in large-scale oscillatory networks. A major breakthrough in
these studies was achieved by Ott and Antonsen [32], who
showed that the microscopic model equations of globally
coupled heterogeneous phase oscillators (Kuramoto model)
can be reduced to a low-dimensional system of ordinary dif-
ferential equations that accurately describe the macroscopic
evolution of the system in the infinite-size (thermodynamic)
limit. Later this approach was extended to a particular class
of heterogeneous neural networks composed of all-to-all
pulse-coupled quadratic integrate-and-fire (QIF) neurons [33],
which are the normal form of class I neurons [34]. In ther-
modynamic limit, a low-dimensional system of mean-field
equations was derived for biophysically relevant macroscopic
quantities: the firing rate and the mean membrane potential.
The approach has been further developed in recent publica-
tions to analyze the occurrence of synchronized macroscopic
oscillations in networks of QIF neurons with a realistic synap-
tic coupling [35], in the presence of a delay in couplings
[36–38], in the presence of noise [39], in the presence of
electrical coupling [40], and in the case of two interacting
populations [41,42].

In this paper, we demonstrate that mean-field equations are
useful not only for understanding the occurrence of collec-
tive oscillations in large-scale neural networks, but also for
understanding the effect of stimulation on synchronization
processes. As an example, we consider a network of two inter-
acting populations of excitatory and inhibitory QIF neurons.
We show that HF stimulation of the inhibitory population
is very effective in suppressing the collective synchronous
spiking in both populations. The suppression mechanism is
explained by the stabilization of the unstable incoherent state
of the network. We also explain the oscillation suppression
effect caused by an inhibitory pulse applied to the excitatory
population.
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The rest of the paper is organized as follows. In Sec. II
we describe a microscopic model of two interacting popu-
lations of QIF neurons and present the reduced mean-field
equations for this model. Section III is devoted to bifurcation
analysis of the mean-field equations without stimulation. The
effects of HF stimulation of the inhibitory population, as well
as the inhibitory pulse applied to the excitatory population,
are discussed in Sec. IV. In Sec. V, we present the results of
numerical simulations of the microscopic model and compare
them with the results obtained from the mean-field equations.
The conclusions and discussion are presented in Sec. VI.

II. THE MODEL

A. Microscopic description

We consider a heterogeneous network of two interacting
populations of excitatory and inhibitory quadratic integrate-
and-fire neurons, which are the canonical representatives for
class I neurons near the spiking threshold [34]. The micro-
scopic state of the network is determined by the set of 2N
neurons’ membrane potentials {V (E ,I )

j } j=1,...,N , which satisfy
the following system of 2N ordinary differential equations
[43]:

τV̇ (E ,I )
j = (

V (E ,I )
j

)2 + η
(E ,I )
j + I (E ,I )

j ,

if V (E ,I )
j � Vp then V (E ,I )

j ← Vr . (1)

Here, τ is the membrane time constant and V (E ,I )
j is the

membrane potential of neuron j in either the excitatory (E )
or the inhibitory (I ) population. For simplicity, we set the
number of neurons N and the time constant τ the same for
both populations. The heterogeneous parameter of excitability
η

(E ,I )
j is a current that specifies the behavior of each isolated

neuron and the term I (E ,I )
j defines the synaptic coupling be-

tween neurons as well as external stimulation. The isolated
neurons (I (E ,I )

j = 0) with the negative value of the parameter

η
(E ,I )
j < 0 are at rest, while the neurons with the positive value

of the parameter η
(E ,I )
j > 0 generate instantaneous spikes,

which are approximated by the Dirac delta function. The
spikes are emitted at the moments when the membrane po-
tential V (E ,I )

j reaches a peak value Vp. Immediately after the
spike emission the membrane potential is reset to a value Vr .
Thereafter, we assume Vp = −Vr → ∞. With this assump-
tion, a QIF neuron can be transformed into a theta neuron.
This assumption is also crucial for the analytical treatment of
Eqs. (1) in an infinite size limit N → ∞ [33]. The values of
the heterogeneous parameter η

(E ,I )
j for both populations are

independently taken from the Lorentzian distributions:

gE ,I (η) = 1

π

�E ,I

(η − η̄E ,I )2 + �2
E ,I

, (2)

where �E ,I and η̄E ,I are respectively the width and the center
of the distribution for the excitatory (E ) and inhibitory (I)
populations.

Finally, we discuss the last term I (E ,I )
j in Eqs. (1),

which describes synaptic coupling and an external stimula-
tion. For the excitatory and inhibitory populations this term,

E I

JEI

JII

JIEIE(t) II(t)

FIG. 1. Symbolic depiction of a network of two neural popula-
tions. The large circles labeled “E” and “I” represent populations of
excitatory and inhibitory neurons, respectively. The curve ending in
an arrow shows excitatory coupling between populations E and I .
JEI is the coupling strength. Curves ending in solid circles indicate
inhibitory couplings between populations I and E , as well as within
population I . JIE and JII are the corresponding coupling strengths.
The vertical arrows labeled IE (t ) and II (t ) show the external stimula-
tion currents applied to populations E and I .

respectively, is

I (E )
j = −JIE SI (t ) + IE (t ), (3a)

I (I )
j = JEI SE (t ) − JII SI (t ) + II (t ). (3b)

Here, SE (t ) and SI (t ) determine the mean synaptic activation
of E and I populations:

SE ,I (t ) = τ

N

N∑
j=1

∑
k\(t k

j )E ,I <t

δ
(
t − (

t k
j

)
E ,I

)
, (4)

where (t k
j )E ,I is the time of the kth spike of the jth neuron

in either E or I population and δ(t ) is the Dirac delta func-
tion. The positive parameters JEI , JIE and JII define synaptic
weights. The current −JIE SI (t ) inhibits E neurons due to
synaptic activity of I population, while the current JEI SE (t )
excites I neurons due to synaptic activity of E population.
The term −JII SI (t ) determines recurrent inhibition of neurons
within I population. For simplicity, we do not consider recur-
rent excitation within the E population, since it is not essential
for the emergence of collective oscillations. The currents IE (t )
and II (t ) represent external homogeneous stimulation of the
excitatory and the inhibitory populations, respectively. Below
we will consider stimulation protocols when either only in-
hibitory [IE (t ) = 0, II (t ) �= 0] or only excitatory [IE (t ) �= 0,
II (t ) = 0] population is stimulated.

Note that the dynamics of a single population of QIF
neurons interacting via instantaneous Dirac delta pulse was
studied in detail in Ref. [33] and macroscopic limit cycle
oscillations were not found in such a model. Macroscopic
synchronized oscillations can occur in a single population
when there is a delay in couplings [36–38] or when the finite
width of synaptic pulses is taken into account [35]. However,
two coupled populations of excitatory and inhibitory QIF
neurons can generate macroscopic oscillations even when the
interaction is provided by instantaneous Dirac delta pulses
[42], and therefore we restrict our consideration to the simpler
case of instantaneous interaction, as in the original paper [33].

The network architecture shown in Fig. 1, mimics the ar-
chitecture of the neural network of the subthalamic nucleus
(STN) and the external segment of the globus pallidus (GPe),
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which is often used to model Parkinson’s disease (cf., e.g.,
Ref. [44]). STN is a network of excitatory neurons (in our
case, E population), and GPe consists of inhibitory neurons
(in our case, I population).

B. Macroscopic description: Low-dimensional mean-field
equations in the limit N → ∞

The advantage of the network model Eqs. (1) is that
it allows one to derive precise low-dimensional mean-field
equations in the thermodynamic limit of an infinite number of
neurons, N → ∞. We characterize the macroscopic dynamics
of the network by four biophysically relevant quantities

vE ,I = 1

N

N∑
j=1

V (E ,I )
j , rE ,I = τ

M (E ,I )(�t )

N�t
, (5)

which represent the mean membrane potentials of the ex-
citatory (E ) and the inhibitory (I) populations and the
dimensionless firing rates of E and I populations (the dimen-
sional firing rates are rE ,I/τ ), respectively. Here, M (E ,I )(�t )
is the number of spikes emitted in a small time window �t
in E and I populations. In the limit N → ∞, the quantities
rE ,I (t ) and vE ,I (t ) satisfy the exact system of four ordinary
differential equations [33]:

τ ṙE = �E/π + 2rEvE , (6a)

τ v̇E = η̄E + v2
E − π2r2

E − JIE rI + IE (t ), (6b)

τ ṙI = �I/π + 2rIvI , (6c)

τ v̇I = η̄I + v2
I − π2r2

I + JEI rE − JII rI + II (t ). (6d)

These low-dimensional mean-field equations greatly simplify
the analysis of different network dynamics modes depending
on system parameters, as well as the effect of stimulating
current on network dynamics.

III. NETWORK DYNAMICS WITHOUT STIMULATION

First, we analyze the dynamics of the network with-
out stimulation, IE (t ) = II (t ) = 0. An unperturbed network
exhibits synchronized oscillations over a wide range of param-
eters. An example of network oscillations obtained by solving
Eqs. (6) for the set of parameters �E = 0.05, η̄E = 0.5, �I =
0.5, η̄I = −4, JEI = 20, JIE = 5, and JII = 0.5 is shown in
Fig. 2. To get oscillations on a realistic time scale, we choose
τ = 14 ms, which corresponds to the membrane time constant
of GPe neurons [45]. The oscillation period in the figure is
T0 ≈ 87 ms.

Areas in the parameter space where network oscillations
occur can be estimated using linear stability analysis of
Eqs. (6). Equating the right-hand side (RHS) of Eqs. (6) to
zero, we can find the fixed points (r∗

E , v∗
E , r∗

I , v∗
I ) in the four-

dimensional phase space of the system. The problem leads to
the solution of the 16th-order polynomial equation

a1[P(x)]4 − (1 + x)x4[P(x)]2 − a2x8 + a3x2[P(x)]3 = 0,

(7)
with respect to x, where

P(x) = a5 + x2 − a4x4 (8)
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FIG. 2. Dynamics of network macroscopic variables rE (t ), vE (t ),
rI (t ) and vI (t ) obtained by solving Eqs. (6) without stimulation,
IE (t ) = II (t ) = 0. The values of the parameters are: �E = 0.05,
η̄E = 0.5, �I = 0.5, η̄I = −4, JEI = 20, JIE = 5, JII = 0.5, and
τ = 14 ms.

is a fourth-order polynomial and the parameters aj are

a1 = 1

η̄I

(πη̄E

JIE

)2

, a2 = 1

η̄I

(
JIE�I

2πη̄E

)2

, a3 = η̄E JII

η̄I JIE
,

a4 = 1

η̄E

(πη̄I

JEI

)2

, a5 = 1

η̄E

(
JEI�E

2πη̄I

)2

.

The solutions of the polynomial Eq. (7) are related to the
coordinates of fixed points as follows:

r∗
E = η̄I

JEI
x, v∗

E = −JEI�E

2πη̄I

1

x
,

r∗
I = η̄E

JIE

P(x)

x2
, v∗

I = −JIE�I

2πη̄E

x2

P(x)
.

Numerical analysis of Eq. (7) shows that only one of its
real-valued roots satisfies the requirement of nonnegativity of
spiking rates r∗

E and r∗
I , that is, the system has a single fixed

point in the physically relevant region rE � 0 and rI � 0 of
the phase space. The stability of this fixed point is determined
by the eigenvalues λ of the characteristic equation

det(J − Iλ) = 0, (9)

where

J = 1

τ

⎛
⎜⎜⎝

2v∗
E 2r∗

E 0 0
−2π2r∗

E 2v∗
E −JIE 0

0 0 2v∗
I 2r∗

I
JEI 0 −(2π2r∗

I + JII ) 2v∗
I

⎞
⎟⎟⎠
(10)

is the Jacobi matrix of the system Eqs. (6) and I is the iden-
tity matrix. The fixed point is stable if the real parts of all
eigenvalues λ are negative. With such parameter values, the
network is at rest. At the microscopic level, neurons in this
state exhibit incoherent behavior. If the real part of at least one
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FIG. 3. One-parameter bifurcation diagrams showing the evolu-
tion of the firing rate rE depending on the coupling strengths (a) JEI ,
(b) JIE , and (c) JII . The rest of the parameters is fixed in the same way
as in Fig. 2. The solid blue curves show the stable fixed point and the
maximum and minimum of the stable limit cycle. The dashed red
curves correspond to the unstable fixed point and the maximum and
minimum of the unstable limit cycle. The red asterisks marked with
the letters LPC, H+ and H− denote the limit point of cycles bifurca-
tion, supercritical Hopf bifurcation and subcritical Hopf bifurcation,
respectively.

of the eigenvalues λ is positive, then the state of rest becomes
unstable. Numerical analysis shows that in this case neurons
behave coherently and periodic limit cycle oscillations appear
in the network. Thus, solving Eqs. (7) and (9) gives us a sim-
ple sufficient condition for identifying areas in the parameter
space where the network is in oscillatory mode. However, net-
work oscillations can also occur in parameter areas where the
resting state is stable. In such areas, the network demonstrates
bistability. Along with a stable resting state, the network has a
stable limit cycle.

The bistability regions are clearly visible in the one-
parameter bifurcation diagrams shown in Fig. 3. These and
other bifurcation diagrams presented in this paper were built
using the MatCont package [46]. Figure 3(a) shows change in
the firing rate rE of the excitatory population depending on
the coupling strength JEI . There are two bifurcation values of
the coupling strength, at which the dynamics of the network
changes qualitatively. At JEI ≈ 12.6, there is a limit point of
cycles (LPC) bifurcation when two limit cycles, stable and
unstable, collide and annihilate each other. At JEI ≈ 16.35,
a subcritical Hopf (H−) bifurcation occurs when an unstable
limit cycle is absorbed by a stable spiral equilibrium. As JEI

increases, different dynamic modes are observed. For small
values of the coupling strength JEI < 12.6, the resting state
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FIG. 4. Two-parameter bifurcation diagrams in the planes of pa-
rameters (a) (JIE , JEI ) and (b) (JII , JEI ). Other parameters are the
same as in Fig. 2. The areas marked with Roman numerals cor-
respond to: (I) the only stable limit cycle, (II) bistability with a
stable limit cycle and a stable resting state, and (III) the only sta-
ble resting state. The red asterisk marked with letters GH denotes
the generalized Hopf bifurcation point. The horizontal dash-dotted
lines JEI = 20 in panels (a) and (b) correspond to the one-parameter
bifurcation diagrams shown in Figs. 3(b) and 3(c), respectively. The
vertical dash-dotted lines JIE = 5 in (a) and JII = 0.5 in (b) corre-
spond to the one-parameter bifurcation diagram shown in Fig. 3(a).
The intersection of the horizontal and vertical lines represents the
parameter values used in Fig. 2.

is the only attractor. In the interval 12.6 < JEI < 16.35 be-
tween the LPC and H− bifurcations, there are two attractors:
a state of rest and a limit cycle. Finally, for JEI > 16.35,
the only attractor is the limit cycle. Figure 3(b) shows the
evolution of network dynamics with a change in the cou-
pling strength JIE . As this parameter increases from zero,
the oscillations manifest themselves through the supercrit-
ical Hopf (H+) bifurcation at JIE ≈ 0.13. In the interval
0.13 < JIE < 6.28 between the supercritical and subcritical
Hopf bifurcations, the only attractor is the limit cycle. In the
interval 6.28 < JIE < 7 between the bifurcations H− and LPC
there is bistability, and for JIE > 7 the rest state is the only
attractor. Figure 3(c) shows that oscillations in the network
occur with zero interaction within the inhibitory population,
JII = 0. As JII increases, the oscillations persist until the LPC
bifurcation, JII = 17.72. At JII > 17.72, the oscillations dis-
appear, and the only attractor is the state of rest. The bistability
is in the interval 9.3 < JII < 17.72 between the H− and LPC
bifurcations.
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In Figs. 4(a) and 4(b), we present two-parameter bifurca-
tion diagrams in the parameter planes (JIE , JEI ) and (JII , JEI ),
respectively. The areas marked with Roman numerals rep-
resent the three different dynamic modes described above.
Specifically, in area (I) the only attractor is a limit cycle, in
area (II) there is bistability with a stable limit cycle and a
stable state of rest, and in area (III) the only attractor is a state
of rest. We see that all modes occupy rather large areas in the
parameter spaces, i.e., they are robust to parameter changes in
wide intervals. Vertical and horizontal dash-dotted lines show
cross-sections of two-parameter bifurcation diagrams, which
correspond to one-parameter diagrams presented in Fig. 3 (see
figure caption for details). The intersection of the horizontal
and vertical lines represents the parameter values used in
Fig. 2.

IV. SUPPRESSING SYNCHRONOUS SPIKING

A. High-frequency stimulation of the inhibitory population

We first show that synchronous spiking of the network can
be effectively suppressed by high-frequency stimulation of the
inhibitory population. We consider the network dynamics for
IE (t ) = 0 and

II (t ) = a cos(ωt ), (11)

where a is the amplitude and ω is the angular frequency of
HF stimulation. The stimulation current Eq. (11) satisfies the
clinically mandatory charge balance condition

∫ T
0 II (t )dt = 0,

where T = 2π/ω is the stimulation period. We assume that
the values of the parameters are chosen such that the free
network has a single stable attractor of the limit cycle. We
also assume that the stimulation frequency ν = 1/T is con-
siderably greater than the frequency ν0 of the limit cycle.

A numerical example of the effect of HF stimulation on
network dynamics is shown in Fig. 5. The solid blue curves
show the solution of Eqs (6) for the same parameter val-
ues as in Fig. 2. For time t < 500 ms, the network is not
perturbed and demonstrates exactly the same dynamics as in
Fig. 2: It oscillates at a frequency of ν0 = 1/T0 ≈ 11.5 Hz. For
t � 500 ms, HF stimulation of inhibitory neurons is activated
with a frequency ν = 130 Hz and an amplitude a = 30. We
see that HF stimulation effectively suppresses synchronized
spiking in the network. The spiking rates of excitatory and
inhibitory neurons rE and rI drop to almost zero. The mean
membrane potential vE of the excitatory population becomes
almost constant. The mean membrane potential vI of the
stimulated inhibitory population shows high-frequency oscil-
lations around the resting state with a reduced amplitude.

To understand why HF stimulation of inhibitory neurons
is so effective at suppressing network oscillations, we refer to
the method of averaging [47], which is widely used in var-
ious fields of physics including vibrational mechanics. This
method makes it possible to explain the effect of oscillation
suppression in terms of stabilizing the unstable resting state of
the network. The effect is similar to stabilization of the upside-
down position of a rigid pendulum by vibrating its pivot up
and down at a suitably high frequency [48,49]. A theoretical
approach to solving the pendulum problem was first proposed
by Kapitza [48]. It is based on dividing the dynamics of a

0
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FIG. 5. Suppression of network oscillations by HF stimulation of
the inhibitory population. Thin solid blue curves show the dynamics
of the variables rE (t ), vE (t ), rI (t ), and vI (t ) obtained by solving
Eqs. (6) for the same parameter values as in Fig. 2. For t < 500
ms, the network is not stimulated and demonstrates exactly the same
dynamics as in Fig. 2, and at t � 500 ms, the HF stimulation of
inhibitory neurons is activated with the frequency ν = 130 Hz and
the amplitude a = 30. The bold dashed green curves show dynamics
of the variables r̄E (t ), v̄E (t ), r̄I (t ) and v̄I (t ) obtained by solving the
averaged Eqs. (22).

pendulum into fast and slow motion and deriving an averaged
equation for the slow dynamics of a pendulum. This approach
has recently been applied to a single spiking neuron stimulated
by a HF field [31]. Here, we adapt this approach to the network
Eqs. (6).

To apply the averaging method to Eqs. (6), we rewrite them
in a more convenient form. We denote the dynamic variables
of the first three equations, which do not contain the HF
stimulation term, by a vector

q = (rE , vE , rI )T . (12)

Then Eqs. (6) can be formally written as

τ q̇ = G(q, vI ), (13a)

τ v̇I = f (q, vI ) + a cos(ωt ), (13b)

where G(q, vI ) is a three-dimensional vector function defined
by the RHS of the first three Eqs. (6a)–(6c) at IE (t ) = 0 and

f (q, vI ) = η̄I + v2
I − π2r2

I + JEI rE − JII rI (14)

is a scalar function defined by the RHS of the last Eq. (6d).
Our aim is to simplify the nonautonomous system Eqs. (13)

for large frequencies ω. Using the small parameter ε =
(ωτ )−1 � 1, we seek to eliminate the HF term a cos(ωt ) and
obtain an autonomous system, the solutions of which approxi-
mate the original system. First, we change the variables of the
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system Eqs. (13):

q(t ) = Q(t ), (15a)

vI (t ) = VI (t ) + A sin(ωt ), (15b)

with

A = a/ωτ. (16)

As in Ref. [31], we assume that A is of order O(1) with
respect to the perturbation parameter ε. This means that we are
considering the case of HF stimulation with large amplitudes,
a ∼ O(ε−1). Only large amplitudes can have a noticeable
effect when stimulated with frequencies significantly higher
than the natural frequency of the network. The mathematical
justification for this assumption can be found in the Appendix
of Ref. [50]. Substituting Eqs. (15) into Eqs. (13), we derive
the following equations for the new variables Q(t ) and VI (t ):

τ Q̇ = G[Q,VI + A sin(ωt )], (17a)

τV̇I = f [Q,VI + A sin(ωt )]. (17b)

By rescaling the time variable � = ωt (here � is the “fast”
time) system Eqs. (17) can be transformed to the standard
form of equations as typically used by the method of aver-
aging [47]:

dQ
d�

= εG[Q,VI + A sin(�)], (18a)

dVI

d�
= ε f [Q,VI + A sin(�)]. (18b)

Due to the small factor ε on the RHS of Eqs. (18), the variables
Q and VI vary slowly, while the periodic functions in the
RHS oscillate fast. In accordance with the averaging method
[47], an approximate solution of the system Eqs. (18) can
be obtained by averaging the RHS of the system over fast
oscillations. Specifically, let us denote the variables of the
averaged system as q̄ = (r̄E , v̄E , r̄I )T and v̄I . They satisfy the
following equations:

dq̄
d�

= ε〈G[q̄, v̄I + A sin(�)]〉�, (19a)

d v̄I

d�
= ε〈 f [q̄, v̄I + A sin(�)]〉�. (19b)

Here, the angle brackets denote the averaging over the period
of the fast time 〈(· · · )〉� = (1/2π )

∫ 2π

0 (· · · )d�. The method
of averaging states that the averaged system Eqs. (19) approx-
imates the solutions of the system Eqs. (18) with the accuracy
of O(ε), i.e., Q = q̄ + O(ε) and VI = v̄I + O(ε). After return-
ing to the original time scale, the averaged system Eqs. (19)
takes the following form:

τ ˙̄q(t) = 〈G[q̄(t ), v̄I (t ) + A sin(�)]〉�, (20a)

τ ˙̄vI (t ) = 〈 f [q̄(t ), v̄I (t ) + A sin(�)]〉�. (20b)

Here, the dot means differentiation by the original time t .
Finally, the solution of the original nonautonomous system
Eqs. (13) can be expressed in terms of the solution of the
averaged (autonomous) system Eqs. (20) as follows:

q(t ) = q̄(t ) + O(ε), (21a)

vI (t ) = v̄I (t ) + A sin(ωt ) + O(ε). (21b)

The substitution Eqs. (15) and subsequent application of the
averaging method allowed us to separate the slow and fast
motion of the network and present the solution in the form
of their superposition. The terms q̄(t ) and v̄I (t ) in Eqs. (21)
represent slow motion and satisfy the averaged Eqs. (20) while
the term A sin(ωt ) describes high-frequency oscillations of
the mean membrane potential of the stimulated inhibitory
population.

After performing the averaging procedure in Eqs. (20), we
write them explicitly as

τ ˙̄rE = �E/π + 2r̄E v̄E , (22a)

τ ˙̄vE = η̄E + v̄2
E − π2r̄2

E − JIE r̄I , (22b)

τ ˙̄rI = �I/π + 2r̄I v̄I , (22c)

τ ˙̄vI = η̄A
I + v̄2

I − π2r̄2
I + JEI r̄E − JII r̄I . (22d)

Formally, these equations are similar to the original Eqs. (6),
but the HF term II (t ) = a cos(ωt ) is excluded from Eq. (6d)
(recall that here we are considering the case IE (t ) = 0). The
only difference between Eqs. (6) without stimulation and the
averaged Eqs. (22) is that the parameter η̄I is replaced by
the parameter η̄A

I , whose value depends on the stimulation
parameter A:

η̄A
I = η̄I + A2/2. (23)

In Fig. 5, we compare the solution of the averaged Eqs. (22)
with the solution of the original Eqs. (6). For t < 500 ms,
there is no stimulation (a = 0 and A = 0) and therefore η̄A

I =
η̄I . In this case, Eqs. (22) and (6) are identical and give exactly
the same solution. For t � 500 ms, when stimulation is acti-
vated, the averaged Eqs. (22) (bold dashed green curves) also
approximate well the solution of the original system Eqs. (6)
(thin solid blue curves).

The connection of the averaged mean-field Eqs. (22) with
the original unperturbed mean-field Eqs. (6) allows us to pre-
dict the effect of HF stimulation by analyzing the solutions
of the unperturbed system and simply explain the oscillation
suppression mechanism. According to Eq. (23), the effect of
HF stimulation on the averaged dynamics of the network is
a change in the parameter η̄I , which determines the center
of the Lorentzian distribution gI (η) of inhibitory neurons.
This center shifts to the right by a distance of A2/2. As a
result, the proportion of spiking neurons in the population
increases, and the proportion of quenched neurons decreases.
Thus, the inhibitory population becomes more active. A suf-
ficient increase in the parameter η̄I can lead to stabilization
of the initially unstable resting state of the network and, as a
consequence, to the termination of oscillations.

The mechanism of stabilization of the resting state is ev-
ident from the one-parameter bifurcation diagram rE versus
η̄I of the unperturbed system shown in Fig. 6. Three vertical
dotted lines show the actual value η̄I = −4 of the bifurca-
tion parameter, the value η̄H

I ≈ −1.667 of the supercritical
Hopf bifurcation, and the value η̄A

I ≈ −0.559 obtained from
Eq. (23) at stimulation frequency ν = 130 Hz and amplitude
a = 30. We see that the actual value of η̄I is in the region
where the limit cycle is stable and the resting state is unstable.
Due to HF stimulation, this value is shifted beyond the Hopf
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FIG. 6. One-parameter bifurcation diagram of the unperturbed
network showing the dependence of the firing rate rE on the param-
eter η̄I . The rest of the parameters are fixed in the same way as in
Fig. 2. The designations for the solid blue and dashed red curves are
the same as in Fig. 4. Three vertical dotted lines show the actual value
η̄I = −4 of the bifurcation parameter, the value η̄H

I ≈ −1.667 of the
supercritical Hopf bifurcation, and the value η̄A

I ≈ −0.559 obtained
from Eq. (23) at stimulation frequency ν = 130 Hz and amplitude
a = 30.

bifurcation point η̄H
I to the position η̄A

I , where the resting state
is stable.

In the general case, the condition for stabilization of the
resting state is η̄A

I > η̄H
I or A2 > 2(η̄H

I − η̄I ). Taking into ac-
count Eq. (16), this condition can be written as

a > ath ≡ 2πντ

√
2
(
η̄H

I − η̄I
)
, (24)

where ath is a threshold amplitude of the HF stimulation.
When this amplitude is exceeded, the resting state of the
averaged Eqs. (22) is stabilized, and the limit cycle oscil-
lations in the original HF stimulated system Eqs. (6) are
suppressed. Equation (24) shows that the threshold amplitude
ath is proportional to the stimulation frequency ν. Thus, with
an increase in the frequency of stimulation, it is necessary
to proportionally increase the amplitude of stimulation if we
want to maintain a stable state of rest. Note that Eq. (24)
is only valid for sufficiently large frequencies ν  1/2πτ .
Information about the response of the network to stimulation
at low frequencies, which are less or comparable to the limit
cycle frequency, can be found by direct integration of Eqs. (6).
Figure 7 shows the result obtained by integrating Eqs. (6)
while changing both stimulation parameters, amplitude a and
frequency ν. As a measure of the network’s response to stim-
ulation, we choose the standard deviation of the spiking rate
of the excitatory population

σ =
√

〈[rE (t ) − 〈rE (t )〉]2〉, (25)

where angle brackets denote time average. Small values of this
parameter correspond to a stable resting state of the network,
and large values indicate oscillations of large amplitude. In
Fig. 7, the values of σ in the parameter plane (ν, a) are shown
in colors. White represents the area of suppressed oscillations.
For high frequencies, the boundary of this area is in good
agreement with the analytical curve of the threshold amplitude
Eq. (24), which is shown by the solid red curve. For low

101 102
0

20

40

60

80

0.05

0.1

0.15

0.2

FIG. 7. Network response to stimulation of the inhibitory popu-
lation depending on the stimulation frequency ν and the amplitude a.
The colors show the values of the standard deviation σ , estimated
by Eq. (25) using a 5000 ms time window for averaging. White
represents an area of suppressed oscillations. Without stimulation
(a = 0), the standard deviation is σ ≈ 0.15. The solid red curve
shows the analytical threshold amplitude Eq. (24). The black dot
denotes the values of the (ν, a) parameters used in Fig. 5.

frequencies, stimulation increases the oscillation amplitude.
In the region ν < 8 Hz, the standard deviation is significantly
larger than the value of σ ≈ 0.15 observed in the network
without stimulation. Interestingly, the white area in Fig. 7
resembles an experimentally obtained area on the plane of the
parameters of frequency and intensity of stimulation, where
tremor in patients with Parkinson’s disease was eliminated by
stimulation of the ventral intermediate thalamic nucleus [22].

B. Suppression of oscillations by controlling
the excitatory population

Next, we will consider the possibility of suppressing
network oscillations by HF stimulation of the excitatory pop-
ulation. Now we put II (t ) = 0 and

IE (t ) = a cos(ωt ). (26)

Applying the averaging method to Eqs. (6), we can de-
rive an autonomous system of averaged equations, similar to
Eqs. (22), but now the parameter η̄I remains unchanged, and
the parameter η̄E will be modified as

η̄E → η̄A
E = η̄E + A2/2. (27)

An increase in the η̄E parameter means that the proportion of
spiking neurons in the excitatory population increases, while
the proportion of quenched neurons decreases. As a result, the
excitatory population becomes more active and, in contrast
to the case of stimulation of the inhibitory population, the
oscillatory effects are now enhanced. Figure 8 provides a
graphical explanation of why the effects of HF stimulation
of excitatory and inhibitory populations are different. Here,
we show a two-parameter bifurcation diagram of the network
without stimulation in the plane (η̄I , η̄E ). As in Fig. 4, the
areas marked with Roman numerals correspond to different
dynamic modes of the network: (I) the only stable limit cycle,
(II) bistability, and (III) the only stable state of rest. The black
dot in area (I) indicates the actual values of the parameters.
The stimulating effect of the inhibitory population is shown by

014203-7



KESTUTIS PYRAGAS et al. PHYSICAL REVIEW E 104, 014203 (2021)

FIG. 8. Two-parameter bifurcation diagram of the network with-
out stimulation in the plane (η̄I , η̄E ). As in Fig. 4, the areas marked
with Roman numerals correspond to different dynamic modes of the
network: (I) the only stable limit cycle, (II) bistability with a stable
limit cycle and a stable state of rest, and (III) the only stable state
of rest. The red asterisk marked with letters GH denotes the point of
the generalized Hopf bifurcation. The black dot in area (I) indicates
the values of the parameters used in Fig. 5. HF stimulating effect of
the inhibitory population is shown by the solid horizontal arrow. The
vertical dashed arrow shows the effect of HF stimulation of the exci-
tatory population. The cross in area (II) indicates the values of the
parameters used in Fig. 9. The double vertical arrow connecting
the cross to the square corresponds to the inhibitory pulse applied to
the excitatory population. The pulse dynamics is shown in Fig. 9(e).

the solid horizontal arrow. As a result of stimulation, the dot
showing the actual values of the parameters is shifted to the
right to region (III), where the state of rest is stable and, thus,
the oscillations are suppressed. The stimulating effect of the
excitatory population is shown by the dashed vertical arrow.
Now the dot shifts upward and remains in area (I), where the
limit cycle is the only attractor and, thus, the oscillations are
preserved.

Although HF stimulation of the excitatory population is
ineffective in suppressing network oscillations, in some cases
we can still eliminate oscillations by applying a different type
of control signal to the excitatory population. This is possible
if the network parameters are in the bistable area, and the
network is in oscillatory mode. In this case, the network can
be switched from stable periodic oscillations to a stable state
of rest by applying a single inhibitory rectangular pulse to
the excitatory population. The idea of this control algorithm
is graphically illustrated in Fig. 8. We assume that the actual
values of the parameters (η̄I , η̄E ) without stimulation are lo-
cated in the bistable area (II). They are marked with a cross.
We suppose that the network is in the oscillatory mode. We
then apply a negative rectangular pulse IE (t ) with amplitude
�IE < 0 and duration �t to the excitatory population, as
shown in Fig. 9(e). Since the parameters IE and η̄E enter into
Eq. (6b) as a sum, we can interpret this pulse as it applies
to the η̄E parameter not to IE . In Fig. 8, we demonstrate this
interpretation using the vertical double arrow connecting the
cross with the square, which shows the values of the (η̄I , η̄E )
parameters when IE = �IE . For sufficiently large pulse am-
plitude �IE , parameter values marked with a square appear

0
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FIG. 9. Elimination of network oscillations using an inhibitory
pulse applied to the excitatory population. Dynamics of variables
(a) rE (t ), (b) vE (t ), (c) rI (t ), and (d) vI (t ) obtained by solving
Eqs. (6) with the inhibitory pulse IE (t ) shown in (e). Pulse amplitude
is �IE = −0.15 and duration �t = 500 ms. The parameters except
for η̄I = −6 are the same as in Fig. 2.

in area (III), where the fixed point is the only attractor. If
the pulse duration �t is long enough, then the system will
approach the fixed point. We expect that for two different
values of the parameters marked with a cross (IE = 0) and a
square (IE = �IE ), the coordinates of fixed points in the phase
space are close to each other, so that at the end of the pulse
the state of the system will be in the basin of attraction of a
fixed point corresponding to the value IE = 0. Then, being in
the bistable area, the system will approach a stable fixed point
and remain at rest at zero stimulation current IE = 0.

In Fig. 9, we demonstrate the efficiency of this algorithm
for η̄I = −6 and other parameters such as in Fig. 2. This
set of parameters is in the bistable area (II), as shown in
Fig. 8. Figures 9(a)–9(d) show, respectively, the dynamics of
variables rE , vE , rI , and vI obtained by integrating Eqs. (6)
with inhibitory pulse IE (t ) shown in Fig. 9(e). As expected,
this pulse stops the oscillation in the network, and the network
remains at rest without further stimulation. Note that unlike
the HF current Eq. (11), the inhibitory pulse used here does
not satisfy the charge balance condition. However, this condi-
tion is not required for single-pulse stimulation.

V. MODELING MICROSCOPIC DYNAMICS

The reduced mean-field Eqs. (6) are derived in the limit
of an infinite-size network, while realistic networks consist of
a finite number of neurons. To test if the control algorithms
described above work for networks of finite size, here we
perform a direct numerical simulation of the microscopic dy-
namics described by Eqs. (1).
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Numerical simulation of Eqs. (1) is more convenient after
changing the variables

V (E ,I )
j = tan

(
θ

(E ,I )
j /2

)
(28)

that turn QIF neurons into theta neurons. Such a transforma-
tion of variables avoids the problem associated with jumps of
infinite size (from +∞ to −∞) of the membrane potential
V (E ,I )

j of the QIF neuron at the moments of firing. The phase

θ
(E ,I )
j of the theta neuron simply crosses the value of θ

(E ,I )
j =

π at these moments. For θ neurons, Eqs. (1) are transformed
into

τ θ̇
(E ,I )
j = 1 − cos

(
θ

(E ,I )
j

)
+[

1 + cos
(
θ

(E ,I )
j

)][
η

(E ,I )
j + I (E ,I )

j

]
. (29)

These equations were integrated by the Euler method with
a time step of dt = 5 × 10−4. Two populations of theta ex-
citatory and inhibitory neurons each consisting of N = 2000
units with the Lorentzian distributions Eq. (2) were determin-
istically generated using η

(E ,I )
j = η̄E ,I + �E ,I tan[(π/2)(2 j −

N − 1)/(N + 1)], j = 1, . . . , N . More information on numer-
ical modeling of Eqs. (29) can be found in Ref. [35]. To
compare the results obtained from the microscopic model
Eqs. (29) with the solutions of the reduced system Eqs. (6),
we calculate the Kuramoto order parameters [51]

ZE ,I = 1

N

N∑
j=1

exp
(
iθE ,I

j

)
(30)

for each population and use the relationship between ZE ,I and
the spiking rate rE ,I [33]:

rE ,I = 1

π
Re

(
1 − Z∗

E ,I

1 + Z∗
E ,I

)
, (31)

where Z∗
E ,I means complex conjugate of ZE ,I .

In Fig. 10, we show the results of HF stimulation of the
inhibitory population, obtained from Eqs. (29). The parameter
values are the same as in Fig. 5. Here, as in Fig. 5, HF
stimulation with an amplitude a = 30 and a frequency ν =
130 Hz is activated at t > 500 ms. We see that the dynamics
of the spiking rates of excitatory and inhibitory populations
shown in Figs. 10(a) and 10(c) are similar to those shown in
Figs. 5(a) and 5(c), respectively. Thus, the mean-field Eqs. (6)
are robust, they predict well the macroscopic dynamics of a
finite size network consisting of N = 2000 neurons in each
population. Microscopic network behavior can be seen in
Figs. 10(b) and 10(d), which show raster plots of 500 ran-
domly selected neurons in populations E and I , respectively.
Without stimulation (t < 500 ms), most neurons in excita-
tory and inhibitory populations exhibit coherent behavior and
produce macroscopic periodic oscillations. HF stimulation
(t > 500 ms) increases the number of active neurons in the
inhibitory population, which destroys the coherent spiking in
both populations, and the initially unstable incoherent resting
state is stabilized.

Figure 11 shows the effect of an inhibitory pulse applied
to the excitatory population, obtained from the microscopic
model Eqs. (29). The values of the parameters are the same
as in Fig. 9 and the pulse shape is the same as in Fig. 9(e).
Again we see that the mean-field Eqs. (6) predict well the
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FIG. 10. The effect of HF stimulation of the inhibitory popula-
tion, obtained using the microscopic model Eqs. (29). The number
of neurons in the excitatory and inhibitory populations is the same,
N = 2000. All parameters are the same as in Fig. 5, and HF stimula-
tion with the amplitude a = 30 and the frequency ν = 130 Hz is also
turned on at t = 500 ms, as in Fig. 5. (a), (c) Dynamics of the spiking
rates of the populations E and I , respectively. (b), (d) Raster plots of
500 randomly selected neurons in populations E and I , respectively.
Here, the dots show the spike moments for each neuron, where the
vertical axis indicates neuron numbers.

macroscopic dynamics of a finite size network described by
Eqs. (29). The dynamics of the spiking rates of excitatory
rE (t ) and inhibitory rI (t ) populations shown in Figs. 11(a)
and 11(c) are similar to those presented in Figs. 9(a) and
9(c), respectively. Raster plots in Figs. 11(b) and 11(d) show
the microscopic network dynamics. Before the pulse (t < 500
ms), most neurons in the excitatory and inhibitory popula-
tions behave coherently and produce macroscopic periodic
oscillations, which represent one of the two stable modes of
the network. A negative pulse with amplitude �IE = −0.15,
lasting in the interval 500 ms < t < 1000 ms, transfers the
system to an incoherent resting state, which is the only stable
state for the given values of the parameters. For t > 1000
ms, when the pulse is off, the network remains in a stable
incoherent resting state. Note the different point densities on
raster plots of populations E and I in incoherent state. This
is due to the fact that in population E , a greater proportion of
neurons generates spikes than in population I .

VI. DISCUSSION

We have analyzed the dynamics of a free and stimu-
lated network of two globally connected neural populations
consisting of excitatory and inhibitory quadratic integrate-
and-fire neurons. Interaction within and between populations
is provided by instantaneous pulses. Both populations are
heterogeneous and contain a mixture of at-rest but excitable
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FIG. 11. The effect of an inhibitory pulse applied to the exci-
tatory population, obtained from the microscopic model Eqs. (29).
The number of neurons in the excitatory and inhibitory populations
is N = 2000. All parameters are the same as in Fig. 9 and the pulse
shape is the same as in Fig. 9(e). (a), (c) Dynamics of the spiking
rates of the populations E and I , respectively. (b), (d) Raster plots of
500 randomly selected neurons in populations E and I , respectively.

neurons as well as spontaneously spiking neurons. The het-
erogeneity is determined by the Lorentzian distribution of the
excitability parameter. A model built on these assumptions
has two important advantages. First, in the limit of an infi-
nite number of neurons, an exact system of low-dimensional
mean-field equations can be obtained. Second, the mean-field
equations represent a universal macroscopic model for a large
class of neural networks, because they are derived from the
microscopic dynamics of QIF neurons, which are the normal
form of class I neurons. In contrast to phenomenological
neural mass models [52], the mean-field equations considered
here accurately reproduce the dynamics of spiking neurons for
any degree of synchronization and can be considered as next
generation neural mass models [53].

Relatively simple mean field equations make it possible to
conduct a thorough bifurcation analysis of various dynamic
modes of a free network and to reveal the mechanisms of
action of various stimulation algorithms. We performed a
bifurcation analysis of a free network depending on the cou-
pling strengths JEI and JIE of the bidirectional interaction
between excitatory and inhibitory populations and the cou-
pling strength JII , which determines the interaction within
the inhibitory population. We also built a bifurcation diagram
in the plane of the parameters (η̄I , η̄E ), which determine the
centers of the distributions of the excitability parameter for
inhibitory and excitatory populations. As a result of this analy-
sis, three different modes were established. Depending on the
values of the parameters, the system can have a single stable

fixed point, a single stable limit cycle, or be in a bistable mode
with these two coexisting attractors. All three modes occupy
rather large areas in the parameter spaces, which means that
they are robust to parameter changes in wide intervals.

As the next step in our analysis, we looked at the problem
of controlling network synchronization. Pathological synchro-
nized oscillations can be the cause of various neurological
diseases, and attempts are made to suppress them using
external stimulation. Some neurological diseases are success-
fully treated with high-frequency stimulation. Here, we tested
the effectiveness of the HF algorithm for suppressing syn-
chronous spiking in the network of excitatory and inhibitory
QIF neurons. We have shown that HF stimulation of the in-
hibitory population is very effective, whereas HF stimulation
of the excitatory population cannot suppress the oscillations.
The mechanism of action of HF stimulation is explained using
mean-field equations averaged over the stimulation period.
The averaged mean-field equations are equivalent to the free
mean-field equations, but with a modified parameter η̄I or
η̄E , depending on which inhibitory or excitatory population is
stimulated. When HF stimulation is applied to the inhibitory
population, changing the η̄I parameter increases the propor-
tion of spiking neurons in that population. This leads to the
stabilization of the state of rest of the network and the termina-
tion of oscillations. The averaged mean-field equations made
it possible to obtain an analytical expression for the thresh-
old amplitude of HF stimulation, which stabilizes the resting
state. This amplitude is proportional to the frequency of
stimulation.

HF stimulation of the excitatory population is ineffective,
since changing the η̄E parameter increases the proportion of
spiking neurons in the excitatory population and cannot sta-
bilize the resting state of the network. Nevertheless, stopping
the network oscillation by controlling the excitatory popula-
tion can still be achieved if the system parameters are in the
bistable area. By applying a rectangular inhibitory pulse to
this population, the network state can be switched from the
stable limit cycle to the stable state of rest. Such a pulse moves
the system parameters to the area where the state of rest is
the only attractor and then returns them back to the bistable
area. As a result, the system approaches the stable state of
rest, being in the bistable region, and remains in this state in
the absence of stimulation.

To test the performance of the above stimulation algo-
rithms for finite-size networks, we numerically simulated the
equations of the microscopic model. Modeling networks with
2000 excitatory and 2000 inhibitory QIF neurons gave results
that are in good agreement with the results obtained from the
mean-field equations. Based on our research, we believe that
mean-field equations derived from the microscopic dynamics
of interacting QIF neurons can serve as an effective tool for
developing various stimulation algorithms to control synchro-
nization processes in large-scale neural networks.
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