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Subharmonics and superharmonics of the weak field in a driven two-level quantum system:
Vibrational resonance enhancement
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We consider a quantum two-level system in bichromatic classical time-periodic fields, the frequency of one
of which far exceeds that of the other. Based on systematic separation of timescales and averaging over the fast
motion a reduced quantum dynamics in the form of a nonlinear forced Mathieu equation is derived to identify the
stable oscillatory resonance zones intercepted by unstable zones in the frequency-amplitude plot. We show how
this forcing of the dressed two-level system may generate the subharmonics and superharmonics of the weak
field in the stable region, which can be amplified by optimization of the strength of the high frequency field. We
have carried out detailed numerical simulations of the driven quantum dynamics to corroborate the theoretical
analysis.
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I. INTRODUCTION

The dynamic response of a nonlinear system to one or more
deterministic or stochastic driving fields is often characterized
by resonances when one of the system parameters is varied.
A typical such resonance phenomenon was discovered in the
early 1980s of the past century when the response of a bistable
system to a weak signal field was shown to be amplified by
varying the strength of the noise applied on the system
[1]. This noise-induced effect, the stochastic resonance
[2–5], and several of its variants, e.g., resonant activation
[6–8], coherence resonance [9,10], noise-induced transition
of stability [11,12], and noise-induced pattern formation
and wave propagation [13–16] have significantly modified
our understanding of the counterintuitive, constructive
positive role of noise in a wide variety of phenomena
associated with climate change [1], bistable circuits
[3], lasers [4], chemical reactions [17], synchronization
[18], and information processing [19] to name a few. An
interesting deterministic variant of stochastic resonance is
vibrational resonance, discovered in early 2000 by Landa and
McClintock [20] in a numerical exploration of a bistable
system where the noise was replaced by a high-frequency
time-varying field. This was followed further by theoretical
[21–24] and experimental [25–28] investigations and a
plethora of new development that includes entropic [29],
logical [30], anti- [31] and ghost [32], nonlinear [27,33,34]
vibrational resonance and vibrational ratchet [35] along
with experimental applications in material processing, image
processing, fault detection, logic gate operations, and energy
harvesting. We refer to [36] for a state-of-the-art review of this
field.

The overwhelming majority of the studies on vibrational
resonance concern classical nonlinear dynamical systems
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in which two periodic fields are simultaneously applied as
additive forcing [20–24]. The frequency of the fast time-
varying field far exceeds that of the other. Vibrational
resonance is observed by examining the response of the
system to the weak field by optimizing the strength of
the high frequency field. However, when one of the fields
appears as a multiplicative forcing, one encounters a para-
metrically driven forced system. Nonlinear resonances [37]
in these systems are often accompanied by instability and
multistability. Our focus in this paper is to explore this
nonlinear resonance-induced instability and oscillations in
a quantum system [38,39]. In what follows, we consider
a two-level quantum system driven by bichromatic fields
described by lossless Bloch equations [40–42] which gov-
ern the dynamics of quantum mechanical average values
of three Pauli spin operators, with two representing the
polarization variables while the third one refers to the pop-
ulation inversion variable. Bloch equations have been widely
employed in quantum optics and magnetic resonance spec-
troscopy and a wide variety of solutions [43–46] have been
known over nearly half a century. In the present context
of Bloch equations, we show that the use of normalization
of quantum probability and averaging over the fast motion
results in an effective quantum dynamics of the dressed
two-level system in the form of a forced nonlinear Math-
ieu equation [47–49]. The object of the present paper is
(i) to explore the subharmonic and superharmonic reso-
nant response of the dressed two-level system to the weak
periodic field, (ii) to understand the resonance zones and
oscillations intercepted by instability zones inside Arnold’s
tongue in the weak field amplitude-frequency plot, and (iii)
to probe how these subharmonic and superharmonic re-
sponses can be enhanced by optimization of the strength
and frequency of the fast time-varying field. We use a
multiple timescale perturbation method for removing the
secular divergences arising out of the resonance condition
and figure out the regular oscillatory domain and instability
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zones in the parametric space. Our theoretical analysis is
corroborated by full numerical simulation of the Bloch
dynamics.

The rest of the paper is organized as follows. In
Sec. II, we introduce the Bloch equations describing the
dynamics of a two-level system driven by two classi-
cal time-periodic fields with widely differing frequencies.
The equations are cast into a form to allow implemen-
tation of the methods of multiple timescales to arrive
at a nonlinear forced Mathieu equation. The perturba-
tive theory is used to derive the solvability condition for
each of the resonance cases, which allows us to figure
out the stability zones in the amplitude-frequency plot in
Sec. III. In Sec. IV, we perform numerical simulation of
Bloch equations for sub- and superharmonic resonance cor-
responding to our analytical scheme to demonstrate the
resonance oscillations and instability zones and vibrational
enhancement of resonance. The paper is concluded in
Sec. V.

II. BLOCH EQUATIONS FOR A TWO-LEVEL QUANTUM
SYSTEM DRIVEN BY TWO CLASSICAL FIELDS

A. General considerations

We consider a quantum two-level system interacting with
bichromatic classical electromagnetic fields c cos(ωt ) and
G cos(�t ), where c and G are the amplitudes and ω and �

represent the frequencies of the two fields, respectively. We
use Bloch equations [42] to study the dynamics of the system
as follows:

ẋ = −ω0y(t ), (2.1)

ẏ = ω0x(t ) + χ f (t )z(t ), (2.2)

ż = −χ f (t )y(t ), (2.3)

where x, y, and z represent the quantum mechanical mean
values of the corresponding Pauli spin operators; x and y
are the polarization variables and z denotes to the population
difference between the two levels. χ refers to the scaled tran-
sition dipole moment for the two levels, defined as χ = 2d/h̄;
h̄ is the reduced Planck constant (defined as h/2π ). Here the
term f (t ) is given as follows:

f (t ) = f0 + c cos(ωt ) + g cos(�t ), (2.4)

where f0 is a constant field and the system is perturbed si-
multaneously by a high frequency field (g cos �t), as well
as by a low frequency field (c cos ωt), such that � � ω.
Further, we assume that the Bloch equations, as mentioned
above in Eqs. (2.1)–(2.3), are lossless, i.e., the charac-
teristic times for spin-spin and spin-lattice relaxation are
too long compared to other timescales of the dynamics.
Also, the length of the Bloch vector in Eqs. (2.1)–(2.3) is
conserved, i.e.,

x2 + y2 + z2 = 1. (2.5)

From Eq. (2.5), it follows that the total quantum probability
is conserved for the dynamics even though the energy is not.

Thus x, y, and z are less than or equal to unity. We further as-
sume that the excitation is not too hard for our case [(g/�) <

1]. The above consideration shows that, up to a leading order,
z can be approximated as z � 1 − x2+y2

2 . This helps us to
decouple z from the Bloch equations (2.1)–(2.3). The constant
of motion as expressed in Eq. (2.5) permits us to reduce the
dimension of the phase space from three to two. Although
replacing z in Eqs. (2.1)–(2.3) as above is an approximation,
the error involved can be estimated by keeping track of the
small difference [1 − (x2 + y2 + z2)] for this conservative dy-
namics. To keep this difference small [50], we need to restrict
the parameter space such that |Xs| � 1, where |Xs| is given by
the expression (2.12). We have carried out the numerical sim-
ulations of Bloch equations (as done in Sec. IV) by taking into
consideration these constraints on the parameter space to keep
the error less than 0.1% . The nonlinear contributions which
are mainly responsible for symmetry breaking in the effective
quantum dynamics can thus be taken into account. Finally, we
mention that the lossless Bloch equations under consideration
are free from the rotating wave approximation, commonly
adopted for the majority of the treatments on atom-field
dynamics.

We now introduce three parameters, which denote the
strength of the atom-field interaction in terms of the ampli-
tudes f0, c, and g in frequency units as follows:

χ f0 = �0, χc = ωc, χg = G. (2.6)

Thus the dynamics can be controlled by four parame-
ters, ω0, �0, ωc, and G, where �0, ωc, and G denote
the Rabi frequencies which originate from the interaction
between the two-level system and the three field compo-
nents of f (t ). We also note that Eqs. (2.1)–(2.3) are linear
and the forcing term f (t ) is multiplicative rather than ad-
ditive, unlike the usual treatments of classical vibrational
resonance.

B. Separation of the timescales and the slow dynamics

Let us proceed further with the Bloch equations (2.1)–
(2.3). We differentiate Eq. (2.1) and use the normalization
condition as mentioned in Eq. (2.5). A simple algebraic ma-
nipulation and elimination of z yields

ẍ + ω2
0x = F (t )

[
ω0

2
x2 + 1

2ω0
ẋ2 − ω0

]
, (2.7)

where F (t ) = [�0 + ωc cos(ωt ) + G cos(�t )]. As mentioned
earlier, we must note that, even though the Bloch equations
(2.1)–(2.3) are linear with three phase space variables, the
reduction of the phase space dimension to two by using nor-
malization condition Eq. (2.5) makes the dynamics nonlinear.
Furthermore, we introduce two distinct timescales since � �
ω so that the dynamics becomes amenable to the theoretical
scheme of vibrational resonance. Let us now proceed in the
usual way [23,24,28,50] to split the variable x into a slow part
X (t, ωt ) and a fast part ψ (t,�t ), such that x(t ) = X (t, ωt ) +
ψ (t,�t ). Averaging over the fast component, we find
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the slow dynamics as follows:

Ẍ + ω2
0X = −ω0�0 − ω0ωc cos(ωt ) + ω0G

2
[X 2〈cos(�t )〉 + 2X 〈ψ cos(�t )〉]

+ ω0�0

2
[X 2 + 2X 〈ψ〉] + ω0ωc cos(ωt )

2
[X 2 + 〈ψ2〉 + 2X 〈ψ〉] + �0

2ω0
[Ẋ 2 + 2Ẋ 〈ψ̇〉]

+ ωc cos(ωt )

2ω0
[Ẋ 2 + 2〈Ẋ ψ̇〉 + 〈ψ̇2〉] + G

2ω0
[Ẋ 2〈cos(�t )〉 + 2Ẋ 〈ψ̇ cos(�t )〉]. (2.8)

Similarly, the fast dynamics can be written as

ψ̈ + ω2
0ψ = −ω0G cos(�t ) + ω0ωc cos(ωt )

2
[ψ2 − 〈ψ2〉 + 2X (ψ − 〈ψ〉)]

+ ω0�0

2
[ψ2 + 2X (ψ − 〈ψ〉)] + �0

2ω0
[ψ̇2 + 2Ẋ (ψ̇ − 〈ψ̇〉)]

+ ω0G

2
[ψ2 cos(�t ) + X 2{cos(�t ) − 〈cos(�t )〉} + 2X {ψ cos(�t ) − 〈ψ cos(�t )〉}]

+ G

2ω0
[ψ̇2 cos(�t ) + Ẋ 2{cos(�t ) − 〈cos(�t )〉} + 2Ẋ {ψ̇ cos(�t ) − 〈ψ̇ cos(�t )〉}]

+ ωc cos(ωt )

2ω0
[{ψ̇2 − 〈ψ̇2〉} + 2Ẋ {ψ̇ − 〈ψ̇}]. (2.9)

We ignore the nonlinear contributions in Eq. (2.9) and assume ψ̈ � ψ, ψ̇, ψ2, ψ3. Thus its solution is given by

ψ = ω0G

�2
cos(�t ). (2.10)

Correspondingly, we obtain 〈ψ〉 = 〈ψ̇〉 = 0, 〈ψ2〉 = ω2
0G2

2�2 , and 〈ψ cos(�t )〉 = ω0G
2�

. Substitution of the averages in Eq. (2.8) and
on simplification, we obtain the slow dynamics as follows:

Ẍ +
[
ω2

0 − ω2
0G2

2�2

]
X −

[
ω0�0

2
+ ω0ωc

2
cos(ωt )

]
X 2 −

[
�0

2ω0
+ ωc

2ω0
cos(ωt )

]
Ẋ 2

= −ω0�0 − ω0ωc cos(ωt ) + ω0ωc

4

{
ω2

0G2

�4
+ G2

�2

}
cos(ωt ). (2.11)

We now locate the steady state Xs of the dynamics by setting Ẋ = Ẍ = 0, where

Xs = 1

2�0

⎧⎨
⎩

[
2ω0 − ω0G2

�2

]
±

√[
2ω0 − ω0G2

�2

]2

+ 8�2
0

⎫⎬
⎭. (2.12)

We must take care that |Xs| � 1 to validate the normalization condition. On perturbation Y (Y = X − Xs) about the steady state,
the evolution of slow dynamics takes the following form:

Ÿ +
[
ω2

0 − ω2
0G2

2�2
− ω0�0Xs − ω0ωc cos ωt

]
Y −

[
ω0�0

2
+ ω0ωc

2
cos ωt

]
Y 2 −

[
�0

2ω0
+ ωc

2ω0
cos ωt

]
Ẏ 2

= ωcω0

4

[
ω2

0G2

�4
+ G2

�2
− 4 + 2X 2

s

]
cos ωt . (2.13)

This equation describes the slow Bloch dynamics of a (high frequency) field-dressed two-level system driven by a weak field
and forms the basis of the rest of the treatment.

C. Perturbative analysis of the super- and subharmonic resonances: Stable and unstable zones

For convenience, we now rewrite the above equation as follows:

q̈ + [
ω2

1 − εγ cos ωpt
]
q − ε[α1 + α2 cos ωpt]q2 − ε[α3 + α4 cos ωpt]q̇2 = F cos ωpt, (2.14)

with the following abbreviations:

ω2
1 = [

ω2
0 − ω2

0G2

2�2
− ω0�0Xs

]
, F = ωcω0

4

[
ω2

0G2

�4
+ G2

�2
− 4 + 2X 2

s

]
,

ε = ωc

G
, γ = ω0G, α1 = ω0�0G

2ωc
, α2 = ω0G

2
, α3 = �0G

2ω0ωc
, α4 = G

2ω0
, q = Y, ωp = ω.
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A comment on the smallness parameter ε, as introduced
above, is pertinent. This factor is dimensionless and is used
for bookkeeping in perturbative analysis particularly, to arrive
at the solvability condition for removing secular divergence
for each of the resonance cases. These conditions are inde-
pendent of ε so that the amplitude-frequency profile (Arnold
tongue) can be safely drawn for fixed values of G by keeping a
check on the constraints on the parameter space as dictated by
|Xs| � 1. This consideration is well vindicated by numerical
simulations as discussed in Sec. IV.

Equation (2.14) is the central result of Sec. II on the basis
of which we consider various resonances in the dynamics.
This equation [47,48] can be identified as a forced nonlinear
Mathieu equation, where parametric driving appears not only
in the linear term but also in the nonlinear coefficients. The
parametric excitations and the additive forcing are in the same
phase. As the high frequency field has been averaged over, the
dynamics is controlled by the weak field.

We first consider the linear dynamics. Equation (2.14) then
reduces to

q̈ + [
ω2

1 − εγ cos ωpt
]
q = F cos ωpt, (2.15)

which is a forced linear Mathieu equation. We shall return to it
for further analysis in the next section. For the time being, we
first note ε (the ratio of the strength of the low-frequency field
to that for the high frequency field) � 1 and move on with all
the nonlinear terms to proceed for deriving the perturbative
equations order by order in ε in a general form.

By using the method of multiple scales [47] (MMS), we
now search for the approximate solutions of Eq. (2.14). The

existence of various subharmonic and superharmonic reso-
nances can be explored from this analysis. We wish to unravel
these resonances systematically. The method of multiple scal-
ing takes care of two timescales, a fast and a slow one, and
correspondingly the variations in amplitude. Using MMS, we
introduce fast and slow timescales T0 and T1, respectively.
Thus we have a dominant solution q0 (zeroth order) and a
perturbed solution q1 (first order), in such a way that

q = q0(T0, T1) + εq1(T0, T1).

On substitution in Eq. (2.14), we have[
D2

0q0 + ω2
1q0

] + ε
[
D2

0q1 + ω2
1q1 + 2D0D1q0

−γ q0 cos ωpt
] − ε[α1 + α2 cos ωpt]q2

0

− ε[α3 + α4 cos ωpt]q̇0
2 = F cos ωpt, (2.16)

where the following notations have been used: Ti = εiT0, d
dt =

D0 + εD1, and Di = d
dTi

. We now compare the coefficients of
the different powers of ε from both sides of Eq. (2.16). Thus,
for the zeroth order (i.e., for ε0), we obtain

D2
0q0 + ω2

1q0 = F cos ωpT0. (2.17)

Its solution can be written down as

q0 = A eiω1T0 + λ e−iωpT0 + A e−iω1T0 + λ eiωpT0 , (2.18)

where λ = F
2(ω2

p−ω2
1 )

and the overbar denotes the complex con-

jugate. Similarly, for the first order of ε, we find

D2
0q1 + ω2

1q1 = −2D0D1q0 + γ q0 cos ωpt − α1q2
0 − α2q2

0 cos ωpt − α3q̇0
2 − α4q̇0

2 cos ωpt . (2.19)

We substitute the solution for q0 from Eq. (2.18) and expand the terms on the right hand side of Eq. (2.19). Our aim is to
get rid of the coefficients of eiω1T0 which constitute the secular terms and make the solutions unbounded. Thus the solvability
condition can be established by equating the coefficients of eiω1T0 terms to zero.

To proceed further, we expose the right hand side of Eq. (2.19) by substituting q0 from Eq. (2.18) in it. This yields

D2
0q1 + ω2

1q1 = − 2D0D1q0 + γ q0 cos ωpt − α1q2
0 − α2q2

0 cos ωpt − α3q̇0
2 − α4q̇0

2 cos ωpt

= − iω1[2A′eiω1T0 − 2A′e−iω1T0 ] + γ

2
[A ei(ωp+ω1 )T0 + A e−i(ωp−ω1 )T0

+ λ + λ e−2iωpT0 + A ei(ωp−ω1 )T0 + A e−i(ωp+ω1 )T0 + λ e2iωpT0 + λ]

− α1[A2e2iω1T0 + λ2e−2iωpT0 + A
2
e−2iω1T0 + λ2e2iωpT0 + 2Aλ e−i(ωp−ω1 )T0

+ 2Aλ e−i(ωp+ω1 )T0 + 2AA + 2Aλ ei(ωp+ω1 )T0 + 2λ2 + 2Aλ ei(ωp−ω1 )T0 ]

− α2

2
[A2ei(ωp+2ω1 )T0 + A2e−i(ωp−2ω1 )T0 + λ2e−iωpT0 + λ2e−3iωpT0

+ A
2
e−i(ωp+2ω1 )T0 + λ2e3iωpT0 + λ2eiωpT0 + 2Aλ eiω1T0

+ 2Aλ e−i(2ωp−ω1 )T0 + 2Aλ e−iωpT0 + 2Aλ ei(2ωp+ω1 )T0 + 2Aλ eiω1T0

+ 2λ2eiωpT0 + 2λ2e−iωpT0 + 2Aλ ei(2ωp−ω1 )T0 + 2Aλ e−iω1T0 ]

+ α3
[
ω2

1A2e2iω1T0 + ω2
1A

2
e−2iω1T0 − 2ω2

1AA + λ2ω2
pe2iωpT0 + λ2ω2

pe−2iωpT0 − 2λ2ω2
p
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+ 2ω1ωpλ{A ei(ωp+ω1 )T0 − A ei(ωp−ω1 )T0 − A e−i(ωp−ω1 )T0 + A e−i(ωp+ω1 )T0}]
+ α4

2

[
ω2

1A2ei(ωp+2ω1 )T0 + ω2
1A2e−i(ωp−2ω1 )T0 + ω2

1A
2
ei(ωp−2ω1 )T0 + ω2

1A
2
e−i(ωp+2ω1 )T0

+ 2ω1ωpλ{A ei(2ωp+ω1 )T0 − A ei(2ωp−ω1 )T0 − A e−i(2ωp−ω1 )T0 + A e−i(2ωp+ω1 )T0}
− 2ω2

1AA eiωpT0 − 2ω2
1AA e−iωpT0 + λ2ω2

pe3iωpT0 − λ2ω2
peiωpT0 − λ2ω2

pe−iωpT0 + λ2ω2
pe−3iωpT0

]
. (2.20)

Here, the primes (′) in A and A refer to differentiation with
respect to slow time T1. The above equation is the master
equation for analyzing various resonances arising out of the
driven dynamics. Since the high frequency field has already
been averaged out and its effect is contained in the coefficients
through its amplitude (G) and frequency (�), it is apparent
that depending on the frequency of the weak driving field
ωp and the dressed frequency of the two-level system, ω1,
the conditions for various superharmonic and subharmonic
vibrational resonances can be worked out. In what follows in
the next section, we analyze several such cases in detail.

III. VIBRATIONAL SUPER- AND SUBHARMONICS
OF THE WEAK FIELD

A. Linear theory

In this section, we consider the dynamics governed by the
linear terms of Eq. (2.14), i.e., Eq. (2.15), the linear forced
Mathieu equation. We explore two types of resonances. The
first one is the 1:2 superharmonic resonance, i.e., when the
pumping frequency (ωp) is around half that of the frequency of
oscillation (ω1) of the dressed two-level system. And the sec-
ond one is the 2:1 subharmonic resonance, where the pumping
frequency (ωp) is twice that of the frequency of oscillation
(ω1). Our analysis is done separately for the two cases as
follows.

1. Superharmonic resonance

As mentioned earlier, the pumping frequency (ωp) is
around half of the frequency of oscillation (ω1); we consider
2ωp � ω1 or

2ωp = ω1 + εσ, (3.1)

where σ is the detuning parameter and ε refers to the
smallness parameter. The first two terms of Eq. (2.20) will
contribute to the secular terms. Thus the coefficients of the
term eiω1T0 for this particular case are −iω1(2A′) + γ λ

2 eiσT1 .
These secular terms must vanish for removal of the diver-
gence. Hence the solvability condition can be obtained as
follows:

iω1(2A′) − γ λ

2
eiσT1 = 0. (3.2)

Let us seek a trial solution of the form A = 1
2 a eiη and φ =

σT1 − η. Substituting in Eq. (3.2), we obtain

i

[
ω1a′ − γ λ

2
sin φ

]
+

[
ω1a(φ′ − σ ) − γ λ

2
cos φ

]
= 0.

(3.3)

Comparing the real and imaginary parts, we have

ω1a′ = γ λ

2
sin φ,

ω1a(φ′ − σ ) = γ λ

2
cos φ. (3.4)

For the steady state, we must set a′ = φ′ = 0. Thus, from Eq.
(3.4), we easily obtain σ as σ = ± γ λ

4ωpa . From Eq. (3.1), we
find

ω1 = 2ωp ∓ ε

(
γ λ

4ωpa

)
. (3.5)

The amplitude a can be determined approximately as fol-
lows. Identifying A as the amplitude of the undriven oscillator
[Eq. (2.18)], its zeroth order contribution can be obtained from
the energy E = 1

2ω2
1a2 and, setting it equal to the energy of the

two-level atom h̄ω0 (h̄ = 1), we obtain a = √
2/ω0 (assuming

ω0 ∼ ω1). Finally, in terms of our original system parameters,
ω0, ωp, ωc, �, and G, Eq. (3.5) can be expressed as follows:

[
ω2

0 − ω2
0G2

2�2
− ω0�0Xs

]1/2

= 2ωp ∓ ωc

{
ω

3/2
0

8
√

2ωp

F(
ω2

p − ω2
1

)
}

. (3.6)

A closer look at the above equation and the expression
for Xs reveals that the occurrence of ω0 on both sides of
the algebraic equation makes the direct plot of the tran-
sition curves in the ω0 − ωc plane difficult. We therefore
fix the parameter values in Eq. (3.6) as ωp = 1.0, � =
10.0 and for G = 3.0 to determine ω0 and ωc using the
Newton-Raphson technique. We follow the same procedure
for plotting the transition curves for other resonances as well.
The V -shaped Arnold tongue depicting the stability zones
under the 1:2 superharmonic resonance condition is shown in
Fig. 1. Two transition curves emanate from the point (ω1[=
ω0(1 − ω2

0G2

2�2 − ω0�0Xs)1/2], ωc = 0) on the ω0 axis and de-
fine a region (II) of instability in between the two curves.
Inside this region q grows exponentially for small values of
ε (i.e., ωc). Outside this tongue region q is the sum of terms,
each of which is a product of two periodic functions. This
implies that in these regions (I and III) we expect sustained
sinusoidal oscillations under the superharmonic resonance
(ω1 � 2ωp) condition. We verify these theoretical predictions
on the nature of the stability regions in the next section us-
ing detailed numerical simulations of the Bloch equations
described by Eqs. (2.1)–(2.4) for several points marked in the
stable and unstable regions in Fig. 1.
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FIG. 1. V -shaped transition curves separating out the stability
zones for G = 3 on the ωc − ω0 plane for ωp = 1.0, � = 10.0 cal-
culated theoretically [Eq. (3.6)] for a 1:2 superharmonic resonance
condition. The region II lying inside a V-shaped curve is unstable,
while the outside regions (I and III) are stable. The points marked in
the stable and unstable regions are chosen for numerical simulation
of the dynamics (units arbitrary).

2. Subharmonic resonance

In this case, the pumping frequency (ωp) is twice the fre-
quency of oscillation (ω1); i.e., ωp � 2ω1. Thus we consider

ωp = 2ω1 + εσ, (3.7)

with σ and ε being the detuning parameter and the smallness
parameter, respectively. Once again, the first two terms of
Eq. (2.20) will contribute to the secular terms. Proceeding
in the same way as in the previous case, and setting the
coefficients of the secular terms equal to zero, we obtain the
following solvability condition:[

iω1(2A′) − γ A

2
eiσT1

]
= 0. (3.8)

The trial solution of the form A = 1
2 a eiη with φ = σT1 − 2η,

in Eq. (3.8), yields

i
[
ω1a′ − γ A

4
sin φ

]
+

[ω1a

2
(φ′ − σ ) − γ A

4
cos φ

]
= 0.

(3.9)

Comparing the real and imaginary parts, we obtain as before

ω1a′ = γ A

4
sin φ, ω1a(φ′ − σ ) = γ A

4
cos φ. (3.10)

From here, we find σ as σ = ± γ

ωp
, by setting a′ = φ′ = 0, for

the steady state condition. Use of Eq. (3.7) leads us to ω1 =
(ωp/2) ∓ ε(γ /2ωp). We write down this expression, in terms
of the original system parameters, as follows:[

ω2
0 − ω2

0G2

2�2
− ω0�0Xs

]1/2

= ωp

2
∓ ωc

(
ω0

2ωp

)
. (3.11)

The transition curves are plotted in Fig. 2 on the ω0 − ωc

plane for the parameter values ωp = 1.0 and � = 10.0 for

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
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1.0

III

II

(0.6, 0.4)

(0.4, 0.7)

(0.6, 0.2)

�
c

�0

(0.4, 0.2)

I

FIG. 2. Same as in Fig. 1, but calculated theoretically
[Eq. (3.11)] for a 2:1 subharmonic resonance condition.

G = 3.0. The instability region II appears inside the tongue
along with the stable oscillatory regions I and III under sub-
harmonic resonance condition ω1 = ωp/2.

B. Inclusion of nonlinearity

We now move on to the next part, where all the nonlin-
ear terms in Eq. (2.20) have been taken into consideration.
Inclusion of nonlinearity enables us to explore some new
cases of super- and subharmonic resonances, which could not
be realized in the linear case. For instance, we explore here
two more situations, namely, 1:3 superharmonic resonance,
where the pumping frequency (ωp) is close to one-third of
the frequency of oscillation (ω1), and the 3:1 subharmonic
resonance, where the pumping frequency ωp is about three
times that of the frequency of oscillation ω1. In the following
we discuss these two cases in detail.

1. Superharmonic resonance

The pumping frequency (ωp) being around one-third of the
frequency of oscillation (ω1 � 3ωp) we consider

3ωp = ω1 + εσ. (3.12)

From Eq. (2.20), we find the coefficients of the term eiω1T0 .
Since the coefficients of the secular terms must vanish, we
have the following solvability condition:

[iω1(2A′) + 2α2Aλ + α6eiσT1 ] = 0, (3.13)

where α6 = λ2

2 (α2 − α4ω
2
p). Again assuming the trial solution

A = 1
2 a eiη with φ = σT1 − η for Eq. (3.13), we find

i[ω1a′ + α6 sin φ] + [ω1a(φ′ − σ ) + α2λa + α6 cos φ] = 0.

(3.14)

We compare the real and imaginary parts of the last equation
and set the condition for steady states a′ = φ′ = 0 to obtain
σ = α2λ

3ωp
± α6

3ωpa . Substitution of σ in Eq. (3.12) results in

ω1 = 3ωp − ωc

[
λω0

6ωp
± λ2

12ωpω0a

(
ω2

0 − ω2
p

)]
. (3.15)
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FIG. 3. V -shaped transition curve separating out the stability
zones for G = 3 on the ωc − ω0 plane for ωp = 1.0, � = 10.0, cal-
culated theoretically [Eq. (3.16)] for 1:3 superharmonic resonance.
The regions (I and III) outside a V-shaped curve are stable, while
the region inside it (region II) is unstable. The points marked in the
stable and unstable regions are chosen for numerical simulation of
the dynamics (units arbitrary).

Finally, expressing Eq. (3.15) in terms of the original system
parameters, we rewrite

[
ω2

0 − ω2
0G2

2�2
− ω0�0Xs

]1/2

= 3ωp − ωc

[
λω0

6ωp
± λ2

12ωpω0a

(
ω2

0 − ω2
p

)]
. (3.16)

The results on the transition curves for ωp = 1.0, � =
10.0, and G = 3.0 are depicted in Fig. 3 for the superharmonic
resonance condition ω1 � 3ωp. It is interesting to note that,
unlike the linear case, the transition curves here are tilted
towards the right and the instability zone II inside the tongue
region is narrowed down as a result of nonlinearity. The avail-
able regions for sustained superharmonic oscillations (regions
I and III) appear to be wider. Finally, one may check that in
the absence of nonlinearity this 1:3 superharmonic oscillation
cannot be realized.

2. Subharmonic resonance

Finally we consider the case where the pumping frequency
is around three times the frequency of oscillation, i.e., ω1 �
ωp/3. Thus we write

ωp = 3ω1 + εσ. (3.17)

Once again, from Eq. (2.20), we find the coefficients of the
secular term eiω1T0 and set them to zero for finite solutions.
We find the solvability condition as

[iω1(2A′) + 2α2Aλ + 4α8A
2
eiσT1 ] = 0, (3.18)

where α8 = 1
8 (α2 − α4ω

2
1 ). Assuming again the following

form A = 1
2 a eiη with φ = σT1 − 3η and substituting in
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(0.29, 0.2)

IIII

II

FIG. 4. Same as in Fig. 1, but calculated theoretically
[Eq. (3.21)] for 3:1 subharmonic resonance.

Eq. (3.18), we arrive at the following equation:

i[ω1a′ + α8a2 sin φ]

+
[ω1a

3
(φ′ − σ ) + α2λa + α8a2 cos φ

]
= 0. (3.19)

Comparing the real and imaginary parts in the steady state, we
find σ = 9

ωp
(α2λ ± α8a). Inclusion of σ in Eq. (3.17) results

in

ω1 = ωp

3
− 3ωc

ωp

[
ω0λ

2
± a

144ω0

(
9ω2

0 − ω2
p

)]
. (3.20)

Finally, we express the above relation in terms of the original
system parameters:[

ω2
0 − ω2

0G2

2�2
− ω0�0Xs

]1/2

= ωp

3
− 3ωc

ωp

[
ω0λ

2
± a

144ω0

(
9ω2

0 − ω2
p

)]
. (3.21)

Equation (3.21) is now used to draw the transition curves
in the ω0 − ωc plane for the 3:1 subharmonic case in Fig. 4
for the set of parameters ωp = 1.0, � = 10.0, and G = 3.0.
Here, the transition curves tilt towards the left. The instability
region inside the tongue appears to be narrow. The nature of
the stability patterns for the regions I and III in Fig. 4 clearly
follows those for Fig. 3 as the effect of nonlinearity is very
much pronounced.

IV. NUMERICAL SIMULATIONS OF SUPER- AND
SUBHARMONIC VIBRATIONAL RESONANCES

A. Resonance oscillations and instability zones

Our theoretical analysis of the Bloch equations for a two-
level system in bichromatic fields is based on the method of
multiple timescales and averaging over the fast motion. We
have shown that it is possible to identify the different stability
regimes in the ω0 − ωc plane for several superharmonic and
subharmonic resonance cases. While in the stable region one
is expected to observe sustained sinusoidal oscillations at the
sub- or superharmonic frequency of the applied low frequency
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field, the unstable regions are characterized by exponential
divergence. This result is a consequence of the linear stability
analysis. In actual practice, however, nonlinearity affects the
dynamics in the following way. As the amplitude of motion
increases due to resonance, the dependence of frequency on
the amplitude causes the resonance to detune as a result of
which the tendency of large amplitude motion is decreased.
The exponential divergence in the unstable regime also gets
smoothed out due to nonlinearity. As a result we expect com-
plex multimode oscillatory dynamics but still bounded in this
regime.

In this section we have carried out detailed numerical sim-
ulations of Eqs. (2.1)–(2.4) using the Runge-Kutta method
for the set of parameters satisfying the condition |Xs| � 1,
where Xs is given by Eq. (2.12) to corroborate our theoretical
findings. To this end, we choose the parameter set ωp = 1.0
and � = 10.0 and G = 3.0 as used for illustrating the theo-
retical transition curves in Figs. 1–4. Furthermore, we choose
the step size h = 0.001 for numerical integration. Each of the
resonance cases are explored as follows.

1. Superharmonic resonance

We return to Fig. 1 and select out several representative
points in the distinct stability regions bounded by the V-
shaped transition curves in the ω0 − ωc plane. We begin by
choosing a point (ω0 = 1.95, ωc = 0.1) from the stable region
I, i.e., from the left side of the tongue, and observe sustained
periodic oscillations of x(t ) with a time period which is half
that of the weak driving field cos ωpt . The waveform as a
function of time is shown in Fig. 5(b). We have also chosen
another point (ω0 = 2.1, ωc = 0.1) from the right side of the
tongue in the stable region III to show the sustained periodic
oscillation with the same time period [Fig. 5(c)]. For a com-
parison of the time period of oscillations we have also plotted
the oscillation of the weak driving field with frequency ωp

in Fig. 5(a). Moving on to the unstable region (II) inside the
tongue, we choose two different points at (ω0 = 1.95, ωc =
0.8) and (ω0 = 2.1, ωc = 0.7). It is evident that the dynamics
is characterized by irregular complex multimode oscillations.
The results are shown in Figs. 5(d) and 5(e), respectively. The
parametric resonance oscillation can therefore be judiciously
controlled by identifying the appropriate stability zones with
the help of secular perturbative analysis of the high frequency
field-dressed dynamical system.

2. Subharmonic resonance

To explore the dynamics under this resonance condition,
we select the representative points in the ω0 − ωc plane of
Fig. 2 for the stable regimes I on the left of the transition
curves (ω0 = 0.4, ωc = 0.2) and III on the right of the tran-
sition curves (ω0 = 0.6, ωc = 0.2) for numerical simulations.
The results are shown in Figs. 6(b) and 6(c). The periodic os-
cillations at a frequency half that for the applied low frequency
field ωp are observed. For the selected points (ω0 = 0.4, ωc =
0.7) and (ω0 = 0.6, ωc = 0.4) in the unstable regime inside
the tongue, we observe irregular multimode oscillations as
shown in Figs. 6(d) and 6(e), as predicted from our theoretical
analysis.
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(b)

cos(�pt)

FIG. 5. Numerically simulated [Eqs. (2.1)–(2.4)] time series for
a 1:2 superharmonic vibrational resonance for G = 3 for the points
lying on the stable (I and III) and unstable regions (II) in the ω0 − ωc

plane of Fig. 1, for ωp = 1.0, � = 10.0. (a) Oscillation of the ap-
plied weak periodic drive cos ωpt drawn for comparison of the time
periods. (b) Resonance oscillation with time period 1/2 of the period
of the weak driving field for the point (ω0 = 1.95, ωc = 0.1) in the
stable region I of Fig. 1. (c) Resonance oscillation with time period
1/2 of the period of the weak driving field for the point (ω0 = 2.1,
ωc = 0.1) in the stable region III of Fig. 1. (d) Irregular multimode
oscillations corresponding to the point (ω0 = 1.95, ωc = 0.8) in the
unstable region II of Fig. 1. (e) Irregular multimode oscillations cor-
responding to the point (ω0 = 2.1, ωc = 0.7) in the unstable region
II of Fig. 1 (units arbitrary).

3. Superharmonic resonance

We now discuss this case with reference to ω0 − ωc tran-
sition curves and stability zones as depicted in Fig. 3 on
the basis of our theoretical analysis which takes care of the
leading order nonlinearity. It follows that the instability zones
inside the tongues are narrowed down as compared to earlier
cases and the tongue gets tilted. Increased availability of the
stable zones allows us to choose the representative points
over a wide range for parametric superharmonic resonance
oscillations. We select the points (ω0 = 3.05, ωc = 0.2) and
(ω0 = 3.14, ωc = 0.2) in the stable regimes in Fig. 3 of the
transition curves for numerical simulations. The time series
for 1:3 superharmonic resonance oscillations are displayed
in Figs. 7(b) and 7(c), respectively. The chosen point (ω0 =
3.14, ωc = 0.92) belongs to the unstable region inside the
tongue for which Fig. 7(d) depicts the complex multimode
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FIG. 6. Numerically simulated [Eqs. (2.1)–(2.4)] time series for
a 2:1 subharmonic vibrational resonance for G = 3 for the points
lying on the stable (I and III) and unstable (II) regions in the ω0 − ωc

plane of Fig. 2, for ωp = 1.0, � = 10.0. (a) Oscillation of the ap-
plied weak periodic drive cos ωpt drawn for comparison of the time
periods. (b) Resonance oscillation with a time period double that
of the weak driving field for the point (ω0 = 0.4, ωc = 0.2) in the
stable region I of Fig. 2. (c) Resonance oscillation with a time period
almost double that of the weak driving field for the point (ω0 = 0.6,
ωc = 0.2) in the stable region III of Fig. 2. (d) Irregular multimode
oscillations corresponding to the point (ω0 = 0.4, ωc = 0.7) in the
unstable region II of Fig. 2. (e) Irregular multimode oscillations cor-
responding to the point (ω0 = 0.6, ωc = 0.4) in the unstable region
II of Fig. 2 (units arbitrary).

oscillation. As before, Fig. 7(a) refers to the weak pump field
shown for comparison of the time periods.

4. Subharmonic resonance

We now move on to Fig. 4 displaying the transition curves
to explore the 3:1 subharmonic parametric resonance oscilla-
tion condition. Here again the instability regions are narrowed
down to a great extent and the transition curves tilt towards
the left. Regular resonance oscillations are observed for nu-
merical simulation of the dynamics for the points (ω0 = 0.29,
ωc = 0.2) and (ω0 = 0.35, ωc = 0.2) selected from the stable
regimes I and III of Fig. 4. The results are shown in Figs. 8(b)
and 8(c), respectively. The point (ω0 = 0.29, ωc = 0.8) corre-
sponds to the unstable region inside the tongue. The complex
oscillation for this point is shown in Fig. 8(d). Figure 8(a)
represents the sinusoidal oscillations for weak pump field ωp,
shown for the comparison of time periods.

x
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FIG. 7. Numerically simulated [Eqs. (2.1)–(2.4)] time series for
a 1:3 superharmonic vibrational resonance for G = 3 for the points
lying on the stable (I and III) and unstable (II) regions in the ω0 − ωc

plane of Fig. 3, for ωp = 1.0, � = 10.0. (a) Oscillation of the ap-
plied weak periodic drive cos ωpt drawn for comparison of the time
periods. (b) Resonance oscillation with a time period one-third (1/3)
of the driving field for the point (ω0 = 3.05, ωc = 0.2) in the stable
region I of Fig. 3. (c) Resonance oscillation with a time period
one-third (1/3) of that of the driving field for the point (ω0 = 3.14,
ωc = 0.2) in the stable region III of Fig. 3. (d) Irregular multimode
oscillations corresponding to the point (ω0 = 3.14, ωc = 0.92) in the
unstable region II of Fig. 3 (units arbitrary).

B. Effect of high frequency on the transition of stability

We now discuss the effect of high frequency (�) of the
fast time-varying field on the stability zones as depicted in
Figs. 1–4. A prototypical case, 1:2 superharmonic resonance,
is considered. In Fig. 9, the V-shaped transition curves are
plotted for � = 10 (solid line) and � = 5 (dotted line) for
ωp = 1.0, G = 3.0. As � is lowered the tongue moves to
the right. It therefore follows that a part of the region which
remains as a stable zone for � = 10 becomes unstable for
� = 5 since the concerned region falls inside the tongue
for the later case. To be more specific, we consider a point
(ω0 = 2.2, ωc = 0.2) on the ω0 − ωc plane which is stable for
� = 10 but unstable for � = 5 and numerically simulate the
Bloch dynamics. The results are shown in Fig. 10. We observe
sustained periodic 1:2 superharmonic oscillation [Fig. 10(b)]
for � = 10. For � = 5, the dynamics turns out to be mul-
timode complex oscillatory [Fig. 10(c)] in nature, vindicating
our theoretical predictions. We observe a similar effect of high
frequency (�) on the transition of stability in other super- and
subharmonic cases. However, for the sake of brevity we have
not reproduced them in this paper.
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FIG. 8. Numerically simulated [Eqs. (2.1)–(2.4)] time series for
a 3:1 subharmonic vibrational resonance for G = 3 for the points
lying on the stable and unstable regions in the ω0 − ωc plane of
Fig. 4, for ωp = 1.0, � = 10.0. (a) Oscillation of the applied weak
periodic drive cos ωpt drawn for comparison of the time periods.
(b) Resonance oscillation with a time period three times that of the
weak driving field for the point (ω0 = 0.29, ωc = 0.2) in the stable
region I of Fig. 4. (c) Resonance oscillation with a time period
three times that of the weak driving field for the point (ω0 = 0.35,
ωc = 0.2) in the stable region III of Fig. 4. (d) Irregular multimode
oscillations corresponding to the point (ω0 = 0.29, ωc = 0.8) in the
unstable region II of Fig. 4 (units arbitrary).

C. Vibrational super- and subharmonic response

Finally, we calculate numerically the response of the two-
level system dressed by the high frequency field to the weak
driving field (ωc cos ωpt) at the subharmonics and superhar-
monics of the weak field. The sine and cosine components
Bs( f ) and Bc( f ), respectively, of the polarization variable x(t )
of the Bloch equations [Eqs. (2.1)–(2.4)] are defined [20] as

Bs( f ) = 2

nT

∫ nT

0
x(t ) sin( f t )dt, (4.1)

Bc( f ) = 2

nT

∫ nT

0
x(t ) cos( f t )dt, (4.2)

where T = 2π/ f with integer n. Based on the numerical in-
tegration of Eqs. (2.1)–(2.4), which yield x(t ), one determines
the linear response function for f = 2ωp (1:2 superharmonic
resonance), f = ωp/2 (2:1 subharmonic resonance), f = 3ωp

(1:3 superharmonic resonance), and f = ωp/3 (3:1 subhar-
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FIG. 9. V -shaped transition curves separating out the stability
ones for � = 10 (solid line) and � = 5 (dotted line) on the ωc − ω0

plane for ωp = 1.0, G = 3, calculated theoretically [Eq. (3.6)] for
a 1:2 superharmonic resonance. The point marked at ω0 = 2.21,
ωc = 0.1 lies on the stable region for � = 10, but on the unstable
region for � = 5 and is chosen for numerical simulations of the
dynamics presented in Fig. 10 (units arbitrary).
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FIG. 10. Effect of high frequency � on the stability zones:
numerically simulated [Eqs. (2.1)–(2.4)] time series for a 1:2 su-
perharmonic resonance for the point (ω0 = 2.21, ωc = 0.1) lying in
the ω0-ωc plane of Fig. 9 for ωp = 1.0, G = 3. (a) Oscillation of
the periodic drive cos ωpt drawn for comparison of the time periods.
(b) Resonance oscillation with a time period half that of the period
of the weak driving field for � = 10. (c) Complex multimode oscil-
lation for � = 5 (units arbitrary).
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FIG. 11. Vibrational resonance enhancement of weak super- and subharmonic signals. (a) The numerical plot of the response Q(2ωp)
versus high frequency amplitude (ωp = 0.5, ω0 = 1.0) for a 1:2 superharmonic resonance for several values of �. (b) Same as in (a) but
for Q(ωp/2) for a 2:1 subharmonic resonance (ωp = 1.8, ω0 = 0.9). (c) Same as in (a) but for Q(3ωp) for a 1:3 superharmonic resonance
(ωp = 0.5, ω0 = 1.5). (d) Same as in (a) but for Q(ωp/3) for a 3:1 subharmonic resonance (ωp = 3.0, ω0 = 1.0) (units arbitrary).

monic resonance) as the following:

Q( f ) =
√

Bs( f )2 + Bc( f )2

ωc/χ
. (4.3)

The resonance response functions Q(2ωp), Q(ωp/2),
Q(3ωp), Q(ωp/3) vs G, the strength of the high-frequency
field, are plotted in Figs. 11(a)–11(d) for several values of
�. In each case, we observe a bell-shaped curve that depicts
the enhancement of the response signal corresponding to the
resonance. The variation of the maximum value of G against
� is found to be linear as found in many other cases of
vibrational resonance [20–24].

V. CONCLUSION

In this paper, we have examined the Bloch dynamics of
a two-level quantum system in bichromatic fields comprised
of a fast time-periodic field and a slow one. The main idea
is the search for nonlinear resonances in a fast-field-dressed
system associated with instability. To put the present work
in the appropriate perspective we note the two pertinent
points. First, the dynamics of a quantum system driven by

two time-periodic fields lies at the heart of several branches
of spectroscopy [41,51], e.g., double resonance, pump probe,
wave mixing, etc. A conspicuous feature in the treatment of
these photophysical processes is the use of a high intensity
field (rather than a high frequency field) as the pump and
the weak field as a probe. When the material medium is
considered to be active the energy levels get dressed by the
intense field. Furthermore, in the nonlinear optics [51] with
passive media one considers the generation of harmonics,
sum, and difference frequency field, where one of the two
fields is intense. The quantum dynamics in the present context,
on the other hand, concerns the field-dressed levels where the
field is characteristically of high frequency but the excitation
is not too hard. Thus the separation of timescales plays a
major role and the effect of the high-frequency field which
mimics a noise is subsumed in the dynamics by averaging
over the fast timescale. Secondly, the use of a normalization
condition enables us to reduce the dimension of the phase
space of the dynamics from three to two and in the process
brings forth nonlinearity in the scheme. An interplay of this
nonlinearity and the high frequency field results in the re-
duced dynamics in the form of a forced nonlinear Mathieu
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equation. We have demonstrated how the linear and non-
linear response of the system to the weak probe field can
be realized as regular sustained oscillations at the subhar-
monic or superharmonic frequency of the weak field in the
stable zone in the frequency-amplitude plot well separated
from the unstable region of the Arnold tongue. It has been
shown how the responses can be enhanced by optimizing
the strength and frequency of the fast time-varying field.
The detailed numerical simulation of the Bloch equations
vindicates our theoretical analysis. We believe that the gen-
eration of subharmonic and superharmonic frequency of a
weak probe as proposed here can be achieved experimentally
in a standard quantum optical setup with quantum dots [52].

Quantum optics, in general, can be a convenient platform
for experimental studies of vibrational enhancement of weak
signals.
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