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Multivalley dark solitons in multicomponent Bose-Einstein condensates with repulsive interactions
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We obtain multivalley dark soliton solutions with asymmetric or symmetric profiles in multicomponent
repulsive Bose-Einstein condensates by developing the Darboux transformation method. We demonstrate that
the width-dependent parameters of solitons significantly affect the velocity ranges and phase jump regions of
multivalley dark solitons, in sharp contrast to scalar dark solitons. For double-valley dark solitons, we find that
the phase jump is in the range [0, 2π ], which is quite different from that of the usual single-valley dark soliton.
Based on our results, we argue that the phase jump of an n-valley dark soliton could be in the range [0, nπ ],
supported by our analysis extending up to five-component condensates. The interaction between a double-valley
dark soliton and a single-valley dark soliton is further investigated, and we reveal a striking collision process
in which the double-valley dark soliton is transformed into a breather after colliding with the single-valley
dark soliton. Our analyses suggest that this breather transition exists widely in the collision processes involving
multivalley dark solitons. The possibilities for observing these multivalley dark solitons in related Bose-Einstein
condensates experiments are discussed.
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I. INTRODUCTION

Multicomponent Bose-Einstein condensates (BECs) pro-
vide a good platform for the investigation of vector solitons
both theoretically and experimentally [1–3] due to the abun-
dance of intra- and interatomic interactions. Various vector
solitons have been investigated in multicomponent BECs with
attractive or repulsive interactions [2–18]. The major theme
of research on attractive BECs is bright solitons [2,6,7,9],
while studies on dark solitons (i.e., bright-dark solitons) are
considerably hampered by their background modulation in-
stability [19]. This characteristic makes it difficult to observe
dark solitons experimentally in attractive BECs.

In contrast, many more dark vector solitons have been
experimentally observed in multicomponent repulsive BECs,
such as dark-dark solitons [4,10,14], dark-bright solitons
[5,8,11,13], dark-antidark solitons [12], dark-dark-bright soli-
tons, and dark-bright-bright solitons [15]. Very recently,
experimental observations of the collisions of bright-dark-
bright solitons were realized in three-component BECs with
repulsive interactions [16]. Nevertheless, the dark solitons in
the above-mentioned works refer mainly to single-valley dark
solitons (SVDSs). Therefore, we aim to look for multivalley
dark soliton (MVDS) solutions in repulsive BECs.

In this work, we present the exact MVDS solutions in
multicomponent BECs with repulsive interactions by further
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developing the Darboux transformation (DT) method. The
explicit soliton solutions admit an MVDS in one of the
components and multihump bright solitons in the other com-
ponents. In particular, the soliton width-dependent parameters
have a considerable impact on both the velocity range and the
phase jump of the MVDS. The phase jump of a double-valley
(triple-valley) dark soliton can vary in the range of [0, 2π ]
([0, 3π ]). These characteristics of MVDS are distinct from the
well-known scalar dark soliton, for which the width depends
on the velocity and the phase jump can be varied in the
range [0, π ][20–22]. Furthermore, we explore the collision
dynamics of MVDSs. The interaction between two MVDSs
reflects the density profile variations only after a collision.
Interestingly, one MVDS can transition to a breather after
colliding with an SVDS; this can occur because the mixture
of the effective energies of solitons in all components emerges
during the collision process. This breather transition occurs
extensively in collision processes involving MVDSs. These
findings provide an important supplement for recent reports
on nondegenerate solitons [23–26]. We expect that more abun-
dant MVDSs could exist in coupled BECs comprising more
components and that the phase jump of an n-valley dark soli-
ton could be in the range of [0, nπ ].

The remainder of this paper is organized as follows. In Sec.
II, we introduce the theoretical model and present the double-
valley dark soliton (DVDS) solutions in three-component
repulsive BECs; we further show the density profiles and
analyze the phase features of DVDSs. In Sec. III, we investi-
gate the collision dynamics of DVDSs and report the striking
state transition dynamics when they collide with SVDSs. In
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Sec. IV, we extend our study to four-component repulsive
BECs, where triple-valley dark solitons (TVDSs) can be ob-
tained. Finally, the conclusions and discussion are presented
in Sec. V.

II. DOUBLE-VALLEY DARK SOLITONS IN
THREE-COMPONENT REPULSIVE CONDENSATES

A. Physical model and double-valley dark soliton solutions

Dark solitons usually admit single valley based on the ex-
isting methods, such as the inverse scattering method [27,28],
DT method [29,30], Hirota’s method [31,32], Kadomtsev-
Petviashvili reduction method [33,34], and Bäcklund trans-
formation [35]. We note that it is difficult to obtain dark
solitons with more than single valley in N (N � 2)-component
nonlinear systems. Therefore, we first attempt to find MVDSs
in three-component BECs with repulsive interactions, through
further developing DT method [24]. At sufficiently low
temperatures and in the framework of the mean-field ap-
proach, quasi-one-dimensional three-component repulsive
BECs (elongated along the x direction) are well described by
the three-component Manakov model [16]:

iq j,t + 1
2 q j,xx − (|q1|2 + |q2|2 + |q3|2)q j = 0, (1)

where q j (x, t )( j = 1, 2, 3) represents the mean-field wave
functions of three-component repulsive BECs. The details
of the deviation of the dimensionless model Eq. (1) from
the original mean-field Gross-Pitaevskii equation can refer
to the Supplemental Material in Ref. [16]. This model can
also be used to describe the evolution of light in defocus-
ing nonlinear optical fibers [20,21]. A recent experiment
on bright-dark-bright solitons in repulsive BECs strongly
supports the applicability of the above integrable repulsive
three-component Manakov model to three-component BECs
with repulsive interactions [16]. For their attractive counter-
part, single-hump bright soliton solutions [29,31,36,37] and
even multihump bright soliton solutions have been obtained
in a multicomponent Manakov system by the Hirota method
[23,25,26], DT method [24], and other methods [38,39]. Next,
we systematically seek the MVDS solutions in the multicom-
ponent repulsive Manakov model.

The DT method is an effective and convenient way to
derive localized wave solutions [40–45]. Recently, it was re-
ported that SVDSs can be obtained through the DT method for
multicomponent repulsive Manakov systems [44]. In this pa-
per, we further develop the DT method [44] to derive MVDS
solutions in combination with the multifold DT for deriving
nondegenerate bright solitons [24]. We find that MVDSs can
be derived by performing a multifold DT with some special
constraint conditions on the eigenfunctions of the Lax pair.
For example, one DVDS can be obtained by performing a
twofold DT with the spectral parameters written as λ j =
1
2 (ξ j + 1

ξ j
) and adding some special constraint conditions

to the eigenfunctions. The complex parameter ξ j = −v1 +
iw j ( j = 1, 2) is introduced to simplify the soliton solution
and facilitate the analysis of physical meaning of each param-
eter; the real part determines the soliton’s velocity, while the
imaginary part is called a soliton width-dependent parameter.
The detailed derivations of exact DVDS solutions are given in

Appendix A. For the DVDS solutions Eq. (A13), one DVDS is
admitted in the first component, and one double-hump bright
soliton is allowed in the other two components (DBBS). By
simplifying Eq. (A13), the exact general soliton solutions can
be expressed as follows:

q1 = N1

M1
e−it , (2a)

q2 = −i2w1

√
1 − v2

1 − w2
1

α1

ξ1

N2

M1
ei[v1x− 1

2 (2+v2
1−w2

1 )t], (2b)

q3 = −i2w2

√
1 − v2

1 − w2
2

β2

ξ2

N3

M1
ei[v1x− 1

2 (2+v2
1−w2

2 )t], (2c)

with

N1 =
[
ξ ∗

2

ξ2
α2

1eκ1−κ2 + ξ ∗
1

ξ1
β2

2 eκ2−κ1 + α2
1β

2
2 eκ1+κ2

]

× (w1 + w2)2 + ξ ∗
1 ξ ∗

2

ξ1ξ2
(w1 − w2)2e−κ1−κ2 ,

N2 = (w1 + w2)
[
β2

2 (w1 + w2)eκ2 + (w1 − w2)e−κ2
]
,

N3 = (w1 + w2)
[
β2

2 (w1 + w2)eκ1 + (w2 − w1)e−κ1
]
,

M1 = [
α2

1β
2
2 eκ1+κ2 + α2

1eκ1−κ2 + β2
2 eκ2−κ1

]
(w1 + w2)2

+ (w1 − w2)2e−κ1−κ2 ,

κ1 = w1(x − v1t ), ξ1 = −v1 + iw1,

κ2 = w2(x − v1t ), ξ2 = −v1 + iw2,

where α1, β2, v1, w1, and w2 are arbitrary real constants.
Among them, the parameters w1 and w2 are two soliton width-
dependent parameters (w1 �= w2). The parameter v1 is moving
velocity, which must satisfy the constraint condition v2

1 +
w2

m < 1, where wm is the larger of the two width-dependent
parameters, meaning that the soliton width-dependent param-
eters affect the velocity range. In contrast, the width of a
scalar dark soliton depends on the velocity, which cannot
exceed the speed of sound [3,20–22]. The parameters α1 and
β2 are two free parameters related to the relative valley values
and the center positions of the two valleys. These parameters
nontriviall contribute to the soliton profiles.

B. Density profiles of double-valley dark solitons

The solution expressed in Eq. (2) is generally asymmetric
but becomes symmetric when the two free parameters satisfy
the condition α1 = β2 = √

(w2 − w1)/(w1 + w2). Examples
of asymmetric and symmetric DBBS solutions are shown in
Fig. 1 with solid lines and dashed lines, respectively. The plots
from left to right correspond to component q1, component
q2 and component q3, respectively. For the asymmetric case
depicted in Figs. 1(a1)–1(a3), the parameters are v1 = 0.1,
w1 = 0.2, v3 = 0.3, α1 = 0.5, and β2 = 0.2. We can see that
a DVDS emerges in component q1, manifesting two spatially
localized density “dips” on a uniform background. An asym-
metric double-hump bright soliton with one node is exhibited
in component q2, and an asymmetric single-hump bright soli-
ton without a node presents in component q3 [46]; these
two bright solitons are quite different from the fundamental
dark-bright-bright soliton observed in Refs. [15,16]. As shown
in Fig. 1(a1), two valleys of the asymmetric DVDS are not
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FIG. 1. The density profiles of DVDSs. Panel (a1) shows an
asymmetric DVDS in component q1. Panels (a2, a3) show the den-
sity profiles of asymmetric bright solitons in components q2 and
q3, respectively. Panels (b1–b3) show the corresponding symmetric
soliton profiles. The parameters are α1 = 0.5, β2 = 0.2 for asym-
metric solitons (a1–a3) and α1 = β2 = 1/

√
5 for symmetric solitons

(b1–b3). The other parameters are chosen as v1 = 0.1, w1 = 0.2, and
w2 = 0.3.

equal in either the width or the valley values, in sharp con-
trast to dark solitons reported in previous studies [2–5,8,10–
17,20,21,31–34,44,47]. This characteristic is not observed for
the stationary symmetric MVDS solution [48], which was
reported to exist in focusing photorefractive media (similar
to attractive multicomponent BECs). The bright solitons that
present in components q2 and q3 are similar to those obtained
in a two-component attractive (focusing) system [23–26].

By setting the parameters α1 = β2 =
√

w2−w1√
w2+w1

and the other
parameters the same as in the asymmetric case, the solution
Eq. (2) admits symmetric soliton profiles. It has been shown in
Figs. 1(b1)–1(b3). These profiles are similar to those reported
in previous studies [39,48], but the total density can differ
from the “sech-squared” form. Moreover, the DVDS solu-
tion is expressed by exponential functions, which is distinctly
different from the expressions with associated Legendre poly-
nomials [48]. Moreover, the above DVDS solution is more
general than those given in Refs. [39,48] since it admits
more free physical parameters. When the width-dependent
parameters of soliton w1 and w2 are close to each other, both
components q2 and q3 can show a symmetric (or an asym-
metric) double-hump bright soliton. The soliton velocity of
the solution in Eq. (2) changes in the range of [0,

√
1 − w2

m).
In particular, the interaction between the solitons can be in-
vestigated analytically with further iterations by applying the
developing DT method.

Importantly, it must be pointed out that the presence of
DVDS makes nondegenerate bright solitons in the other com-
ponents be different from the ones reported in a attractive
(focusing) system [23–26], although they have similar density
profiles. For the above nondegenerate solitons Eq. (2), the
width-dependent parameters have a dramatic effect on the ve-
locity ranges, and the density profiles of nondegenerate bright
solitons depend on the moving velocity. These characters
are absent for nondegenerate bright solitons reported before
[23–26]. In addition, DVDS-related nondegenerate solitons
can also be deduced in attractive system, where the soliton
parameters are totally unrestricted. However, the modulation

FIG. 2. The asymmetry degree vs moving velocity for DVDSs.
The red solid line and blue dashed line correspond to the asym-
metric and symmetric DVDSs, respectively. The asymmetry degree
increases with increasing moving velocity for asymmetric DVDSs.
However, that for symmetric DVDSs remains symmetric with vary-
ing velocity. The other parameters are the same as described in the
caption of Fig. 1.

instability of background field of DVDS induce the solitons
be unstable and hard to be observed in experiments. On
the other hand, the variation of background amplitude of
DVDS will cause the change of the profiles of nondegener-
ate bright solitons in the other two components at the same
scale. This character is different from the degenerate soli-
tons in the mixed N-coupled nonlinear Schrödinger equations
[49], for which the intensity of the bright soliton can in-
crease with decreasing the background amplitude of the dark
soliton.

It is well known that the grayness of valley (the back-
ground density of dark soliton minus its minimum density)
tends to decrease with increasing moving velocity and the
symmetric properties do not change for an SVDS. Based on
the DVDS solutions Eq. (2), we know that the grayness of
each valley is affected by several soliton parameters, such as
width-dependent parameters w j , velocity v1, and free parame-
ters α1 and β2. Particularly, the width-dependent parameters of
soliton significantly affect the velocity ranges. For the certain
width-dependent parameters w j , the grayness of DVDS also
decreases with increasing moving velocity. However, the mul-
tiple exponential functions make the DVDS solution form be
much more complicated than the well-known SVDS solution.
It is too complicated to quantitatively characterize the influ-
ence of other free parameters’ on the grayness of each valley.
Analysis techniques still need further improvement. Interest-
ingly, the asymmetry degree of two valleys (i.e., the relative
grayness) of asymmetric DVDS can vary with velocity. The
asymmetry degree is defined as

R(v1) = I1 − I2

I1 + I2
, (3)

where I1 and I2 are the grayness of the left and right val-
leys in space, respectively. We exhibit the asymmetry degree
vs the moving velocity in Fig. 2 with numerical calcu-
lation the grayness of each valley, and keeping the other
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FIG. 3. The phase properties of a DVDS. (a) The phase distribu-
tion of an asymmetric DVDS corresponding to the density profile in
Fig. 1(a1). We can see that the DVDS admits two phase jumps across
two valleys. (b) The phase jump vs moving velocity for DVDSs.
The red solid line shows the curve for the asymmetric DVDS, while
the blue dashed line shows the curve for the symmetric DVDS.
The other parameters for both cases are identical to those in Fig. 1.
The phase jump decreases gradually with increasing velocity. (c) The
phase jump (in π unit) vs the soliton width-dependent parameter
and velocity. The parameter w1 is fixed at 0.2. This demonstrates
that the soliton width-dependent parameters significantly affect the
phase jump and velocity region of DVDSs. The other parameters are
α1 = 0.5 and β2 = 0.2.

parameters be identical with the ones in Fig. 1. The red
solid line (blue dashed line) corresponds to the asymmetric
(symmetric) DVDS. It is seen that the asymmetry degree
crucially depends on the velocity for asymmetric DVDS,
whereas R(v1) is constant for symmetric DVDS. This is also
a significant difference between symmetric and asymmetric
DVDS.

C. Phase properties of double-valley dark solitons

SVDSs are well known to admit one phase jump across
their density dip, which varies in the range [0, π ] [2,3,20–22].
Generally, the total phase jump of dark soliton can be obtained
by calculating the argument φds(x) = arg(q1) by dropping the
momentum phase of the background. For MVDSs, it should
be emphasized that the phase distribution cannot be directly
obtained by calculating only the argument of MVDS solu-
tions. We need combine both the argument and the phase
gradient flow ∇φds(x) to properly address the phase variations
φds(x) of MVDS [22]. Here, we define the total phase jump
as �φds = φds(x → −∞) − φds(x → +∞). As an example,
we plot the corresponding phase distribution of Fig. 1(a1) in
Fig. 3(a). Remarkably, the phase variations of DVDS exhibit
an apparent two-step structure through two valleys, in contrast
to the single-step structure of SVDSs discussed previously
[2–5,8,10–17,20–22,31–34,44,47]. Moreover, the total phase
jump of a DVDS is larger than π in this case, which is also
distinctive from SVDSs (which usually cannot exceed π ). We

note that SVDSs can admit a phase jump greater than π in a
saturable self-defocusing material [50,51] but only one phase
jump across the soliton. The phase distribution of a symmetric
DVDS is similar to that of an asymmetric DVDS, with only a
small difference in the spatial position. Additionally, a bright
soliton with one node in component q2 always maintains a
π phase jump, where the abrupt phase change occurs at the
node, while a bright soliton without a node has no phase jump
in component q3.

Furthermore, we find that the phase jump of a DVDS
changes with the moving velocity. As an example, we dis-
play the variation in the phase jump of a DVDS with the
velocity in Fig. 3(b), where the red solid line and the blue
dashed line represent asymmetric and symmetric DVDSs,
respectively. The parameters are the same as in Fig. 1 ex-
cept for the velocity v1. The phase jump value decreases
dramatically with increasing velocity. For this case, the ve-
locity range is |v1| ∈ [0,

√
91/10), and the phase jump is

within the range [0.32π, 2π ]. Under the limit of zero velocity,
i.e., for a stationary DVDS, the phase jump takes a value
of 2π . Figure 3(b) suggests that the change in the phase
jump with velocity for a symmetric DVDS is identical to
that for an asymmetric DVDS, and the parameters α1 and
β2 do not affect the phase jump region. However, further
analysis indicates that the soliton width-dependent parameters
essentially determine the phase jump range. For example, we
draw the variation in the phase jump value with the soli-
ton width-dependent parameter w2 in Fig. 3(c), where w1 is
fixed to be 0.2 herein. With varying w2, we can calculate the
velocity region under the constraint condition w2

j + v2
1 < 1.

Namely, when w2 ∈ (0, 0.2), |v1| ∈ [0, 2
√

6/5); additionally,
when w2 ∈ (0.2, 1), |v1| ∈ [0,

√
1 − w2

2 ). Figure 3(c) clearly
shows the variation in the phase jump with an increase in the
width-dependent parameter w2, always taking a value of 2π

for a static DVDS. With an increase in the width-dependent
parameter w2, the phase jump region decreases since the phase
jump value increases at the maximum velocity. With w1 =
0.2, the phase jump range is [0.12π, 2π ]. For smaller soliton
width-dependent parameters w1 and w2, the phase jump value
tends to be zero when the soliton’s velocity approaches the
limit of the maximum velocity, meaning that DVDS admit the
largest phase jump range of [0, 2π ].

We emphasize that the soliton width-dependent parameters
also affect the velocity region; as a result, the maximum speed
of the DVDS can be much smaller than the speed of sound
for DVDS when choosing larger width-dependent parameters
[see Fig. 3(c)]. This is a notable characteristic for MVDS
that is absent for usual scalar SVDS [20,21]. For usual scalar
SVDS, the maximum velocity is the speed of sound. For a
bright-dark soliton in a two-component BEC with attractive
interactions, the width and velocity are completely indepen-
dent of each other [47], and there is no limit on the moving
velocity. However, for dark-bright solitons in repulsive con-
densates, a change in the soliton width also causes the velocity
range to vary [47]. Our detailed analysis indicates that the
relation between the soliton width and velocity satisfies an in-
equality for MVDS and dark-bright solitons, but this relation
becomes an equality for usual scalar SVDS [20,21]. This char-
acteristic of dark-bright solitons has not been taken seriously
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FIG. 4. (a1) The numerical evolution of DVDS when the nonlin-
ear coefficients admit small deviations from Manakov model Eq. (1).
The initial excitation condition is given by Eq. (2) at t = 0 with
adding 2% random noise, and the inter-component nonlinear coef-
ficient is set to be 0.98. The other parameters are the same as in
Figs. 1(a1)–1(a3). It is shown that the profile of DVDS remain robust
against weak noise and small deviations from the ideal conditions.
Panels (a2) and (a3) show the corresponding numerical evolutions of
the other two bright soliton components.

in previous work [5]. Nevertheless, we expect that the soliton
width plays an important role in the motion of dark-bright
solitons in harmonic traps, in contrast to the motion of scalar
dark solitons in harmonic traps [52]. Therefore, the effects of
the soliton width should be considered when discussing the
motion of MVDS in external potentials.

D. Stability of double-valley dark solitons

Then, we test the stability of DVDS. The exact DVDS so-
lution Eq. (2a) is derived from the integrable Manakov model,
for which the intra- and inter component nonlinear interaction
strengths are equal. But these nonlinear interaction strengths
can not be equal precisely in real experiments. Therefore, we
test the evolutionary stability of DVDS with small deviations
from the Manakov model. For example, Fig. 4(a1) exhibits
the numerical evolution of DVDS in the model Eq. (1) with
setting inter-component nonlinear coefficients to be 0.98 and
adding 2% random noises on initial states. Other parameters
settings are the same as Figs. 1(a1)–1(a3). Figures 4(a2) and
4(a3) show the corresponding numerical evolutions of the
other two bright soliton components. It demonstrates that the
profile of DVDS remain stable over a long evolution time. It
indicates that it is possible to excite DVDS in experiments
with the developed density and phase modulation techniques
in ultracold atomic systems [8,15,16,53,54].

Very recently, three-component vector solitons and their
collisions were experimentally observed in BECs with re-
pulsive interactions [16]. Motivated by these results, we
would like to analytically investigate the collision dynamics
of DVDSs by performing further iterations of the developed
DT method.

III. COLLISION DYNAMICS OF DOUBLE-VALLEY
DARK SOLITONS

The collision dynamics of DVDSs mainly include two
cases: (i) a collision between a DVDS and an SVDS, (ii)
a collision between two DVDSs. We investigate these two
types of collisions based on two dark soliton solutions derived
by the threefold and fourfold DT (see details in Appendix
A). A collision between two DVDSs usually makes each

FIG. 5. The collision dynamics of DVDSs. (a1) Collision be-
tween one DVDS and an SVDS. There is a striking state transition
process in which a DVDS transitions to a breather after the collision,
whereas the SVDS does not breath and experiences only slight profile
variation. Panels (a2, a3) show similar state transition dynamics in
the other bright soliton components. (b1) Collision between two
DVDSs. For this case, there is no state transition occurrence for
the DVDSs. Panels (b2, b3) display similar collision dynamics in
the other bright soliton components. The parameters are v1 = 0,
w1 = 0.35, w2 = 0.6, v2 = −0.2, w3 = 0.3, α1 = 1, β2 = 1, and
α3 = β3 = 1 for panels (a1–a3). The parameters are v1 = −0.15,
w1 = 0.3, w2 = 0.4, v2 = 0, w3 = 0.35, w4 = 0.45, α1 = 1, β2 = 1,
α3 = 1, and β4 = 1 for panels (b1–b3).

soliton’s profile vary, similar to a collision between nonde-
generate bright solitons [24]. However, the collision between
a DVDS and an SVDS demonstrates a striking state transition
process: The DVDS transforms into a breather after collid-
ing with the SVDS, while the density profile of SVDS do
not admit any change after the collision, only with a phase
shift.

We first study the interaction between a DVDS and an
SVDS based on the exact solution Eq. (A23) by implementing
a threefold DT with the introduced complex parameters ξ1 =
−v1 + iw1, ξ2 = −v1 + iw2 (generating a DVDS in com-
ponent q1) and ξ3 = −v2 + iw3 (generating an SVDS in
component q1) (see Appendix A for the detailed calculation
process). A typical example of the striking state transition
process is illustrated in Fig. 5(a1). The asymmetric DBBS
is evidently transformed into a breather, whose density evo-
lution admits a periodic oscillation behavior. In contrast,
the fundamental DBBS (moving toward the left) maintains
a soliton state. Such a state transition induced by a colli-
sion is not discussed in the previous literatures [4,5,8,20,21].
Figures 5(a2) and 5(a3) show the density evolutions of
bright solitons in components q2 and q3, respectively, demon-
strating that this breathing behavior also emerges after the
interaction.

To understand the state transition phenomenon, we further
analyze the exact solutions Eq. (A23) through developing the
asymptotic analysis technique [27,55,56] with assuming v1 >

v2. Our analysis suggests that the state transition is induced
by the mixture of effective energies of the solitons in the three
components during the collision process. Before the collision
(t → −∞), the DVDS-related vector soliton solutions take
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the following asymptotic forms:

qi
1,S1 = f1e−ν1 + f2eν1 + f3e−ν2 + f4eν2

m1e−ν1 + m2eν1 + m3e−ν2 + m4eν2
e−it , (4a)

qi
2,S1 = g1

(
g2e−κ2 + g3eκ2

)
m1e−ν1 + m2eν1 + m3e−ν2 + m4eν2

eiϕ1 , (4b)

qi
3,S1 = h1

(
h2e−κ1 − h3eκ1

)
m1e−ν1 + m2eν1 + m3e−ν2 + m4eν2

eiϕ2 , (4c)

where κ j = w j (x − v1t ), ϕ j = v1x − 1
2 (v2

1 − w2
j + 2)t, ν1 = κ1 + κ2 and ν2 = κ1 − κ2 ( j = 1, 2). The expressions for fi, gi, hi

and mi are given in Appendix B, and they are all complex constants. After the collision (t → +∞), the asymptotic analysis
expressions for the vector breather take the following forms:

q f
1,S1 = (δ1e−iθ + δ2eiθ + δ3e−ν1 + δ4eν1 + δ5eν2 + δ6e−ν2 )e−it

1(2e−iθ + ∗
2eiθ ) + 3e−ν1 + 4eν1 + 5eν2 + 6e−ν2

, (5a)

q f
2,S1 = i4λi

1eiϕ1 (ρ1e−κ2 + ρ2eκ2 ) + i4λi
2eiϕ2 (ρ3e−κ1 + ρ4eκ1 )

1(2e−iθ + ∗
2eiθ ) + 3e−ν1 + 4eν1 + 5eν2 + 6e−ν2

, (5b)

q f
3,S1 = i4λi

1eiϕ1 (ϑ1e−κ2 + ϑ2eκ2 ) + i4λi
2eiϕ2 (ϑ3e−κ1 + ϑ4eκ1 )

1(2e−iθ + ∗
2eiθ ) + 3e−ν1 + 4eν1 + 5eν2 + 6e−ν2

, (5c)

where θ = ϕ1 − ϕ2 = 1
2 (w2

1 − w2
2 )t . The expressions for δi,

ρi, ϑi, and i are presented in Appendix B, and they are all
complex constants. λi

1 and λi
2 correspond to the imaginary part

of the spectral parameters λ1 and λ2, respectively. The symbol
“*” denotes complex conjugate. From Eq. (4), we can see
that each initial soliton admits a certain velocity. As shown in
Ref. [22], a moving soliton solution can be transformed to an
eigenstate with an eigenenergy if we choose the soliton center
as a frame of reference. Therefore, it is reasonable to define an
effective energy for the solitons as E∗

j = dφ j

dt (where φ j is the
phase of the wave function). We know that the effective energy
of the soliton in components q1, q2, and q3 is E∗

1 = −1, E∗
2 =

− 1
2 (v2

1 − w2
1 + 2), and E∗

3 = − 1
2 (v2

1 − w2
2 + 2), respectively.

From Eq. (5), we can see that the effective energies of bright
soliton components mix and emerge in the DVDS component
after the collision process. The breathing behavior obviously
originates from the energy mixing term in e±iθ . Namely, the
effective energy difference of bright solitons determines the
oscillation period, and the period is

T = 2π

|E∗
2 − E∗

3 | = 4π∣∣w2
1 − w2

2

∣∣ . (6)

The oscillation period is identical among the three compo-
nents. Based on this discussion, we also revisit the collision
dynamics of nondegenerate bright solitons [24] and find that
an effective energy mixture can also emerge. This means
that the above-mentioned breather behavior is also observable
during the collision between a nondegenerate bright soliton
and a degenerate bright soliton.

To make a comprehensive analysis of this state transi-
tion phenomenon, we also present the asymptotic expressions
of the fundamental DBBS before and after collision to
discuss its collision properties. Before the collision (t →
−∞), the solution for the fundamental DBBS is derived as

follows:

qi
1,S2 =

[
−v2

ξ3
+ i

w3

ξ3
tanh(κ3 + d1)

]
e−it , (7a)

qi
2,S2 = α3ξ

∗
1 η13r3

2ξ1ξ3�31
√

x1
sech(κ3 + d1)eiϕ3 , (7b)

qi
3,S2 = β3ξ

∗
2 η23r3

2ξ2ξ3�32
√

x1
sech(κ3 + d1)eiϕ3 , (7c)

Here, κ3 = w3(x − v2t ), ϕ3 = v2x − 1
2 (v2

2 − w2
3 + 2)t .

The explicit expressions of �i j, ηi j, ri, x1 and d1 are given
in Appendix B, and they are all complex constants. Based
on the Eq. (7), we can get the grayness (Gi) of valley of
SVDS in the component q1, peak value (Pi

1) of bright soliton
in the component q2 and peak value (Pi

2) of bright soliton
in the component q3 before the collision. They can be

calculated as Gi = w2
3

v2
2+w2

3
, Pi

1 = α2
3 |�23|2|η13|2r2

3

4|ξ3|2(α2
3 |�23|2|η13|2+β2

3 |�13|2|η23|2 )

and Pi
2 = β2

3 |�13|2|η23|2r2
3

4|ξ3|2(α2
3 |�23|2|η13|2+β2

3 |�13|2|η23|2 )
. After the collision

(t → +∞), the fundamental DBBS is give by

q f
1,S2 = ξ ∗

1 ξ ∗
2

ξ1ξ2

[
−v2

ξ3
+ i

w3

ξ3
tanh(κ3 + d2)

]
e−it , (8a)

q f
2,S2 = α3z13z∗

32r3

2ξ3y31y32
√

x2
sech(κ3 + d2)eiϕ3 , (8b)

q f
3,S2 = β3z13z∗

32r3

2ξ3y31y32
√

x2
sech(κ3 + d2)eiϕ3 . (8c)

The explicit expressions of zi j, yi j, x2, and d2 are given
in Appendix B, and they are all complex constants. With
using the asymptotic analysis results Eq. (8), we can also
obtain grayness (Gi) of valley of SVDS in the component q1,
peak value (P f

1 ) of bright soliton in the component q2 and
peak value (P f

2 ) of bright soliton in the component q3 after
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FIG. 6. (a1) The numerical evolution of the collision between
one DVDS and one SVDS. Panels (a2) and (a3) correspond to the
other two bright soliton components. The initial excitation condition
are the same as in Figs. 5(a1)–5(a3) at t = −300 with adding 5%
random noise in each component. It is seen the state transitions
between DVDS and breather state are robust against weak noise.

the collision. They can be calculated as G f = w2
3

v2
2+w2

3
, P f

1 =
α2

3 |r3|2
4|ξ3|2(α2

3+β2
3 )

, and P f
2 = β2

3 |r3|2
4|ξ3|2(α2

3+β2
3 )

.
Based on the asymptotic expressions Eqs. (7) and (8),

we can analyze the change of fundamental DBBS’s den-
sity profile during the breathing state transition. Particularly,
Eqs. (7a) and (8a) indicate that the density profile of SVDS
remain unchanged after the occurrence of breathing states.
The grayness of valley keep the same (Gi = G f ). However,
there are significant alterations of density profiles for degen-
erate bright solitons in the other two components (Pi

1 �= P f
1

and Pi
2 �= P f

2 ), based on the asymptotic expressions Eqs. (7b),
(7c) and (8b), (8c). This means that population redistribution
happens between single-hump bright soliton and asymmetric
double-hump bright soliton during their collision process in
the component q2. Similar phenomenon also emerges in the
component q3. In addition, our numerical simulation indicates
that the striking breathing state transition is robust against
weak noises. For instance, the numerical results are depicted
in Fig. 6, for which the initial excitation form is given by the
exact ones at t = −300 in Figs. 5(a1)–5(a3) with adding 5%
white noise. This partly means that state transition between a
DVDS and a breather obtained here could be observed in a
real condensate system.

Next, we investigate the interaction between two DVDSs
based on the exact solutions Eq. (A24) by implementing
a fourfold DT with the parameters ξ1 = −v1 + iw1, ξ2 =
−v1 + iw2 (which generates one DVDS), ξ3 = −v2 + iw3,
and ξ4 = −v2 + iw4 (which generates another DVDS) (see
Appendix A for the detailed calculation process). For this
case, a typical example of the density distribution is displayed
in the second panel of Fig. 5, for which Figs. 5(b1), 5(b2),
and 5(b3) correspond to component q1, component q2, and
component q3, respectively. As shown in Fig. 5(b1), the colli-
sion between the two DVDSs causes their profiles to change,
accompanied by a phase shift. However, for this case, there
is no state transition occurrence for either DVDS, which is
dramatically different from the collision dynamics between
the DVDS and SVDS described in Fig. 5(a1). Moreover, the
effective energy mixture no longer emerges in this case. The
inelastic collision dynamics for the other two bright soliton
components [see Figs. 5(b2) and 5(b3)] are similar to the
those for the two nondegenerate bright solitons that collide
in Ref. [24]. Additionally, the numerical simulations also

demonstrates that interaction between two DVDSs are also
robust against small noise, we do not show them herein.

IV. TRIPLE-VALLEY DARK SOLITONS IN
FOUR-COMPONENT REPULSIVE CONDENSATES

We now extend our discussion to four-component BECs
with repulsive interactions, which are described by the fol-
lowing repulsive four-component Manakov model:

iq j,t + 1
2 q j,xx − (|q1|2 + |q2|2 + |q3|2 + |q4|2)q j = 0, (9)

where q j (x, t )( j = 1, 2, 3, 4) denote the four component
fields in BECs. By applying the threefold DT with λ j =
1/2(ξ j + 1/ξ j ) and ξ j = −v1 + iw j ( j = 1, 2, 3), which is
similar to the DT presented in Appendix A, we can obtain a
new class of dark-bright-bright-bright soliton solutions, which
admits a TVDS in component q1 and triple-hump bright soli-
tons in the other three components. The exact soliton solutions
can be expressed in the following form:

q1 = 1

ξ1ξ2ξ3

N1

M1
e−it , (10a)

q2 = −i
2w1

ξ1
α

√
1 − v2

1 − w2
1

N2

M1
ei[v1x− 1

2 (2+v2
1−w2

1 )t], (10b)

q3 = −i
2w2

ξ2
β

√
1 − v2

1 − w2
2

N3

M1
ei[v1x− 1

2 (2+v2
1−w2

2 )t], (10c)

q4 = −i
2w3

ξ3
γ

√
1 − v2

1 − w2
3

N4

M1
ei[v1x− 1

2 (2+v2
1−w2

3 )t], (10d)

with

κ1 = 2w1(x − v1t ), κ2 = 2w2(x − v1t ), κ3 = 2w3(x − v1t ),

N1 = ξ1ξ
∗
2 ξ ∗

3 α2η2eκ1 + ξ ∗
1 ξ2ξ

∗
3 β2η3eκ2 + ξ ∗

1 ξ ∗
2 ξ3γ

2η4eκ3

+ η5
[
ξ1ξ2ξ3α

2β2γ 2eκ1+κ2+κ3 + ξ ∗
1 ξ2ξ3β

2γ 2eκ2+κ3

+ ξ1ξ2ξ
∗
3 α3β2eκ1+κ2 + ξ1ξ

∗
2 ξ3α

2γ 2eκ1+κ3
] + ξ ∗

1 ξ ∗
2 ξ ∗

3 η1,

N2 = [
p1 + p2β

2eκ2 + p3γ
2eκ3 + η5β

2γ 2eκ2+κ3
]
eκ1/2,

N3 = [
p4 + p5α

2eκ1 − p3γ
2eκ3 + η5α

2γ 2eκ1+κ3
]
eκ2/2,

N4 = [
p6 − p5α

2eκ1 − p2β
2eκ3 + η5α

2β2eκ1+κ2
]
eκ3/2,

M1 = [
α2β2eκ1+κ2 + α2γ 2eκ1+κ3 + β2γ 2eκ2+κ3

]
η5 + η1

+ η2α
2eκ1 + η3β

2eκ2 + η4γ
2eκ3 + η5α

2β2γ 2eκ1+κ2+κ3 .

The expressions ηi and pi are shown in Appendix C. The
parameters v1, w1, w2, w3, α, β, and γ are real constants
that codetermine the profile and position of the TVDS. The
parameters w1, w2, and w3 are three width-dependent pa-
rameters of soliton(w1 �= w2 �= w3). The parameter v1 is the
soliton velocity, which should satisfy the constraint v2

1 +
w2

j < 1 ( j = 1, 2, 3). The parameters α, β, and γ are three
free parameters associated with the center positions and rel-
ative values of the three valleys. The profile of the TVDS
is generally asymmetric but becomes symmetric for certain
values of the parameters α, β, and γ , which is similar to
the above three-component case. With the arbitrary setting of
these parameters, the solution given in Eq. (10) shows a TVDS
in component q1, a triple-hump bright soliton with two nodes
in component q2, a bright soliton with one node in component
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FIG. 7. The density profile (a) and phase distribution (b) of an
asymmetric TVDS. Three phase jumps across the three density
valleys can be observed. The parameters are v1 = 0.1, w1 = 0.2,
w2 = 0.28, w3 = 0.33, α = 1

6 , β = 1
10 , γ = 1.

q3 and a bright soliton without a node in component q4.
The density profiles of multihump bright solitons in the last
three components are similar to the solitons reported in three
component attractive BECs [24]. In this section, we mainly
discuss the TVDS in the first component.

The density profile of an asymmetric TVDS are displayed
in Fig. 7(a). Our numerical simulations show that TVDS is
also robust against small nonlinear coefficients deviations and
weak noise, similar to DVDS exhibited in Fig. 4(a1). So we do
not show them again here. The structure of TVDS is somewhat
similar to those of stationary multisoliton complexes on a
background [57,58], both are formed as the special nonlinear
superpositions of pairs of bright and dark solitons. But there
are still some differences between our TVDS solution and the
ones in Refs. [57,58]. First, we develop DT method to derive
the solution directly, in contrast to the sophisticated rotation
transformation in Ref. [57] or the nonlinear superposition of a
radiation modes in Ref. [58] based on the bright multisoliton
complexs. This makes the soliton solution’s expressions be
quite different. The explicit relations between them still need
further studies. Moreover, the collision dynamics of TVDSs
include three main cases: a collision between a TVDS and
an SVDS, a collision between a TVDS and a DVDS, and
a collision between two TVDSs. A breather transition also
emerges for the TVDS in the first and second cases, while
the soliton profiles vary after the collision without breather
behavior in the third case. The state transition behaviors have
not been discussed in Refs. [57,58].

We also present the corresponding phase distribution of
TVDS in Fig. 7(b). It demonstrates that the TVDS features
three phase jumps across three valleys. The soliton width-
dependent parameter w j also affects the phase jump region
of the TVDS. As an example, we demonstrate the variation in
the phase jump value with the changes in the soliton width-
dependent parameters (w2 and w3) and the velocity in Fig. 8.
The parameter w1 is fixed to be 0.2. For the static TVDS
solution, the phase jump is 3π . The phase jump value achieves
the minimum value when the velocity tends toward the limit of
the maximum velocity. With w1 = 0.2, the phase jump range
of the TVDS is [0.14π, 3π ], but the phase jump range of
the TVDS can vary within [0, 3π ] by further decreasing the
value of w1. The phase jumps of triple-hump bright solitons
in component q2, component q3, and component q4 are always
2π , π and 0, respectively. Moreover, the parameters w j can
also vary the soliton velocity region for a TVDS. The velocity

FIG. 8. The phase jump (in π unit) of a TVDS with varying
velocity and soliton width-dependent parameters w2 and w3. The
width-dependent parameters significantly affect the phase jump and
velocity region. w1 is fixed to be 0.2. The other parameters are
α = 1/6, β = 1/10, γ = 1.

range is [0,
√

1 − w2
m), where wm is the largest of the three

width-dependent parameters. These characteristics are similar
to those of the DVDS case, which could hold for dark solitons
with more valleys.

V. CONCLUSION AND DISCUSSION

We obtain exact DVDS and TVDS solutions by further
developing the DT method. Their velocity and phase jump
characteristics are characterized in detail. In particular, we
demonstrate that changes in the soliton width-dependent pa-
rameters have considerable influences on the velocity and
phase jump ranges. This finding indicates that the effects of
the soliton width should be considered when studying the mo-
tion of MVDSs in external potentials. The collision dynamics
of the DVDS and TVDS are also discussed. The collisions
involving DVDSs are discussed in detail, and we report a
striking state transition process in which a DVDS turns into
a breather after colliding with an SVDS due to the mixture
of the effective energies of the soliton states in the three
components. Furthermore, our analyses suggest that breather
transitions exist widely in the collision processes involving
MVDSs.

Very recently, nondegenerate bright solitons were dis-
cussed in a N-component coupled systems with attractive
interactions [59], based Hirota bilinear method. Our discus-
sion can also be extended to N-component coupled systems
with repulsive interactions. The (N − 1)-valley dark soliton
solution can be obtained by applying the (N − 1)-fold DT
with similar constraint conditions on the eigenfunctions of
the Lax pair. The phase jump of the (N − 1)-valley dark
soliton could vary in the region [0, (N − 1)π ]. This argument
is supported by our calculation up to a five-component case.
Nevertheless, further study is needed to learn how to express
the analytical solution for arbitrary N-component coupled
systems. The collision properties between MVDSs and degen-
erate vector solitons are expected to be much more abundant
than those of previously reported vector soliton collisions
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[5,16,36,43,47]. In particular, the state transition between the
breather and MVDS could have some important hints for
soliton state manipulation fields.

Recently, three-component vector solitons and their colli-
sions were experimentally observed in BECs with repulsive
interactions [16]. This finding indicates that soliton dynamics
could be quantitatively described by the above integrable re-
pulsive three-component Manakov model. Therefore, we dis-
cuss the possibilities to observe DVDSs in three-component
repulsive BECs in combination with well-developed quan-
tum engineering techniques [8,15,16,53,54]. In this repulsive
interaction case, the DVDS should be prepared firstly and
then it creates an effective potential, which is essential for
double-hump bright solitons generation in the other compo-
nents. Now, let us consider quasi-one-dimensional elongated
BECs of 87Rb. The different components are the magnetic
sublevels mF = 0,±1 of the F = 1 hyperfine manifold. In the
beginning, all atoms are prepared in the mF = 0 state. One
can use spatial local control beams to transfer atoms from
the initial state mF = 0 to mF = ±1 [16]. With knowledge
of the density and phase given by the solution of Eq. (2), one
could transfer the atom and imprint phase on them simultane-
ously to approach the initial state for the DVDS and bright
soliton states in the corresponding components. Moreover,
our numerical simulations show that these soliton states are
robust against small deviations and weak noises (see Fig. 4).
Therefore, there are many possibilities to observe them in real
experiments.
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APPENDIX A: DERIVATION OF THE DOUBLE-VALLEY
DARK SOLITON SOLUTION OF EQUATION (1)

The N-component repulsive BEC can be described by the
following N-coupled Manakov model [16,44]:

iqt + 1
2 qxx − q†qq = 0, (A1)

where

q = (q1, q2, ...qN )T,

which admits the following Lax pair:

ψx = U (λ; Q)ψ, (A2a)

ψt = V (λ; Q)ψ, (A2b)

with

U = (iλσ3 + iQ), (A3a)

V = [
iλ2σ3 + iλQ − 1

2 (iσ3Q2 − σ3Qx )
]
, (A3b)

where

Q =
[

0 −q†

q 0N×N

]
, σ3 =

[
1 01×N

0N×1 −IN×N

]
.

As mentioned in the main text, multivalley dark solitons can
be obtained in an N (N > 2) component system. As an exam-
ple, we will take the DVDS solution derivation process in the
three-component case to introduce the calculation method for
MVDSs.

To obtain the DVDS solutions, we use the following seed
solutions:

q01 = e−it , q02 = 0, q03 = 0. (A4)

First, we need to solve the Lax pair Eq. (A2) with the above
seed solutions. We use the following gauge transformation:

S = diag(1, eit , 1, 1),

which converts the variable coefficient differential equation
into a constant-coefficient equation. Then, we can obtain

ψ0,x = U0ψ0, (A5a)

ψ0,t =
(

i

2
U 2

0 + λU0 + i

2
λ2

)
ψ0, (A5b)

where

U0 = i

⎡
⎢⎣

λ −1 0 0
1 −λ 0 0
0 0 −λ 0
0 0 0 −λ

⎤
⎥⎦.

In the following, we consider the property of U0. We can
obtain the characteristic equation of matrix U0 at λ = λ j =
a j + ib j :

det(iτ j − U0) = (λ j + τ j )
2(τ 2

j − λ2
j + 1

) = 0. (A6)

The eigenvalues of Eq. (A6) are

τ j1 = −
√

λ2
j − 1, τ j2 = τ j3 = −λ j, τ j4 =

√
λ2

j − 1. (A7)

To obtain the vector solution of Eq. (A2), we further diago-
nalize the matrix U0. Then, we obtain

φx = Ũ0φ, φ = H−1Sψ, (A8a)

φt =
( i

2
Ũ 2

0 + λ jŨ0 + i

2
λ2

j

)
φ, (A8b)

where the transformation matrix H can be expressed as the
following form:

H =

⎛
⎜⎝

λ j + 1 + τ j1 0 0 λ j + 1 + τ j4

λ j + 1 − τ j1 0 0 λ j + 1 − τ j4

0 1 0 0
0 0 1 0

⎞
⎟⎠.
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Thus, we have the vector solution for Eq. (A8):

φ j =

⎛
⎜⎝

φ j1

φ j2

φ j3

φ j4

⎞
⎟⎠ =

⎛
⎜⎜⎝

c j1 exp i
[
τ j1x + 1

2

(
λ2

j + 2λτ j1 − τ 2
j1

)
t
]

c j2 exp i
[
τ j2x + 1

2

(
λ2

j + 2λτ j2 − τ 2
j2

)
t
]

c j3 exp i
[
τ j3x + 1

2

(
λ2

j + 2λτ j3 − τ 2
j3

)
t
]

c j4 exp i
[
τ j4x + 1

2

(
λ2

j + 2λτ j4 − τ 2
j4

)
t
]
⎞
⎟⎟⎠.

(A9)
The coefficients c j1, c j2, c j3, and c j4 are arbitrary complex
parameters. Then, the special solution of Lax pair Eq. (A2) at
λ j can be obtained based on ψ j = S−1Hφ j :

ψ j =

⎛
⎜⎝

ψ j1

ψ j2

ψ j3

ψ j4

⎞
⎟⎠

=

⎛
⎜⎝

(1 + λ + τ j1)φ j1 + (1 + λ + τ j4)φ j4

[(1 + λ − τ j1)φ j1 + (1 + λ − τ j4)φ j4]e−it

φ j2

φ j3

⎞
⎟⎠.

(A10)

We can see from Eq. (A7) that the algebraic Eq. (A6) has
a pair of opposite complex roots, i.e., τ j1 = −τ j4. To obtain
the DVDS, we pick only one of them in special solution
Eq. (A10). Namely, we need to let φ j1 = 0 (i.e., the coefficient
c j1 = 0) or φ j4 = 0 (i.e., the coefficient c j4 = 0). In this paper,
we choose φ j4 = 0. Then, the above special solutions ψ j for
spectral problem Eq. (A2) at λ j are re-expressed as follows:

ψ j =

⎛
⎜⎝

ψ j1

ψ j2

ψ j3

ψ j4

⎞
⎟⎠ =

⎛
⎜⎝

(1 + λ + τ j1)φ j1

[(1 + λ − τ j1)φ j1]e−it

φ j2

φ j3

⎞
⎟⎠. (A11)

Next, we need to perform a twofold DT using the special
solutions Eq. (A11) to derive the DVDS solutions. First, we
perform the first-step iteration by applying the DT in Ref. [44]
with λ1 = a1 + ib1 and constrain the eigenfunction ψ13 =
φ12 = 0, i.e., the coefficient c12 = 0 (or the eigenfunction
ψ14 = φ13 = 0, i.e., the coefficient c13 = 0):

ψ[1] = T [1]ψ, T [1] = I + λ∗
1 − λ1

λ − λ∗
1

ψ1ψ
†
1 �

ψ
†
1 �ψ1

,

Q[1] = Q + (λ1 − λ∗
1 )

[
σ3,

ψ1ψ
†
1 �

ψ
†
1 �ψ1

]
, (A12)

where � = diag(1,−1,−1,−1) and a dagger denotes the
matrix transpose and complex conjugate. For the second-
step iteration, we employ ψ2, which is mapped to ψ2[1] =
T [1]|λ=λ2ψ2 with λ2 = a2 + ib2, and we constrain the eigen-
function ψ24 = φ23 = 0, i.e., the coefficient c23 = 0 (or the
eigenfunction ψ23 = φ22 = 0, i.e., the coefficient c22 = 0):

ψ[2] = T [2]ψ[1], T [2] = I + λ∗
2 − λ2

λ − λ∗
2

ψ2[1]ψ2[1]†�

ψ2[1]†�ψ2[1]
,

Q[2] = Q[1] + (λ2 − λ∗
2 )

[
σ3,

ψ2[1]ψ2[1]†�

ψ2[1]†�ψ2[1]

]
. (A13)

Now, the solution Eq. (A13) will describe the incoherent
interaction of incoherent solitons. Based on the generation
mechanism of nondegenerate solitons [24], it requires the
velocity of incoherent soliton to be equal. Only if the above
iterative processes and velocity requirements are met can the
first component of solution Q[2] be the DVDS solution. Then,
we need to analyze the relationship between the soliton veloc-
ity and spectral parameter λ j .

We find that the solitons’ velocities can be obtained by
calculating the following:

ṽ j = [Im(τ j1) − b j]Re(τ j1) − [Im(τ j1) + 3b j]a j

Im(τ j1) + b j
, (A14)

and the inverse soliton width is

w̃ j = −[Im(τ j1) + b j]. (A15)

Moreover, the spectral parameters should satisfy the con-
straint condition

[b j − Im(τ j1)]2 + [a j − Re(τ j1)]2 − 1 > 0. (A16)

With the spectral parameter λ j = a j + ib j , the velocity or
width of the soliton cannot be directly determined by the
real or imaginary part of the spectral parameter. This greatly
increases the difficulty of taking the equal velocity in the
twofold DT Eqs. (A12) and (A13) with different spectral
parameters. Accordingly, we express the real and imaginary
parts of the spectrum parameter by the velocity ṽ j and width
w̃ j . By combining Eqs. (A14)–(A16) and performing further
calculations, we obtain

a j = − ṽ j
(
1 + ṽ2

j + w̃2
j

)
2
(̃
v2

j + w̃2
j

) , b j = w̃ j
(
1 − ṽ2

j − w̃2
j

)
2
(̃
v2

j + w̃2
j

) ,

(A17)

and the constrain condition is represented as

ṽ2
j + w̃2

j < 1. (A18)

Under this representation, one can guarantee that the solitons’
velocities in the first-step iteration Eq. (A12) and the second-
step iteration Eq. (A13) remain exactly equal, i.e., ṽ2 = ṽ1. In
other words, by performing the iterations in Eqs. (A12) and
(A13) and setting the spectral parameters under the condition
Eqs. (A17) and (A18), the first component of Q[2] is the
DVDS solution.

As we have mentioned above, the velocity expression plays
a crucial role in the derivation process of multivalley dark
solitons. However, for the spectral parameter with the form
λ j = a j + ib j , we must take the square root of a complex
number to obtain the physical parameters, namely, the veloc-
ity and width. To facilitate this analysis, we employ a more
direct approach. Interestingly, we note that if we describe
the spectral parameter with the form λ j = 1

2 (ξ j + 1
ξ j

) with an
arbitrary complex parameter ξ j = −v j + iw j , the solution can
be simplified greatly. For this case, v j of real part is velocity,
and imaginary part w j is the width-dependent parameter of
soliton. The physical meanings of the parameters v j and w j

are much clearer than those of the parameters aj and b j [com-
pared to Eq. (A17)], as shown in Fig. 9. Then the eigenvalues
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FIG. 9. The relation between the velocity and spectral parameter
expressed by different representations. (a) The spectral parameter is
written as λ1 = 1

2 (ξ1 + 1/ξ1) with ξ1 = −v1 + iw1. For this case, v1

is the velocity of the soliton. Therefore, there is a linear relationship
between the velocity and the real part of the complex parameter ξ1.
(b) The spectral parameter is written as λ1 = a1 + ib1. This clearly
shows a nonlinear relation between the velocity and spectral parame-
ter. Therefore, we introduce the parameters ξ j to simplify our soliton
solution, which is also much more convenient for discussing the
soliton’s physical properties. The white line corresponds to w1 �= 0
or b1 �= 0.

of Eq. (A6) can be re-expressed as

τ j1 = −1

2

[
ξ j − 1

ξ j

]
, τ j2 = −1

2

[
ξ j + 1

ξ j

]
,

τ j3 = −1

2

[
ξ j + 1

ξ j

]
, τ j4 = 1

2

[
1

ξ j
− ξ j

]
.

To simplify the solution forms, we can set the coefficients φ j1,
φ j2, and φ j3 to

c j1 = 1, (A19)

c j2 = ξ j + 1

ξ j

√
1 − |ξ j |2α j, (A20)

c j3 = ξ j + 1

ξ j

√
1 − |ξ j |2β j, (A21)

where α j and β j are arbitrary constants. Then, the specific
solution Eq. (A11) of spectrum problem Eq. (A2) at λ j can be
re-expressed as the following form:

ψ j =

⎛
⎜⎝

ψ j1

ψ j2

ψ j3

ψ j4

⎞
⎟⎠ =

⎛
⎜⎜⎝

(1 + ξ j )φ j1

(1 + 1
ξ j

)φ j1e−it

φ j2

φ j3

⎞
⎟⎟⎠. (A22)

Then, we can obtain the DVDS solution in the first
component of Q[2] and the bright solitons in the other
two components by performing the following twofold DT
processes. For the first-step DT Eq. (A12), the spectral pa-
rameters are λ1 = 1

2 (ξ1 + 1/ξ1) and ξ1 = −v1 + iw1, and the
eigenfunction is constrained by ψ13 = φ12 = 0, i.e., α1 = 0
(or the eigenfunction ψ14 = φ13 = 0, i.e., β1 = 0). For the
second-step DT Eq. (A13), the spectral parameters are λ2 =
1
2 (ξ2 + 1/ξ2) and ξ2 = −v1 + iw2, and the eigenfunction is
constrained by ψ24 = φ23 = 0, i.e., β2 = 0 (or the eigenfunc-
tion ψ23 = φ23 = 0, i.e., α2 = 0). The simplified solution for
Q[2] Eq. (A13) is presented in Eq. (2), where β1 = 0, α2 = 0,

α1 and β2 are nonzero constants. The parameter v1 is the
velocity, and w1 and w2 are the width-dependent parameters
for DVDSs. It should also be mentioned that when the real
parts of ξ1 and ξ2 are not equal, the solution Eq. (A13) is
related to the incoherent interaction of incoherent solitons, as
reported in Ref. [24]. To get the DVDS-related nondegenerate
solitons, we choose the same real parts for ξ1 and ξ2, based on
the formation mechanism of nondegenerate solitons [24].

To study the collision dynamics of DVDSs, further itera-
tions are needed. For example, we can investigate the collision
between a DVDS and an SVDS by performing a third-step DT
with λ3 = 1

2 (ξ3 + 1/ξ3) and ξ3 = −v2 + iw3. We employ ψ3,
which is mapped to ψ3[2] = (T [2]ψ3[1])|λ=λ3 with ψ3[1] =
(T [1]ψ3)|λ=λ3 :

ψ[3] = T [3]ψ[2], T [3] = I + λ∗
3 − λ3

λ − λ∗
3

ψ3[2]ψ3[2]†�

ψ3[2]†�ψ3[2]
,

Q[3] = Q[2] + (λ3 − λ∗
3 )

[
σ3,

ψ3[2]ψ3[2]†�

ψ3[2]†�ψ3[2]

]
. (A23)

For this case, we constrain the eigenfunctions ψ33 �= 0 and
ψ34 �= 0, i.e., α3 �= 0, β3 �= 0, and the eigenfunctions ψ1 and
ψ2 are the same as in the first-step and second-step DT. A
typical example of this case is shown in Figs. 5(a1)–5(a3),
demonstrating a striking collision process for which a DVDS
is transformed into a breather after colliding with an SVDS.

Naturally, by performing a fourth-step DT, one can investi-
gate the interaction between two DVDSs. Before performing
this iteration, the eigenfunctions of ψ3 in the third-step DT
Eq. (A23) should be made to satisfy the constraint condi-
tions where the eigenfunction ψ34 = φ33 = 0, i.e., β3 = 0
(or the eigenfunction ψ33 = φ32 = 0, i.e., α3 = 0). Then, we
employ ψ4, which is mapped to ψ4[3] = (T [3]ψ4[2])|λ=λ4 =
(T [3]T [2]T [1]ψ4)|λ=λ4 . Then, the two DVDS solutions can
be obtained as follows with the spectral parameters λ4 =
1
2 (ξ4 + 1/ξ4) and ξ4 = −v2 + iw4, and we can constrain the
eigenfunction ψ43 = φ42 = 0, i.e., α4 = 0 (or the eigenfunc-
tion ψ44 = φ43 = 0, i.e., β4 = 0):

Q[4] = Q[3] + (λ4 − λ∗
4 )

[
σ3,

ψ4[3]ψ4[3]†�

ψ4[3]†�ψ4[3]

]
. (A24)

In the four-component case, the TVDS can also be ob-
tained by performing the above developed DT with threefold
iterations. We do not show the detailed derivation for this
process herein. The simplified solution for TVDS is presented
in Eq. (10).

In general, the n-fold Darboux matrix can be constructed
in the following form:

Tn = I + YnM−1
n (λI − Dn)−1Y†

n�, (A25)

with

Yn = [|ψ1〉, |ψ2〉, · · · , |ψn〉] =
[
�1

�2

]
,

Dn = diag(λ∗
1, λ

∗
2, · · · , λ∗

n ),

Mn =
( 〈ψi|ψ j〉

λ∗
i − λ j

)
1�i, j�n

,
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�1 is a 1 × n matrix, and �2 is an N × n matrix. The Bäck-
lund transformation between the old potential functions and
the new functions is expressed as follows:

q[n] = q + 2�2M−1�
†
1 . (A26)

APPENDIX B: THE EXPLICIT EXPRESSIONS FOR
mi, fi, gi, hi, δi, ρi, ϑi, �i, xi, AND di IN ASYMPTOTIC

ANALYSIS EXPRESSIONS

The explicit expressions of mi in the DVDS-related vector
soliton solutions Eq. (4) are

m1 = (w1 − w2)2

(w1 + w2)2
|y13|2|y23|2,

m2 = α2
1β

2
2 |z13|2|z23|2,

m3 = α2
1 |y23|2|z13|2,

m4 = β2
2 |y13|2|z23|2.

The explicit expressions of fi in Eq. (4a) are

f1 = ξ ∗
1 ξ ∗

2 ξ ∗
3 (w1 − w2)2

ξ1ξ2ξ3(w1 + w2)2
|y13|2|y23|2,

f2 = ξ ∗
3

ξ3
α2

1β
2
2 |z13|2|z23|2,

f3 = ξ ∗
1 ξ ∗

3

ξ1ξ3
β2

2 |y13|2|z23|2,

f4 = ξ ∗
2 ξ ∗

3

ξ2ξ3
α2

1 |y23|2|z13|2.

The explicit expressions of gi in Eq. (4b) are

g1 = α1r1ξ
−1
1 y∗

13z31,

g2 = w1 − w2

w1 + w2
|y23|2,

g3 = β2|z23|2.
The explicit expressions of hi in Eq. (4c) are

h1 = β2r2ξ
−1
2 y∗

32z32,

h2 = w1 − w2

w1 + w2
|y13|2,

h3 = −α2
1 |z13|2,

where

�i j = (ξi − ξ ∗
j )(ξiξ

∗
j − 1), ηi j = (ξi − ξ j )(ξiξ j − 1),

ri = (ξi − ξ ∗
i )

√
1 − |ξi|2, zi j = ξ ∗

i − ξ j, yi j = ξi − ξ j .

The explicit expressions of i in the vector breather solu-
tions Eq. (5) are

1 = (λ1 − λ∗
1 )(λ2 − λ∗

2 ),

2 = (u2n∗
2 − u1n∗

1 )(u∗
4n3 + u∗

3n4),

3 = (|n1|2 − |n2|2)(|u1|2 − |u2|2)|λ1 − λ∗
2|2

+ |n∗
1u1 − n∗

2u2|21,

4 = (|n3|2 + |n4|2)(|u3|2 + |u4|2)|λ1 − λ∗
2|2

+ |n∗
3u4 + n∗

4u3|21,

5 = |λ1 − λ∗
2|2(|n2|2 − |n1|2)(|u3|2 + |u4|2),

6 = |λ1 − λ∗
2|2(|u2|2 − |u1|2)(|n3|2 + |n4|2).

The explicit expressions of δi in Eq. (5a) are

δ1 = (u∗
4n3 + u∗

3n4)[n∗
2u2 − u1n∗

1 + 2u2n∗
1(λ1 − λ∗

2 )]1,

δ2 = (u4n∗
3 + u3n∗

4 )[n2u∗
2 − u∗

1n1 − 2u∗
1n2(λ∗

1 − λ2)]1,

δ3 = (|n1|2 − |n2|2)(|u1|2 − |u2|2)|λ1 − λ∗
2|2

+ |n∗
1u1 − n∗

2u2|21

+ i4u∗
1u2λ

i
1[|n2|2(λ1 − λ2)(λ∗

1 − λ2)

+ |n1|2(λ∗
2 − λ∗

1 )(λ1 − λ∗
2 )]

+ i4n∗
1n2λ

i
2[|u2|2(λ1 − λ2)(λ1 − λ∗

2 )

+ |u1|2(λ∗
2 − λ∗

1 )(λ∗
1 − λ2)],

δ4 = (|n3|2 + |n4|2)(|u4|2 + |u3|2)|λ1 − λ∗
2|

+ |n∗
3u4 + n∗

4u3|21,

δ5 = (|u4|2 + |u3|2)|λ1 − λ∗
2|2[|n2|2

− |n1|2 + 2n∗
1n2(λ2 − λ∗

2 )],

δ6 = (|n3|2 + |n4|2)|λ1 − λ∗
2|2[|u2|2 − |u1|2

+ 2u∗
1u2(λ1 − λ∗

1 )].

The explicit expressions of ρi in Eq. (5b) are

ρ1 = u4(λ1 − λ∗
2 ){u∗

1[|n1|2(λ∗
2 − λ∗

1 ) + |n2|2(λ∗
1 − λ2)]

+ u∗
2n∗

1n2(λ2 − λ∗
2 )},

ρ2 = u∗
1(λ∗

1 − λ2){u4[|n3|2(λ1 − λ2) + |n4|2(λ1 − λ∗
2 )]

+ u3n3n∗
4(λ∗

2 − λ2)},
ρ3 = n3(λ∗

1 − λ2){n∗
1[|u2|2(λ1 − λ∗

2 ) + |u1|2(λ∗
2 − λ∗

1 )]

+ n∗
2u∗

1u2(λ∗
1 − λ2)},

ρ4 = n∗
1(λ1 − λ∗

2 ){n3[|u4|2(λ1 − λ2) + |u3|2(λ∗
1 − λ2)]

+ n4u∗
3u4(λ1 − λ∗

1 )}.
The explicit expressions of ϑi in Eq. (5c) are

ϑ1 = u3(λ∗
2 − λ1){u∗

1[|n1|2(λ∗
1 − λ∗

2 ) + |n2|2(λ2 − λ∗
1 )]

+ u∗
2n∗

1n2(λ∗
2 − λ2)},

ϑ2 = u∗
1(λ∗

1 − λ2){u3[|n3|2(λ1 − λ∗
2 ) + |n4|2(λ1 − λ2)]

+ n4n∗
3u4(λ∗

2 − λ2)},
ϑ3 = n4(λ∗

1 − λ2){n∗
1[|u1|2(λ∗

2 − λ∗
1 ) + |u2|2(λ1 − λ∗

2 )]

+ n∗
2u∗

1u2(λ∗
1 − λ1)},

ϑ4 = n∗
1(λ1 − λ∗

2 ){n4[|u4|2(λ∗
1 − λ2) + |u3|2(λ1 − λ2)]

+ n3u3u∗
4(λ1 − λ∗

1 )},
where

u1 = 1 + ξ1, u2 = 1 + ξ−1
1 ,

n1 = 1 + ξ2, n2 = 1 + ξ−1
2 ,

u3 = − α1α3β3s1�33(
α2

3 + β2
3

)
ξ3�13

,
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n3 = − α3β2β3s2�33(
α2

3 + β2
3

)
ξ3�23

,

u4 = α1s1
(
α2

3ξ
∗
3 η13 + β2

3ξ3�13
)(

α2
3 + β2

3

)
ξ1ξ3�13

,

n4 = β2s2
(
β2

3ξ ∗
3 η23 + α2

3ξ3�23
)(

α2
3 + β2

3

)
ξ2ξ3�23

,

with

si = (1 + ξi )
√

1 − |ξi|2.

The explicit expressions of xi and di in the fundamental DBBS
solutions Eqs. (7) and (8) are

d1 = 1

2
ln x1, x1 = α2

3
|η13|2
|�13|2 + β2

3
|η23|2
|�23|2 ,

d2 = 1

2
ln x2, x2 =

(
α2

3 + β2
3

)|z13|2|z23|2
|y13|2|y23|2 .

APPENDIX C: THE EXPLICIT EXPRESSIONS FOR ηi AND
pi IN EQ. (10)

The expressions of ηi and pi in the TVDS solutions
Eq. (10) are given by following:

η1 = (w1 − w2)2(w1 − w3)2(w2 − w3)2,

η2 = (w1 + w2)2(w2 − w3)2(w1 + w3)2,

η3 = (w1 + w2)2(w1 − w3)2(w2 + w3)2,

η4 = (w1 − w2)2(w1 + w3)2(w2 + w3)2,

η5 = (w1 + w2)2(w1 + w3)2(w2 + w3)2,

p1 = (
w2

1 − w2
2

)(
w2

1 − w2
3

)
(w2 − w3)2,

p2 = (w1 + w2)2
(
w2

1 − w2
3

)
(w2 + w3)2,

p3 = (
w2

1 − w2
2

)
(w1 + w3)2(w2 + w3)2,

p4 = (
w2

2 − w2
1

)
(w1 − w3)2

(
w2

2 − w2
3

)
,

p5 = (w1 + w2)2(w1 + w3)2
(
w2

2 − w2
3

)
,

p6 = (w1 − w2)2
(
w2

1 − w2
3

)(
w2

2 − w2
3

)
.
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