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Mean-field theory of an asset exchange model with economic growth and wealth distribution
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We develop a mean-field theory of the growth, exchange, and distribution (GED) model introduced by Liu
et al. [K. K. L. Liu et al., preceding paper, Phys. Rev. E 104, 014150 (2021)] that accurately describes the phase
transition in the limit that the number of agents N approaches infinity. The GED model is a generalization of
the yard-sale model in which the additional wealth added by economic growth is nonuniformly distributed to
the agents according to their wealth in a way determined by the parameter λ. The model is shown numerically
to have a phase transition at λ = 1 and be characterized by critical exponents and critical slowing down. Our
mean-field treatment of the GED model correctly predicts the existence of the phase transition, a critical slowing
down, and the values of the critical exponents and introduces an energy whose probability satisfies the Boltzmann
distribution for λ < 1, implying that the system is in thermodynamic equilibrium in the limit that N → ∞. We
show that the values of the critical exponents obtained by varying λ for a fixed value of N do not satisfy the usual
scaling laws, but do satisfy scaling if a combination of parameters, which we refer to as the Ginzburg parameter,
is much greater than one and is held constant. We discuss possible implications of our results for understanding
economic systems and the subtle nature of the mean-field limit in systems with both additive and multiplicative
noise.
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I. INTRODUCTION

Agent-based asset exchange models have become useful
[1–11] for studying the effects of chance on the distribution
of wealth. These models consist of N agents that can ex-
change wealth through pairwise encounters. Examples of the
exchange mechanism include the transfer of a fixed amount of
wealth and the exchange of a fixed percentage of the average
of the wealth of the two agents. The common feature of these
models is that the winner in the exchange is determined by
chance.

Of particular interest is the yard-sale model [2,5–8,12–19]
in which pairs of agents are chosen at random and one is
designated as the winner with a probability usually taken to
be 1

2 . The winner receives a fraction f of the wealth of the
poorer agent. The result is that after many exchanges, one
agent gains almost all of the wealth, a phenomenon known
as wealth condensation.

*klein@bu.edu
†Present address: Los Alamos National Laboratory, Los Alamos,

NM 87545, USA.

In this paper we study a generalization of the yard-sale
model [20] in which a fixed percentage μ of the total wealth
is added to the system after N exchanges. The added wealth is
distributed according to

�wi(t ) = μW (t )
wλ

i (t )∑N
j=1 wλ

j (t )
, (1)

where wi(t ) is the wealth of agent i at time t and λ � 0 is
the distribution parameter. The quantity μW (t ) is the change
in the total wealth in the system at time t due to economic
growth, where W (t ) is the total wealth of the system at time
t and the parameter μ is the rate of growth. One unit of time
corresponds to N2 exchanges. This distribution mechanism is
justified by economic data in the Appendix of Ref. [20].

This model, which we refer to as the growth, exchange, and
distribution (GED) model, was investigated numerically [20]
and shown to have a phase transition at λ = 1. For 0 < λ < 1
the wealth is not distributed uniformly, but wealth condensa-
tion is avoided. As λ approaches 1 from below, the wealth
distribution becomes more skewed toward the rich. However,
there is economic mobility and poorer agents can become
richer and richer agents can become poorer. In addition, every
agent’s wealth increases exponentially as eμt due to economic
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growth as the system evolves with time. In contrast, for λ � 1
there is wealth condensation as was found in the original
yard-sale model (μ = 0) and there is no economic mobility.

Numerical investigations indicate that the phase transition
at λ = 1 is continuous [20]. The order parameter φ is defined
as the fraction of the wealth held by all of the agents except
the richest and goes to zero as λ → 1− (for N → ∞). Three
exponents were introduced in Ref. [20] to characterize the
behavior of various quantities as λ → 1−, including the order
parameter φ ∼ (1 − λ)β and the susceptibility χ ∼ (1 − λ)−γ

(the variance of the order parameter). As we will discuss in
Sec. IV, we can define the total energy of the system and
introduce the exponent α to characterize the critical behavior
of the nonanalytic part of the mean energy as (1 − λ)1−α .
Similarly, we relate the specific heat to the variance of the
energy and characterize its divergence as (1 − λ)−α . Because
there is no length scale in the GED model, there is no obvious
way of defining a correlation length exponent.

Simulations at fixed values of N in Ref. [20] yield the es-
timates β ≈ 0, γ ≈ 1, 1 − α ≈ −1, and α ≈ 2. These values
do not satisfy the scaling law [21]

α + 2β + γ = 2 (2)

and do not appear to correspond to any known universality
class.

In this paper we present a mean-field treatment of the GED
model and find that the interpretation of the critical exponents
is subtle. The theory shows that if the critical behavior is
interpreted correctly, the exponents do satisfy Eq. (2) with
β = 0, γ = 1, and α = 1. Moreover, we can define an energy
and a Hamiltonian that allows us to obtain an equilibrium
(Boltzmann) description of the GED model in the limit that
the number of agents N → ∞. The mean-field theory results
are consistent with the simulations [20].

In addition to casting light on the nature of the critical
point, the mean-field approach predicts that for λ < 1, the
wealth distribution can be made less skewed toward the rich
by increased growth for fixed N , λ, and f . The mean-field
approach also indicates that wealth inequality can be reduced
for fixed λ < 1 and fixed N and μ by decreasing the value
of f , corresponding to decreasing the magnitude of the noise.
However, for λ � 1, economic growth does not avoid wealth
condensation and there is no economic mobility.

The structure of the remainder of the paper is as follows. In
Sec. II we construct an exact differential equation for the GED
model and then introduce the mean-field approximation to the
equation. In Sec. III we show that there is a phase transition
at λ = 1 with critical slowing down and obtain the values of
the critical exponents β and γ . In Sec. IV we introduce the
Ginzburg parameter, define the total energy of the system, and
determine the critical exponent α. In Sec. V we compare the
predicted mean-field exponents with the numerical estimates.
We discuss the role of multiplicative noise in the GED model
in Sec. VI and examine the relation between the GED model
and the geometric random walk in Sec. VII. In Sec. VIII we
discuss the implication of these results for critical phenomena
in fully connected systems and systems with long but finite-
range interactions and discuss the implication of our results
for the study of economic systems. Because the GED model
is similar in several ways to the fully connected Ising model,

we review some aspects of that model in the Appendix and
discuss the Ginzburg criterion as a self-consistency check on
the applicability of mean-field theory.

II. EXACT AND MEAN-FIELD EQUATIONS

The rate of change of the wealth of agent i is given by a
formally exact stochastic difference equation

�wi(t )

1
= f

∑
j

	[wi(t ) − w j (t )]ηi j (t )w j (t )

+ f
∑

j

{1 − 	[wi(t ) − w j (t )]}ηi j(t )wi(t )

+μW (t )
wi(t )λ

S(t )
. (3)

The denominator on the left-hand side of Eq. (3) is written as
1 to emphasize that Eq. (3) is a difference equation rather than
a differential equation. Here

	(wi − w j ) =
{

1 (wi � w j )

0 (wi < w j )
(4)

and

S(t ) =
∑

i

wλ
i (t ). (5)

The parameter f is the fraction of the poorer agents’s wealth
that is exchanged, μ is the fraction of the total wealth that
is added after N exchanges, the parameter λ determines the
distribution of the added economic growth, and ηi j (t ) for i �=
j is a time-dependent random matrix element such that

ηi j (t )

=

⎧⎪⎨
⎪⎩

0 if agents i and j do not exchange wealth

1 if wealth is transferred from agent j to agent i

−1 if wealth is transferred from agent i to agent j
(6)

(ηi j = 0 if i = j). The matrix elements of η can be chosen
from any probability distribution with the constraint that if
ηi j = ±1, then η ji = ∓1. This condition imposes the con-
straint that the exchange conserves the total wealth.

To obtain a differential equation we multiply and divide
the denominator on the left-hand side of Eq. (3) by N , the
number of agents. Because we will take the limit N → ∞ and
take one time unit to correspond to N2 exchanges, we have
that 1/N → dt . Note that in the simulations of Ref. [20], N
exchanges were chosen as the unit of time. In this case each
agent will, on average, exchange wealth with only one other
agent and hence one exchange described by the difference
equation would not take place in an infinitesimal amount of
time. One exchange per agent does take place in an infinitesi-
mal time if one time unit corresponds to N2 exchanges during
which each agent exchanges wealth with every other agent on
average.

The parameters f and μ in Eq. (3) are the rates of exchange
and growth, respectively, and are defined per N exchanges
to be consistent with the simulations. To obtain a consistent
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differential equation, these rates need to be scaled by N . We
let

f = f0/N, μ = μ0/N (7)

and assume that f0 and μ0 are independent of N . We will see
that these theoretical considerations imply that the values of
the parameters f and μ chosen in the simulations must be
scaled with N if the Ginzburg parameter is held fixed.

Because wealth is added to the system after every N ex-
changes, the total wealth in the system at time t is given by

W (t ) = W (0)eμ0t . (8)

With these considerations Eq. (3) becomes

dwi(t )

dt
= f0

∑
j

	[wi(t ) − w j (t )]ηi j (t )w j (t )

+ f0

∑
j

{1 − 	[wi(t ) − w j (t )]}ηi j (t )wi(t )

+ μ0W (t )
wi(t )λ

S(t )
. (9)

To obtain a mean-field theory, we choose an agent whose
wealth is w(t ) and let wmf (t ) be the mean wealth of the
remaining agents, that is,

wmf (t ) = W (t ) − w(t )

N − 1
. (10)

The mean-field version of Eq. (9) is

dw(t )

dt
= f0	[w(t ) − wmf (t )]ηwmf (t )

+ f0{1 − 	[w(t ) − wmf (t )]}ηw(t )

+μ0W (t )
w(t )λ

S(t )
. (11)

The quantity S(t ) defined in Eq. (5) becomes

S(t ) = wλ(t ) + (N − 1)wλ
mf (t ). (12)

To obtain a mean-field description we have effectively
coarse grained the exchanges between the chosen agent and
the remaining N − 1 agents in time, which implies a coarse
graining of the noise associated with the coin flips that de-
termine the exchange of wealth. By using the central limit
theorem, we can take the noise in Eq. (11) to be random
Gaussian. This assumption would not be valid if the chosen
agent interacted with only one other agent in one unit of
time. However, because the unit of time corresponds to N2

exchanges, the chosen agent interacts with N − 1 other agents
and coarse graining in time makes sense. The coarse graining
of the noise is another reason why it is necessary to choose N2

exchanges to be one unit of time in the mean-field theory.
It will be convenient to write the growth term in Eq. (11)

as

μ0W (t )
wλ(t )

S(t )
= μ0W (t )

[w(t )/W (t )]λ

[w(t )/W (t )]λ + (N − 1)1−λ[1 − w(t )/W (t )]λ
, (13)

where we have used Eqs. (10) and (12) and divided the numerator and denominator by W λ(t ). To simplify Eq. (11), we first
assume that w(t ) < wmf (t ); that is, the wealth of the chosen agent is less than the mean wealth of the remaining N − 1 agents.
We use Eqs. (9) and (13) to obtain

dw(t )

dt
= f0η(t )w(t ) + μ0W (t )

[w(t )/W (t )]λ

[w(t )/W (t )]λ + (N − 1)1−λ[1 − w(t )/W (t )]λ
. (14)

We divide both sides of Eq. (14) by W (t ) and rewrite Eq. (14) as

d

dt

(
w(t )

W (t )

)
= f0η(t )

w(t )

W (t )
+ μ0

[w(t )/W (t )]λ

[w(t )/W (t )]λ + (N − 1)1−λ[1 − w(t )/W (t )]λ
− μ0

w(t )

W (t )
, (15)

where we have used the relation [see Eq. (8)]

1

W (t )

dw(t )

dt
= d

dt

(
w(t )

W (t )

)
+ μ0

w(t )

W (t )
. (16)

We next introduce the scaled wealth fraction

x(t ) ≡ w(t )

W (t )
(17)

and rewrite Eq. (15) as

dx(t )

dt
= R(x, η, t ) (18a)

with

R(x, η, t ) ≡ f0η(t )x(t ) + μ0
x(t )λ

x(t )λ + (N − 1)1−λ[1 − x(t )]λ
− μ0x(t ). (18b)

Equation (18) expresses the time dependence of the wealth of the chosen agent in contact with a mean field representing the
mean wealth of the remaining agents. Hence, the wealth of the chosen agent is not conserved. For μ0 = 0, the total wealth W
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is a constant because the noise η(t ) that determines the wealth transfer from the mean-field wealth to the chosen agent is the
negative of the noise that governs the wealth transfer from the chosen agent to the mean field.

It is easy to show that for zero noise R(x, η = 0, t ) = 0 for x = 0, 1, and 1/N and that these are the only fixed points of
Eq. (18) for λ �= 1. To determine the stability of the fixed points, we calculate the derivative dR(x, η = 0, t )/dx and obtain

dR(x, 0, t )

dx
= μ0

λxλ−1

xλ + (N − 1)1−λ(1 − x)λ
− μ0

xλ[λxλ−1 − λ(N − 1)1−λ(1 − x)λ−1]

[xλ + (N − 1)1−λ(1 − x)λ]2
− μ0, (19)

where x ≡ x(t ). For λ < 1, the derivatives at x = 0 and x = 1 are equal to ∞, which implies that these fixed points are unstable.
The derivative at x = 1/N is equal to μ0(λ − 1), and hence the fixed point at x = 1/N is stable for λ < 1. For λ > 1 the derivative
at x = 1/N is positive, so this fixed point is unstable. The derivative at x = 0 and x = 1 equals −1, and hence these fixed points
are stable.

We next return to Eq. (9) and consider the case for which w(t ) > wmf (t ). The growth term is the same as before. The exchange
term in Eq. (3), f0

∑
j 	(wi − w j )ηi jw j , becomes f0ηwmf . We use Eq. (10) to write

dw(t )

dt
= f0η(t )

W (t ) − w(t )

N − 1
+ μ0W (t )

[w(t )/W (t )]λ

[w(t )/W (t )]λ + (N − 1)1−λ[1 − w(t )/W (t )]λ
. (20)

From Eq. (16) and the definition of x(t ) in Eq. (17) we have

dx(t )

dt
= f0η(t )

1 − x(t )

N − 1
+ μ0

x(t )λ

x(t )λ + (N − 1)1−λ[1 − x(t )]λ
− μ0x(t ). (21)

Equation (18) for the poorer agent and Eq. (21) for the richer agent are the same except for the noise term, and hence the fixed
points are the same. We again use Eq. (10) to rewrite Eq. (21) as

dx(t )

dt
= f0η(t )xmf (t ) + μ0

x(t )λ

x(t )λ + (N − 1)1−λ[1 − x(t )]λ
− μ0x(t ), (22)

where xmf (t ) = wmf (t )/W (t ) is the fraction of the mean-field
agent’s rescaled wealth. Note that x(t ) is of order 1/N , as is
xmf (t ). Equation (22) will be used in Sec. III to discuss the
phase transition and the critical exponents.

In summary, the fixed points for all values of λ are x = 0,
1, and 1/N for the mean-field equations describing the wealth
evolution of either the richer or poorer agent. For λ < 1, the
fixed points at 0 and 1 are unstable and the fixed point at 1/N
is stable, corresponding to all agents having an equal share of
the total wealth on average. For λ > 1, the fixed points at 0 and
1 are stable and the fixed point at x = 1/N is unstable, which
implies that if all the agents are assigned an equal amount of
wealth at t = 0, one agent will eventually accumulate all the
wealth in a simulation of the model. Note that if we use the
equation for which the chosen agent is richer than the “mean-
field” agent, then the stable fixed point reached when λ > 1 is
x = 1; similarly, if we chose the equation for which the chosen
agent is poorer than the mean-field agent, the stable fixed point
reached for λ > 1 is x = 0.

III. PHASE TRANSITION

To analyze the phase transition at λ = 1, we investigate
Eq. (22), the mean-field differential equation for the richer
agent, for x ∼ 1/N and λ close to 1−. We let

x(t ) = 1

N
− δ(t ), (23)

assume Nδ 	 1, and expand the second term on the right-
hand side of Eq. (18b) to first order in Nδ. After some

straightforward algebra we find that

dδ(t )

dt
= f0η(t )xmf (t ) − μ0(1 − λ)δ(t ). (24)

We multiply both sides of Eq. (24) by N to obtain

dNδ(t )

dt
= f0η(t )w̃mf − μ0(1 − λ)Nδ(t ), (25)

where w̃mf = Nxmf . We write w̃mf = 1 − Nδ, let

φ = Nδ, (26)

and rewrite Eq. (25) as

dφ(t )

dt
= f0η(t )[1 − φ(t )] − μ0(1 − λ)φ(t ). (27)

As mentioned, we can assume the noise η(t ) to be associ-
ated with a random Gaussian distribution of coin flips. Note
that η is the average over N coin flips and hence should scale
as

√
N/N ∼ 1/

√
N . Hence η(t ) in Eq. (27) is order 1/

√
N ,

which implies that φ(t ) ∼ 1/
√

N and justifies our neglect of
terms higher than first order. Simulations in Ref. [20] show
that the fluctuations are dominated by those near the 1/N fixed
point.

Because φ(t ) ∼ 1/
√

N 	 1 for N � 1, we can ignore φ(t )
compared to one in Eq. (27) and obtain

dφ(t )

dt
= f0η(t ) − (1 − λ)μ0φ(t ). (28)

The implications of neglecting the term f0ηφ(t ) in Eq. (27),
which generates multiplicative noise, are discussed in Sec. VI.
Here we note that the multiplicative noise term vanishes if the
limit N → ∞ is taken before the critical point is approached,
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that is, if the mean-field limit is taken before λ → 1. However,
for finite N the situation is more subtle.

The starting point for the derivation of Eq. (28) was
Eq. (22), the mean-field equation for the richer chosen agent.
If the chosen agent is poorer than the average of the other
agents, similar arguments lead to the same equation as
Eq. (28).

The form of Eq. (28) is identical to the linearized version
of the Landau-Ginzburg equation [22–24] with φ as the fluc-
tuating part of the order parameter. Hence, λ = 1 corresponds
to a phase transition as was found in simulations of the GED
model [20]. As for the usual Landau-Ginzburg equation, the
factor of 1 − λ sets the timescale for μ0 �= 0. That is, as
λ → 1−, there is critical slowing down and the system decor-
relates on the timescale

τ ∼ 1

μ0(1 − λ)
. (29)

Because the stable fixed point of the poorer agent is zero
for λ > 1 [see Eq. (18)] and is one for the richer agent [see
Eq. (21)], the order parameter is constant for both λ > 1 and
λ < 1, which indicates that there is a discontinuous jump in
the order parameter at λ = 1. Hence, the exponent β, which
characterizes the way the order parameter approaches its value
at the transition, is equal to zero.

To obtain the critical exponent γ , we adopt an approach in-
troduced by Parisi and Sourlas [25] and note that the measure
of a random Gaussian noise is given by [25]

P({η j}) = exp
[ ∫ ∞

−∞ −β
∑

j η
2
j (t )dt

]
∫ ∏

j δη j exp
[ ∫ ∞

−∞ −β
∑

j η
2
j (t )dt

] (30)

or

P(η) = exp
[ ∫ ∞

−∞ −βNη2(t )dt
]

∫
δη exp

[ ∫ ∞
−∞ −βNη2(t )dt

] . (31)

The factor of N in the argument of the exponential in

Eq. (31) comes from the fact that η j (t ) = η(t ) for all j in the
mean-field approach. This factor of N is consistent with the
argument that η(t ) ∼ 1/

√
N . (In Ref. [26] the factor of N is

not explicit, but is implicit in the integral over all space.)
We rewrite Eq. (28) as

1

f0

dφ(t )

dt
+ 1 − λ

f0
μ0φ(t ) = η(t ) (32)

and replace η(t ) in Eq. (31) by the left-hand side of Eq. (32).
This replacement requires a Jacobian, but in this mean-field
case the Jacobian is unity [23]. Hence the probability of φ is
given by

P(φ)=
exp

{−βN
∫ ∞
−∞

[
1
f0

dφ(t )
dt + μ0(1−λ)

f0
φ(t )

]2
dt

}
∫

δφ(t ) exp
{−βN

∫ ∞
−∞

[
1
f0

dφ(t )
dt + μ0(1−λ)

f0
φ(t )

]2
dt

} .

(33)
We now assume that the system is in a steady state, so

dφ(t )/dt = 0 over a timescale of the order of 1/μ0(1 − λ).

Hence, the average 〈φ2〉 is given by

〈φ2〉 =
∫

δφ φ2 exp
{−βN

∫ ∞
−∞ dt

[
μ0(1−λ)

f0
φ
]2}

∫
δφ exp

{−βN
∫ ∞
−∞ dt

[
μ0(1−λ)

f0
φ
]2} (34)

=
∫

δφ φ2 exp
[−βN μ0(1−λ)

f 2
0

φ2
]

∫
δφ exp

[−βN μ0(1−λ)
f 2
0

φ2
] , (35)

where the range of integration over time is limited to the
interval 1/μ0(1 − λ).

Because we have assumed a steady state, the functional
integral becomes a standard integral over φ. We can take the
limits of the integrals to be ±∞ because the factor of N � 1
in the exponential keeps φ of order 1/

√
N . Hence, Eq. (35)

now becomes

〈φ2〉 =
∫ ∞
−∞ dφ φ2 exp

{−βN μ0(1−λ)
f 2
0

φ2
}

∫ ∞
−∞ dφ exp

{−βN μ0(1−λ)
f 2
0

φ2
} . (36)

By using simple scaling arguments we see that the second
moment of the probability distribution diverges as

〈φ2〉 ∼ f 2
0

Nμ0(1 − λ)
. (37)

The fluctuating part of the order parameter φ = Nδ is
analogous to the fluctuating part of the order parameter m =
M/N of the fully connected Ising model, where M is the
total magnetization of the system and N is the number of
spins. To determine the susceptibility (per spin) of the Ising
model, we need to multiply [〈m2〉 − 〈m〉2] by N . Because
〈φ2〉 = f 2

0 [Nμ0(1 − λ)]−1 [see Eq. (37)], the susceptibility
(per agent) of the GED model is given by

χ ∼ f 2
0

μ0(1 − λ)
. (38)

We conclude that the susceptibility diverges near the phase
transition with the exponent γ = 1.

Note that we can relate the variance of φ to the variance
of the rescaled wealth. From the definition of δ(t ) in Eq. (23)
and the fact that x(t ) = w(t )/W (t ) is the rescaled wealth [see
Eq. (17)], we have

φ(t ) = 1 − Nx(t ) = 1 − N
w(t )

W (t )
= 1 − Nw̃(t ). (39)

We rescale the total wealth and hence the wealth of each agent
so that W (t ) = N after the increased wealth due to economic
growth has been assigned. Hence w̃ in Eq. (39) is the rescaled
wealth of a single agent. Equation (39) will be useful in Sec. V
where we compare the predictions of the theory to the results
of the simulations in Ref. [20].

IV. ENERGY AND SPECIFIC HEAT EXPONENTS

From Eq. (33) we have that

P(φ) =
exp

{−βNμ0
1−λ

f 2
0

φ2
}

∫
dφ exp

{−βNμ0
1−λ

f 2
0

φ2
} , (40)

assuming that the system is in a steady state. From the ex-
pression of the action or Hamiltonian in Eq. (40), where φ2
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is multiplied by βNμ0(1 − λ)/ f 2
0 , we see that the Ginzburg

parameter for the GED model is given by (up to numerical
factors)

G = Nμ0(1 − λ)

f 2
0

. (41)

To understand why G in Eq. (41) can be interpreted as the
Ginzburg parameter, compare the form of Eq. (40) with the
form of the Hamiltonian for the fully connected Ising model
in Eq. (A5) and the dependences of G in Eqs. (41) and (A6)
on their respective parameters.

The inverse temperature β (not to be confused with
the order parameter critical exponent), which arises from
the amplitude of the Gaussian noise, will be absorbed
in the parameter f0. The association of β with f0 is consistent
with Eq. (32) in that we are relating the temperature to the
amplitude of the noise and indicates that increasing the frac-
tion of the poorer agent’s wealth transferred in an exchange is
equivalent to increasing the amplitude of the noise.

The total energy for the GED model can be seen from the
form of the action or the Hamiltonian in Eq. (40),

E = Nφ2, (42)

in analogy with the Landau-Ginzburg-Wilson free field or
Gaussian action for the fully connected Ising model [27].
Equations (39) and (42) imply that the total energy of a system
of N agents is given by

E =
N∑

i=1

(1 − w̃i)
2 (43a)

= −N +
N∑

i=1

w̃2
i , (43b)

where we have used the fact that
∑

i w̃i = N .
The existence of a quantity that can be interpreted as an

energy implies that the probability density of the energy is
given by the Boltzmann distribution for λ < 1. The latter
is consistent with simulations of the GED model [20]. The
existence of the Boltzmann distribution also implies that the
system is in thermodynamic equilibrium and is not just in a
steady state for λ < 1.

From Eq. (40) we find that 〈φ2〉 ∼ f 2
0 /[Nμ0(1 − λ)].

Hence, we conclude from Eq. (42) that the mean energy per
agent of the GED model scales as

〈E〉
N

∼ f 2
0

Nμ0(1 − λ)
. (44)

Equation (44) suggests that the mean energy per agent di-
verges as (1 − λ)−1 as λ → 1 for fixed N , which is not
physical. However, if we hold the Ginzburg parameter G con-
stant as λ → 1, we find no divergence (the exponent is zero),
which removes the apparent nonphysical behavior, that is,

〈E〉
N

∼
{

(1 − λ)−1 (for fixed N)

G−1 (for constant G).
(45)

Equation (45) implies that the energy per agent is finite as we
approach the critical point only if we hold G constant.

Near the critical point the nonanalytic behavior of the mean
energy per agent can be expressed as (1 − λ)1−α , where α

is the specific heat exponent. Equation (45) for 〈E〉/N for
constant Ginzburg parameter implies that α = 1. This result
for α is what we would find if we require that β, γ , and α

satisfy the scaling relation in Eq. (2) with β = 0 and γ = 1.
We can also calculate α directly using the probability dis-

tribution in Eq. (40). To calculate the fluctuations in the total
energy, we need to calculate the average of φ4. If we apply
the probability in Eq. (40), we find that the fluctuations in the
energy per agent, and hence the specific heat, is proportional
as N f 4[μ0(1 − λ)]−2, where we have multiplied by N as we
did for the susceptibility per spin of the fully connected Ising
model. Hence, the specific heat C scales as

C ∼ f 4
0

Nμ2
0(1 − λ)2

(46)

and

C ∼
{

(1 − λ)−2 (for fixed N)

(1 − λ)−1 (for constant G).
(47)

We see that if we keep the Ginzburg parameter constant, we
find C ∼ f 2

0 /[Gμ0(1 − λ)] and hence α = 1. Note that if we
do not keep G constant, we would find α = 2, which does not
satisfy Eq. (2). As a consistency check, we can use Eqs. (44)
and (46) to construct the Ginzburg parameter by comparing
the fluctuations of the energy, that is, the heat capacity, to the
mean energy:

NC

〈E〉2 ∝ f 2
0

Nμ0(1 − λ)
= G−1. (48)

V. COMPARISON WITH SIMULATIONS

The mean-field-theory predictions for the exponents α =
1, β = 0, and γ = 1 are consistent with the simulation results
reported in Ref. [20] for fixed G. As discussed in Sec. III,
mean-field theory also predicts that there is only one timescale
near the phase transition and that the timescale diverges as
(1 − λ)−1 for fixed Ginzburg parameter, an example of critical
slowing down [see Eq. (29)]. This prediction is consistent with
the simulation results for the mixing time associated with the
wealth metric [20] and the energy decorrelation time, which
were both found to diverge as (1 − λ)−2 for fixed G. The
apparent discrepancy between the (1 − λ)−2 divergence found
in the simulations and the (1 − λ)−1 divergence predicted by
Eq. (29) is due to the difference in the choice of the unit
of time in the simulation (N exchanges) and in the mean-
field theory (N2 exchanges). To account for the difference
in time units, we need to divide the simulation result by
N with the result that N−1(1 − λ)−2 ∼ (1 − λ)(1 − λ)−2 =
(1 − λ)−1, where we have used the relation N ∝ (1 − λ)−1

for fixed G [see Eq. (41)].
The simulations for fixed G indicate that the energy per

agent approaches a constant as (1 − λ) → 0. This behavior is
associated with the nonanalytic part of the energy per agent.
This result for the λ independence of the nonanalytic part of
the energy per agent is inconsistent with the relation between
the energy per agent and the specific heat, C ∝ ∂〈E (λ)〉/∂λ.
The (1 − λ)−1 dependence of the specific heat for fixed G
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FIG. 1. Comparison of the wealth distribution P(w) for λ =
0.998, N = 5 × 105, and M ≈ 14 (red curve) with P(w) for λ =
0.700, N = 3333, and M ≈ 173 (more sharply peaked black points).
Both plots are for G = 106, with f0 = 0.01 and μ0 = 0.1. The two
distributions would be identical if mean-field theory were exact. Plots
of P(w) for closer values of M [see Eq. (49)] are indistinguishable
to the eye. Values of λ = 0.7 and 0.998 were chosen so that the
differences of P(w) are noticeable in the plot.

near λ = 1 suggests that the mean energy per agent could
include a logarithmic dependence on λ. For example, the form
〈E〉/N ∼ a0 + aL/log(1 − λ), where a0 and aL are indepen-
dent of λ, implies that the specific heat scales as C ∼ [log(1 −
λ)]−2(1 − λ)−1, thus yielding α = 1 with logarithmic correc-
tions, which standard mean-field theory cannot predict and are
very difficult to detect in simulations.

There is also agreement between the exponents predicted
by mean-field theory and those determined in the simulations
when the measurements are done at fixed N . From Eq. (44)
we see that if N is held constant, the mean energy per agent
is predicted to diverge as (1 − λ)−1, which is consistent with
the simulations [20], although this divergence is unphysical
because it implies that the mean energy per agent would
become infinite. The exponent α is predicted to be equal to
2 for fixed N , which is also in agreement with the simulations
[20].

VI. MULTIPLICATIVE NOISE

A sensitive test of whether the system is in equilibrium
is given by the form of the wealth distribution of the agents.
The derivation of the Gaussian form of the wealth distribution
[see Eq. (40)] assumes that the system is in a steady state and
that G → ∞ and implies that the distribution of the energy
is a Boltzmann distribution. The wealth distribution P(w) in
Eq. (40) is predicted to depend only on the value of G and not
on the parameters λ, f0, and μ0 separately. Figure 1 shows the
distribution of wealth for fixed G = 106 and different values

of λ and N . Although the distributions are similar, we see that
the wealth distribution is not invariant with respect to changes
of λ for fixed G, even though both distributions are well fit by
a Gaussian. Similar changes in P(w) are found for changes in
the other parameters for fixed G.

To understand this behavior, we return to Eq. (27), the
mean-field equation for the evolution of the wealth near
the 1/N fixed point. In Sec. III we argued that the multiplica-
tive noise term f0ηφ can be neglected because φ is assumed
to be much less than one. However, we retained the “driving”
term μ0(1 − λ)φ and did not consider whether the multiplica-
tive noise term was small compared to the driving term. To
determine if this condition holds, we recall that the (average)
noise η is assumed to be random Gaussian. Our assumption
that the amplitude of the Gaussian noise is proportional to
1/

√
N is consistent with the dependence of the Gaussian noise

in the mean-field limit of thermal models such as the Ising
model (see, for example, Ref. [26]).

Because the amplitude of the Gaussian noise is of order
1/

√
N , we can neglect it compared to the driving term in

Eq. (27) if f0/
√

N 	 μ0(1 − λ), or

M ≡
√

Nμ0(1 − λ)

f0
� 1. (49)

Equation (49) defines the parameter M. The condition M � 1
for the neglect of the multiplicative noise term, as well as the
condition G � 1, has several implications.

(i) Both G and M diverge in the mean-field limit for which
first N → ∞ and then the critical point at λ = 1 is approached
[28]. If these limits are taken in this order, the mean-field treat-
ment neglecting the multiplicative noise is exact (see Ref. [26]
and references therein).

(ii) A smaller value of f0 makes the system more de-
scribable by a mean-field treatment, which explains the better
agreement of the exponents determined from the simulations
for finite values of N with the exponents calculated from a
theory that neglects the multiplicative noise.

(iii) A large value of G does not necessarily imply a large
value of M; that is, as λ → 1, the multiplicative noise can
become important even though G is still much greater than
one.

(iv) The Ginzburg parameter G controls the level of mean
field and M controls the influence of the multiplicative noise.
It is necessary to keep both parameters constant to obtain
results consistent with the mean-field theory. Because we
cannot keep both parameters constant simultaneously, there
will always be some inconsistency of the results for finite
values of N and G. These inconsistencies can be minimized
for sufficiently large N by increasing μ0 or decreasing f0. The
point is that we need to be careful in interpreting the results of
simulations. An example of the limitations of the mean-field
theory and the neglect of both the additive and multiplicative
noise terms is shown in Table I. We see that both τE , the
energy decorrelation time, and τm, the mixing time, depend
weakly on f in contrast to Eq. (29), which predicts that these
times are independent of f . The dependence of τE and τm on
f reflects the possible importance of the multiplicative noise.
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TABLE I. Summary of the dependence of the mixing time τm and
the energy decorrelation time τE on N , f , and μ for λ = 0.8 ( f and
μ are not scaled). Comparison of the first two rows indicates that τm

and τE depend weakly on f for fixed N and μ. Comparison of the
second and third rows suggests that τm and τE depend strongly on the
value of μ. Comparison of the third and fourth rows indicates that τm

and τE are independent of N . These dependences are in qualitative
agreement with Eq. (29).

N f μ τm τE

5000 0.01 0.01 1034 229
5000 0.10 0.01 1229 149
5000 0.10 0.10 116 21
1000 0.10 0.10 115 21

VII. RELATION TO THE GEOMETRIC RANDOM WALK

For either zero growth μ0 = 0 or the critical point λ = 1,
the mean-field equation for the rescaled wealth (18) reduces
to

dx(t )

dt
= f0η(t )x(t ). (50)

If we use the Itô interpretation for the effect of the multiplica-
tive noise in Eq. (50), the solution for x(t ) is

x(t ) = x(t = 0) exp

(
− f 2

0

2
t + f0Wt

)
, (51)

where Wt is a Brownian noise or Wiener process and is given
by

Wt =
∫ t

η(t ′)dt ′. (52)

Because Eq. (50) results from setting either λ = 1 or μ0 =
0, Eq. (50) implies that the mean-field treatment of the GED
model for μ0 = 0 and λ �= 1 results in the same distribution as
the geometric random walk without the drift term [29,30]. For
λ = 1 and μ0 �= 0, the solution is eμ0t x(t ), where x(t ) is the
solution with μ0 = 0, and Eq. (51) describes the distribution
of the geometric random walk with the drift or growth term
[29,30].

This result, which follows from the analysis of the mean-
field equation (18), is not applicable if N is held constant
because G = 0 for μ0 = 0 or λ = 1, and hence the mean-field
approach does not apply. If we keep G constant, Eq. (50) is
applicable because the condition G � 1 is compatible with
either μ0 ≈ 0 or λ ≈ 1−. To show numerically that the GED
model reduces to the geometric random walk at the critical
point involves fixing the value of G and determining the form
of the wealth distribution for λ �= 1 and μ0 > 0 and then
extrapolating the wealth distribution in the limit λ → 1 or
μ0 → 0. Such an extrapolation would be a difficult and time
consuming process.

VIII. SUMMARY AND DISCUSSION

We have investigated a simple agent-based model of the
economy in which two agents are chosen at random to ex-
change a fraction of the poorer agent’s wealth. Economic
growth is distributed according to the parameter λ. The larger

the value of λ, the greater the fraction of the growth that is
distributed to the agents at the higher end of the wealth distri-
bution. The model, which we call the GED model, was treated
theoretically with a mean-field approach and was shown to
have a critical point at λ = 1, consistent with simulations
[20]. The critical exponents are consistent with scaling and
the simulations if the Ginzburg parameter is large and held
constant as the critical point is approached.

The agreement of the mean-field theory with the simu-
lations implies that for finite but large G and M, the GED
model can be characterized as near mean field [26]. That is,
the system is mean field in the limit N → ∞ and is well
approximated by mean-field theory if both N and M � 1,
provided the Ginzburg parameter G � 1 and is held constant
as the transition is approached.

The mean-field theory and the simulations raise some
interesting questions about the relation between growth,
uncertainty, and wealth inequality and the applicability of sta-
tistical physics. The questions concerning statistical physics
include the following.

(a) The inclusion of distribution and growth allows the
system to be treated by the methods of equilibrium statistical
mechanics, but only if the distribution parameter λ < 1 and in
the limit that the number of agents N → ∞. A similar result
holds for models of earthquake faults for long-range stress
transfer [26,31]. It is unclear how many driven-dissipative
nonequilibrium systems become describable by equilibrium
methods in the mean-field limit.

(b) We used equilibrium methods to calculate the critical
exponents in agreement with the simulations, but the expo-
nent α associated with the specific heat is thermodynamically
consistent only if the Ginzburg parameter is held constant.
Similar results were found for the fully connected Ising model
[27,32]. Insight into why holding G constant is necessary will
be discussed in detail elsewhere [32].

(c) A subtle feature of using a mean-field approach to
treat the GED model for N � 1 but finite is the presence
of multiplicative as well as additive noise. The effect of the
multiplicative noise is controlled by the parameter M defined
in Eq. (49). From the agreement of the theory with the simula-
tions, we conclude that the neglect of the multiplicative noise
in the theory is a good approximation for M � 1. The role
of multiplicative noise is of particular interest for models of
the economy in light of the nonergodicity of the geometric
random walk, which includes multiplicative noise [29,30].

(d) To obtain an equilibrium description of critical point
behavior, we defined an order parameter and then obtained the
order parameter exponent β and the susceptibility exponent
γ . To obtain the specific heat exponent α, we defined an
energy, which also allowed us to obtain the λ dependence of
the energy as λ approaches its critical value. The definitions of
the order parameter and the energy generate a thermodynam-
ically consistent set of exponents that characterize the critical
point. Is our choice of order parameter and energy unique, or
are there other definitions that would lead to another set of
thermodynamically consistent exponents?

Any statements about a system as complicated as the econ-
omy based on the simple GED model must be viewed with a
considerable amount of caution. However, the results obtained
from both the numerical and theoretical investigations of the
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GED model suggest some general properties of economic
systems that are of potential interest.

(i) The form of the exchange term in Eq. (3) assumes that
the amount of the exchange is determined by the poorer agent.
This assumption is a reasonable first approximation because
in most exchanges of goods or services, the poorer of the two
agents decides if they can afford the exchange. The fact that
the wealth transferred is a percentage of the poorer agent’s
wealth leads to the multiplicative part of the noise.

(ii) The exchange term in Eq. (3) also assumes that the
winner of the exchange is based on the toss of a true coin.
Such a toss assumes that both agents have equal knowledge
of the worth of the exchange at the time of the exchange,
so any advantage enjoyed by the winning agent is gained by
pure chance. The effect of biasing the coin toss to represent
a superior knowledge of either the richer or poorer agent is a
subject for future study [33].

(iii) We found that if the distribution of the wealth gener-
ated by economic growth is not skewed too heavily toward
the wealthy (λ < 1), then every agent’s wealth grows expo-
nentially with time. The distribution of wealth is not equal,
but wealth condensation is avoided. As λ → 1−, the wealth
distribution becomes more skewed toward the wealthy, thus
increasing inequality. The theory indicates that a more un-
equal distribution of added wealth due to growth can be
overcome by increasing the growth parameter μ0, decreasing
the uncertainty by decreasing f0, or increasing N . The theory
also indicates that there is a tipping point at λ = 1, so for
λ � 1, no increase of μ0 or decrease in f0 can overcome the
inequality caused by the distribution of the growth favoring
the wealthy. Although the GED model is very simple, this
result raises the question of whether there is a tipping point
in more realistic models of the economy. That is, can the
distribution of the growth in wealth favor the rich to such
an extent that the increased wealth (“a rising tide”) is no
longer shared by the majority of people (“lifts all boats”) and
the effect of the unequal added wealth distribution cannot be
alleviated by increased growth or decreased uncertainty?

(iv) The theory suggests that as the number of agents N is
increased, with the parameters λ, f0, and μ0 held fixed, the
system becomes more describable by a mean-field approach.
This result suggests that as globalization increases, mean-field
models of the global economy might become more relevant
and equilibrium methods might be more appropriate in con-
trast to economic models that are not ergodic [29,30,34]. We
stress that an equilibrium treatment would be an approxi-
mation and would be exact only for N → ∞, but might be
a good approximation for N � 1, assuming that G and M
are both much greater than one. The question of how the
multiplicative noise would affect the system if simulated for a
very long time is not clear. We found that if the effect of the
multiplicative noise is increased by lowering M, the wealth
distribution develops a tail for large wealth, indicating that the
multiplicative noise induces greater wealth inequality.

(v) The model also suggests that increasing the noise am-
plitude f0 increases wealth inequality. In addition, the theory
assumes that the parameters λ, f0, and μ0 are independent.
These parameters are not necessarily independent in actual
economies, which raises the question of how these variables
affect each other. For example, μ0 could be made to depend

on λ0. If μ0 is increased as λ0 is increased, this dependence
would be a test (in the model) of the trickle down theory.

Besides the areas of future research raised by these ques-
tions, other areas include investigating the effect of growth
in models on various network topologies and investigating
different exchange mechanisms and how they affect the dis-
tribution of wealth when growth is added.
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APPENDIX: FULLY CONNECTED ISING MODEL

It is useful to discuss the analogous equilibrium behavior of
the fully connected Ising model. To do so, we first consider the
long-range Ising model with interaction range R in the limit
that R → ∞.

The Landau-Ginzburg-Wilson Hamiltonian for the long-
range Ising model in zero magnetic field is given by [26]

H (φ(�y)) =
∫

d�y{R2[∇φ(�y)]2 + εφ2(�y) + φ4(�y)}. (A1)

The integral in Eq. (A1) is over all space, ε = (T − Tc)/Tc,
Tc is the critical temperature, and φ(�y) is the coarse-grained
magnetization.

Near the mean-field critical point we scale φ(�y) by ε1/2,
scale all lengths by Rε−1/2, and obtain

H (ψ (�x)) = Rdε2−d/2
∫

d�x{[∇ψ (�x)]2 + ψ2(�x) + ψ4(�x)},
(A2)

where ψ (�x) = ε−1/2φ(�y/R) and �x = �y/Rε−1/2. The integral is
over the volume in scaled coordinates. Because the functional
integral over ψ (�x) is damped for larger values of ψ due to the
Boltzmann factor e−βH (ψ (�x)) and Rdε2−d/2 � 1, the rescaled
magnetization ψ (�x) satisfies the condition

ψ (�x) <

√
1

Rdε2−d/2
. (A3)

For the fully connected Ising model we can ignore the gradi-
ent term in H and take Rdε2−d/2 → Nε2, and the integral in
Eq. (A2) becomes of order one.

To calculate the exponent β for the fully connected Ising
model, we take ε < 0 and write

H (ψ ) = Nε2[−ψ2 + ψ4]. (A4)

The most probable value of ψ is obtained by setting the
derivative with respect to ψ of H (ψ ) equal to zero; the result
is that the most probable value of ψ is approximately ε1/2 and
β = 1

2 .
To calculate the isothermal susceptibility χ for the fully

connected Ising model, we can ignore the quadratic term in
Eq. (A4) and write the action of Hamiltonian as

H (ψ ) = Nε2ψ2. (A5)
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We determine the probability as a function of ψ and multiply
the average of εψ2 (φ2) by N to obtain χ ∼ ε−1 as expected.

Note that the action in Eq. (A5) is order one for the range
of fluctuations in the fully connected Ising model, that is, ψ �
1/

√
Nε2. Similarly, we expect the action in the GED model to

also be of order one, not order N .
The energy per spin of the fully connected Ising model is

the square of the magnetization per spin [26]. Hence the mean
energy per spin is the average of εψ2 = 1/Nε. This depen-
dence on ε seems nonphysical and seems to imply that the
energy per spin diverges as ε → 0. To understand this result
and to calculate the specific heat, we introduce the Ginzburg
criterion, which is a self-consistency check on the applicabil-
ity of mean-field theory [26]. For a mean-field theory to be a
good description, the fluctuations of the order parameter must
be small compared to the mean value of the order parameter.
This requirement implies that

ξ dχ

ξ 2dφ2
= 1

G
	 1, (A6)

where ξ is the correlation length, χ is the susceptibility, and d
is the spatial dimension. The Ginzburg parameter G defined by
Eq. (A6) must be much greater than one for mean-field theory
to be a good approximation. Much numerical and theoretical
work has shown that the Ginzburg criterion is a good indicator
of the appropriateness of a mean-field description [22,26]. It
is in this sense that we will use the Ginzburg criterion in the
following.

Equation (A6) implies that the Ginzburg parameter for
the fully connected Ising model is given by G = Nε2 (up to
numerical factors). Mean-field theory for the fully connected
Ising model becomes exact if the limit N → ∞ is taken before
ε → 0 [26]. As ε decreases for fixed N , G decreases, which
implies that the system becomes less describable by mean-
field theory. To determine the critical exponents for the fully
connected Ising model for a large but finite value of N in
a simulation, we need to keep the system at the same level
of mean field, which implies that we must keep G constant.
Hence, as ε → 0, we need to consider larger and larger values
of N . Keeping G constant has the additional consequence
of restoring two exponent scaling, which is missing in the
standard treatments of mean-field systems [27,35].

Another conclusion that follows from the Ginzburg cri-
terion is that the scaling of the isothermal susceptibility χ

must be the same as the scaling of ξ dφ2 or Nφ2 in the fully
connected Ising model, which justifies multiplying the square
of the average of φ = ε1/2ψ by N to obtain χ .

Because we need to hold G = Nε2 constant to find consis-
tent results for the mean-field Ising exponents, the result that
the mean energy per spin is proportional to 1/Nε can now be
properly interpreted. We have

〈E〉
N

= 1

Nε
= ε

Nε2
= ε

G
∼ ε, (A7)

where we have assumed that G is a constant. This result is
what is expected from a mean-field calculation because the
nonanalytic part of the mean energy per spin should scale as
ε1−α , with the mean-field value of the specific heat exponent
α = 0.

We next calculate the specific heat of the fully connected
Ising model by recasting the Ginzburg criterion in terms of the
energy fluctuations. For mean-field theory to be applicable,
the fluctuations of the energy must be small compared to the
square of the mean energy, or

ξ dC

ξ 2d e2
= C

Nε2
= C

G
→ C, (A8)

where C is the specific heat. As expected, holding G constant
implies that the specific heat exponent α = 0. If we hold N
rather than G constant, we would obtain 1 − α = −1 and α =
−2. We see that the two results for α are not consistent unless
G is held constant.

Note that the exponents β = 1
2 and γ = 1 are the same

whether we hold N or G constant, but the value of α depends
on whether N or G is held constant. Also the scaling relation
(2) cannot be satisfied for γ = 1 and β = 1

2 unless α = 0,
which in turn implies that we need to keep G constant (and
large) to obtain a consistent mean-field description.

Also note that the form of the right-hand side of Eq. (A5) is
the same as the action or Hamiltonian that we derived for the
GED model using the Parisi-Sourlas method with ε2 replaced
by μ0(1 − λ)/ f 2

0 [see Eq. (42)].
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