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Two coupled double quantum-dot systems as a working substance for heat machines
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This paper presents a conceptual design for quantum heat machines using a pair of coupled double quantum
dots (DQDs), each DQD with an excess electron to interact, as an working substance. We define a compression
ratio as the ratio between the Coulomb couplings which describes the interaction between the electrons during
the isochoric processes of the quantum Otto cycle and then we analyze the arising of different regimes of
operations of our thermal machine. We also show that we may change the operation mode of an Otto engine
when considering the effects due to the quantum tunneling of a single electron between each individual DQD.
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I. INTRODUCTION

Despite thermodynamics and quantum mechanics seems to
be, at first sight, contradictory theories, early in 1959 Scovil
and Schulz-DuBois [1] demonstrated through an equivalence
between a three-level maser and a Carnot heat engine that it
is possible to conciliate them. Since them, there are plenty of
proposals for quantum heat engines and how the thermody-
namic processes, or even the laws of thermodynamics [2], can
be defined in the microscopic world of quantum mechanics
[3].

Beyond the quasiequilibrium point of view of thermal ma-
chines, the pioneer work of F. L. Curzon and B. Ahlborn [4]
started the search for endoreversible machines, which takes
into account the time it takes for the thermodynamic processes
to occur. This enables the search for the maximum power
output of a heat engine, which is the most important physical
quantity for practical purposes [5,6]. In the realm of quantum
mechanics, the time is not a physical observable, but we
highlight here the work of R. Alicki [7] that formally defines
the thermodynamic concepts for the quantum open systems in
the Markovian regime that consider a finite period for each
thermodynamic cycle to be started and finished. Over the past
few decades many proposals has been settle for quantum heat
engines with different working substances, such as trapped
ions [8–11]; quantum oscillators [12–14]; Heisenberg XX ,
XY , XXX , XXZ , or XY Z spin models with Dzyaloshinskii-
Moriya interaction [15–19]; quantum dots [20,21]; etc.

On the other hand, there is a great interest in the study of
quantum dots in different aspects, like its optical and elec-
tronic properties in the production for displays [22,23] or
photovoltaic devices [24,25] or even in the context of quantum
information processing [26–28]. A quantum dot is a semicon-
ductor particle and it is sometimes called an “artificial atom”
because of its similarities with a real one. The differences
between them are their size (at least three orders of magnitude

greater than an atom), their shape and the strength of the
confining potential. Double quantum dots (DQDs) are, as the
name suggests, two quantum dots coupled in series [29,30].
Then, it is straightforward to understand why they are some-
times called “artificial molecules.” The quantum dynamics
and entanglement of two electrons inside the coupled DQDs
were investigated in Refs. [31,32] and the aspects related to
the quantum correlations and to the decoherence were ad-
dressed in Refs. [33,34]. The Ref. [35] gives us a picture of
a pair of coupled DQDs, showing the behavior of thermal
entanglement and the correlated coherence behaves in this
system as we adjust some parameters. Following this scenario,
in this contribution, we implement the thermodynamic con-
cepts of a quantum heat engine for this very same system.
Each DQD is filled with a single electron that can tunnel (or
not) between each individual island. This is possible due to
quantum tunneling and Coulomb blockade effects [36,37],
which are observed in very small devices, as in our case:
We consider quantum dots separated by tunnel junctions that
act as an insulating barrier. The quantum tunneling has a
central role in our findings since it shows to be a parameter
that may changes the operational mode of a heat machine
we are proposing. Although the paradigm in this field is the
investigation of finite time cycles in open quantum systems, at
this stage we focus in the quasistatic process so that the system
will be described at the end of an isochoric strokes by a Gibbs
state, which means that it is in a thermal equilibrium with
a heat bath. Nevertheless, we will present important insights
which we believe are going to survive in this context but need
to be clarified. Here it is shown that by controlling the effects
due to a quantum tunneling of a single electron between each
individual DQD, the performance of both the engine and the
refrigerator can be improved and the operation mode of the
machine can be yet altered, yielding the possibility of work
extraction even for the case where the Coulomb coupling is
unaltered.
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FIG. 1. The left picture shows a schematic representation of the physical model with two coupled DQDs. The purple spheres represent the
quantum dots, the electrons are represented by the smaller red spheres inside the quantum dots and �1,2 stands for the tunneling coupling of
the DQD1,2. The right picture is the equivalent circuit diagram of the device. Tunnel couplings are represented by two bars as in �1 and �2,
S1,2 and D1,2 are, respectively, the source and drain of the DQD1,2, and the capacitors CLL , CRR, CLR, and CRL connect the DQDs.

This paper is organized as follows: In Sec. II we present
a general overview of the system and how we are going to
accost it. In Sec. III we discuss the processes involving the
quantum Otto cycle and then calculate both the total work
done and the engine efficiency. In Sec. IV we discuss the re-
sults and analyze minutely the emergence of different regions
of regime for the quantum heat engine. In Sec. V we present
the concluding remarks that summarize our results.

II. A PAIR OF DOUBLE QUANTUM DOTS
AS AN WORKING SUBSTANCE

The proposed quantum system as an working substance
for quantum heat engines can be described by the two-qubit
device that is fabricated in a standard AlGaAs/GaAs het-
erostructure with two-dimensional electron gas (2DEG) by
using electron beam lithography. The device consists of a
series of Schottky gates1 and the electron configurations in
both DQDs are controlled by tuning the voltages applied on
the gates (see Fig. 1). On the other hand, the two double
quantum dots are capacitively coupled, this capacitance model
describing the Coulomb interactions between the two DQDs
[29,38,39]. This capacitance coupling is controlled by the
capacitors CLL, CRR, CLR, and CRL, where no transition for
the electron to leave the DQD1 into DQD2 is allowed and
vice versa. The tunnel junctions placed after the source S1,2

and before the drain D1,2 are adjusted in such a way to
make the system in the Coulomb blockade regime, enabling
a single electron to be confined in each DQD. The charge
of the electron in each DQD build up the qubits, which are
described by the two possible states for the location of each
electron, the left dot (|L〉) and the right dot (|R〉), where the
electron can tunnel from left to right and from right to left.
The Hamiltonian of such a system is given by

H = �1σ
x
1 + �2σ

x
2 + V

(
σ z

1 ⊗ σ z
2

)
, (1)

where �1 and �2 are the strength of the tunneling coupling
between each pair of quantum dots, V is the interaction

1The Schottky gates are not illustrated in Fig. 1 due to the high
number of gates usually implemented experimentally.

Coulomb coupling between the excess electrons, and σ
x,y,z
1(2)

are the Pauli matrices. The tunneling coupling parameters �1

and �2 are controlled by the gate voltages (Schottky gates)
and the electrostatic coupling V between the double quantum
dots is controlled by the gates voltage sources S1 (S2) through
the capacitors connecting both DQDs. A more general ver-
sion of the Hamiltonian of this system takes into account an
extra term for the energy differences between the uncoupled
charged states |L〉 and |R〉, but the difficulties behind solving
its equations are not in the scope of our aim in this paper. This
way, we consider the simplest case where all of our quan-
tum dots have the same energy available for the electron to
occupy.

Solving the eigenvalue equations for the Hamiltonian (1),
we obtain the following eigenstates (see Ref. [35]):

|ψ1〉 = α−[A−(− |LL〉 + |RR〉) + n−(|LR〉 − |RL〉)],

|ψ2〉 = α−[n−(− |LL〉 + |RR〉) + A−(− |LR〉 + |RL〉)],

|ψ3〉 = α+[A+(|LL〉 + |RR〉) + n+(|LR〉 + |RL〉)],

|ψ4〉 = α+[n+(|LL〉 + |RR〉) − A+(|LR〉 + |RL〉)], (2)

where α± = 1√
2
√

(n± )2+A2±
, A± = V +

√
(n±)2 + V 2, and

n± = �1 ± �2, with the following eigenenergies:

E1 = −
√

(n−)2 + V 2, (3)

E2 = −
√

(n+)2 + V 2, (4)

E3 =
√

(n−)2 + V 2, (5)

E4 =
√

(n+)2 + V 2. (6)

An important result that we will later need is how the eigenen-
ergies change as either the Coulomb coupling or one of the
tunneling parameters increases (it does not matter which of
them we take since the Hamiltonian is symmetric as we
change �1 ↔ �2). From the Fig. 2 we see that the energy lev-
els are compressed pairwise and, at the same time, the ground
and the first excited state are separated from the second and
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FIG. 2. In (a), it is depicted the energy levels in terms of the
interaction coupling V between the two DQDs for the same fixed
tunneling parameters �1 = 10 μeV and �2 = 3 μeV. In (b), we
have the plot of the energy levels against the tunneling parameter
�1 for fixed �2 = 3 μeV and V = 10 μeV. Notice that there is a
squeezing of the energy gaps as we either increase the interaction
coupling or decrease the tunneling parameter.

third excited states as the interaction coupling is raised. On
the other hand, the energy levels are pairwise detached. As
we increase the tunneling parameter, they are shifted apart
from each other more rapidly than the energy-level separation
observed inside each pair separately. Thus the energy scale
variation is not uniform. This way, as a first approach, we will
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FIG. 3. A schematic representation of an Otto engine using a pair
of coupled DQDs as a working substance: The incoming heat from
the hot bath, Qh, is transformed into extracted work. The engine cycle
consists of two adiabatic strokes (B → C and D → A) where it is
decoupled from the thermal baths, and two isochoric strokes (A → B
and C → D) where the engine is coupled to two thermal baths at
temperatures Th and Tc, with Th > Tc.

approximate our system by a two-level one with energies E1

and E2.
Despite the values of the tunneling parameters, �1 and �2,

are mostly predetermined in the fabrication of the device, we
still can modify them experimentally [29].

Here we refer the system as in a Gibbs state when it is in
a thermal equilibrium with a heat bath, which means that its
density matrix is given by ρ(T ) = exp(−βH )

Z , where Z is the
partition function, β = 1

kT , k is the Boltzmann constant, and
T is the temperature of the heat bath.

III. THE QUANTUM OTTO ENGINE CYCLE

In this section we describe the quasistatic quantum Otto
engine cycle, which operates in four strokes: two quantum
isochoric processes and two quantum adiabatic processes
(see Fig. 3).

The cycle starts with a quantum isochoric process (A →
B): The working substance, with interaction coupling Vh and
tunneling parameters �h

1 and �h
2, is put in contact with the hot

reservoir at temperature Th until they reach a thermal equilib-
rium and a total heat Qh > 0 is transferred to the system at the
end of the process. The parameters V , �1, and �2 that regulate
the eigenenergies are controlled externally, what makes this
process easier to realize in an experiment. At the end of the
process we will have, for the energy eigenstate basis {|ψn〉},
the following density matrix:

ρh = exp(−Hh/kTh)/Zh =
∑

n

ph
n |ψn〉 〈ψn| , (7)

with

Hh =
∑

n

Eh
n |ψn〉 〈ψn| , (8)

ph
n = exp

( − Eh
n

/
kTh

)
/Zh, (9)

Zh =
∑

n

exp
( − Eh

n

/
kTh

)
, (10)
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where Zh is the partition function, ph
n is the occupation prob-

abilities of each eigenstate, and Hh is the Hamiltonian when
the system is in contact with the hot heat bath.

Next, we have a quantum adiabatic expansion (B → C). In
this process no heat is exchanged between the system and the
environment. The working substance is totally isolated from
the environment and therefore, the Eq. (9) is no longer valid
during the process because there is no thermal equilibrium
with it. Thus we can increase the interaction coupling from
Vh to Vc > Vh by adjusting the charge state through the gates
voltage sources S1 (S2) in the capacitors mentioned in Fig. 1
and still keep the occupation probabilities ph

n constant until the
end of the process. Moreover, in parallel to this, the tunneling
parameters may be tuned from �h

1(�h
2) to �c

1(�c
2) by con-

trolling the gate voltages in each DQD. Thereby the energies
increases from Eh

n to Ec
n , so the Hamiltonian will be given by

Hc = ∑
n Ec

n |ψn〉 〈ψn| and some work WBC > 0 is extracted
from the system.

In the next stroke we have another quantum isochoric
process (C → D). We put the working substance in con-
tact with the cold reservoir at temperature Tc, waiting
enough time for the thermalization to occur. A total heat
Qc < 0 is transferred to the cold reservoir at the end
of the process and, since heat is exchanged, the occupa-
tion probabilities change from ph

n = exp(−Eh
n /kTh)/Zh to

pc
n = exp(−Ec

n/kTc)/Zc, with Zc = ∑
n exp(−Ec

n/kTc). The
density matrix will be given by ρc = exp(−Hc/kTc)/Zc =∑

n pc
n |ψn〉 〈ψn| and we keep the energies Ec

n fixed.
Finally, we close the cycle with a quantum adiabatic com-

pression (D → A). At this point, we adjust the voltages in the
capacitors again, causing the interaction coupling to change
from Vc to Vh. Apart from that, the tunneling parameters may
be tuned from �c

1(�c
2) to �h

1(�h
2) and, consequently, the ener-

gies from Ec
n to Eh

n . The Hamiltonian of the system in the end
of the process is then Hh = ∑

n Eh
n |ψn〉 〈ψn|, the occupation

probabilities pc
n are kept unchanged and some work WDA < 0

is done on the working substance.
As stated in Ref. [35] we can say that when the working

substance is in contact with the hot reservoir, it is in a weakly
correlated state and, as we increase the interaction coupling
and decrease the temperature, the system starts to be more
correlated.

The quantum version of the first law of thermodynamics
in the quasistatic limit allow us to calculate the total heat
exchanged during the isochoric processes [3], that is,

Qh =
∑

n

Eh
n

(
ph

n − pc
n

)
, (11)

and

Qc =
∑

n

Ec
n

(
pc

n − ph
n

)
, (12)

where Q > 0 (Q < 0) means that heat is absorbed (released)
from (to) the heat reservoirs, respectively. Therefore, the total
work W produced by the heat engine in the adiabatics is, by
energy conservation, the excess heat

W = Qh + Qc =
∑

n

(
Eh

n − Ec
n

)(
ph

n − pc
n

)
. (13)

With that in hands, we can finally have the efficiency of our
heat engine, which is calculated by η ≡ W/Qh.

The description of the refrigerator cycle is totally anal-
ogous to the processes of the heat engine discussed early,
except for the direction of operation of the cycle, which is
reversed. This means that we will have a heat released Qc > 0
from the cold heat bath and absorbed Qh < 0 by the hot heat
bath to the working substance and, consequently, it will be
necessary an external work W = Qh + Qc < 0 for the cycle to
operate. The coefficient of performance (COP) ε measures the
efficiency of the refrigerator, which is defined as the modulus
of the ratio of heat released from the cold heat bath and the
total work done in the cycle, that is, ε ≡ Qc/W .

With those definitions in hand, in the next section we
investigate in detail the work, the efficiency η and the COP
ε. Although this work is theoretical, a possible implementa-
tion of the thermal machine with double quantum dots is to
consider the recent concept of particle-exchange heat engines,
which uses energy filtering to control a thermally driven par-
ticle flow between two heat reservoirs. As they do not require
moving parts and can be realized in solid-state materials, they
are suitable for low-power applications and miniaturization
[20].

IV. RESULTS AND DISCUSSION

In order to plot the next graphics, we restrict ourselves to
the case where the tunneling parameters �1 and �2 are the
same for the whole cycle and we will no longer worry about
the upper index. This way we define a compression ratio r
as the ratio between the maximum and the minimum inter-
action coupling values in the cycle, r = Vc/Vh. As we have
previously discussed, the Coulomb interaction is modified by
the controlling voltages in the capacitors. Since a quantum
dot is typically regarded as a 0D system, for which the actual
spatial dependence is not considered, the parameter r cannot
be seen due to the changing of the volume of the system. The
energy-level spacing of the system is the quantity that is being
either compressed or stretched.

In the Fig. 4 the heat exchanged Qh (Qc) with the hot
(cold) reservoir, the work done W , the efficiency η and the
Carnot efficiency ηc are given in terms of the compression
ratio r, where we have set2 �1 = 10 μeV,�2 = 3 μeV and
Th = 2 μeV, Tc = 1 μeV (we normalize the Boltzmann con-
stant k = 1 in this whole paper). It is clear from the Fig. 4
that we need r > 1 (Vc > Vh) to achieve positive work, which
is reasonable because in this regime the energy gaps are
squeezed (see Fig. 2) when the system is in contact with
the cold reservoir and they are expanded when the system is
in contact with the hot reservoir [40]. Note that we can not
increase the compression ratio r indefinitely since the positive
work condition is lost. As we increase the value of r, it comes
to a point where there is no heat transfer even when the system

2The choice of the values for the tunneling parameters are not ran-
dom: For either �1 ≈ �2 or �2 
 �1 (or even �1 
 �2) the work
achieved is minimum, see Appendix A. See also Appendix B for
an explanation on how these values for the reservoirs temperatures
enables the two-level approximation.
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FIG. 4. As illustrated, we have the heat exchanges of the working
substance with the hot and cold reservoirs (Qh and Qc, respectively),
the work W done, the efficiency η and the Carnot efficiency ηC

of the heat engine against the compression ratio r. Heat trans-
fer between the hot and cold reservoir. A sign inversion on the
flow of the heat happens as we increase the compression ratio
r. For this plot, we have chosen the values Vh = 10 μeV, �1 =
10 μeV, �2 = 3 μeV, Th = 2 μeV, and Tc = 1 μeV. The values
of Qh, Qc, and W are given in units of μeV.

is in contact with the hot and the cold reservoir. Furthermore,
after this point, the signs of the heats exchanged are inverted
and the system starts to withdraw heat from the cold reser-
voir and transfer heat into the hot reservoir. In other words,
the system starts behaving as a refrigerator at cost of some
work.

To summarize, we can see the appearing of three different
regions of operation for the heat engine. In the region I the
engine requires a negative work W < 0 to extract heat from
the hot to the cold reservoir, i.e, the machine operates as
a heater. In the region II we have a positive work, W > 0,
which means that the it acts as a heat engine producing useful
work. Finally, the region III correspond to a refrigerator as we
have already discussed early, because we have an inversion
on the flow of the heat for some negative work W < 0. These
results show that we can pass through the different regimes by
simply increasing a single parameter, the interaction coupling
Vc (which causes the change in r). Another way to interpret
this inversion of heat fluxes is by observing that as we increase
the value of the Coulomb coupling the system gets more and
more strongly correlated so that there is a value of concurrence
that is critical where the signs of the transferred heats are
exchanged [35].

Notice that the two points where the dash-dotted green
curve of the work done intersects the r axis in the Fig. 4
have different meanings: The first one has to do with the
equality in modulus of the heat Qh and Qc [see Eq. (13)],
i.e., all of the heat absorbed from the hot reservoir is re-
leased to the cold reservoir, and the second one has to do

FIG. 5. The occupation probabilities curves for the ground and
first excited state in the two situations are shown, when the system
is in contact with the hot heat bath and the cold heat bath. The
probabilities curves for higher excited states are omitted because
their values are close to zero for these values that we take, to
know, Vh = 10 μeV, �2 = 3 μeV, Th = 2 μeV, Tc = 1 μeV, and
r = 2.67, which is approximately the value of the compression ratio
where the inversion of the heat fluxes occurs.

with the totally interruption of the heat transferred to both
reservoirs. This interruption can be explained by means of the
occupation probabilities ph

n = exp(−Eh
n /kTh)/Zh and pc

n =
exp(−Ec

n/kTc)/Zc, where we can see in the Fig. 5 that there
is a point where the occupation probabilities curves for the
hot and cold heat baths intersects, which means that in this
regime there is no change on the occupation probabilities of
the system when it passes from the hot heat bath to the cold
heat bath, what causes the interruption of the heat flux.

After zooming the Fig. 4, we can extract an additional
information about the “point” that causes the divergence on
the efficiency plot. First, as we can see from the Fig. 6, there
is no such a thing as a point that simultaneously invert the
signs of the heat exchanged Qh and Qc. Before the efficiency
explodes, the work tends to zero, and so the efficiency, where
over again we have the heat pump regime. After an almost
infinitesimal increase on r, there is an explosive increase on
efficiency due to the interruption on the heat flow Qh (re-
member that η = W/Qh). After this point, the system does not
immediately starts behaving as a refrigerator, we have a tiny
region where the machine consumes work and exhaust heat
for both reservoirs (we use here the notations of the Ref. [41]
for the two different kinds of heat pump, to know, heater I
for the usual heater and heater II for the machine that heats
both reservoirs, see also Ref. [42]). Only after that, we will
have a positive heat flow from the cold reservoir to the system
turning the machine into a refrigerator.
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FIG. 6. As illustrated, we have the work done W (dash-dotted
green), the heat absorbed Qh (dotted red) and released Qc (loosely
dashed blue) against the compression ratio r: The observed behavior
remind us something like a phase transition. We keep the same
values, as usual, Vh = 10 μeV, �1 = 10 μeV, �2 = 3 μeV, Th =
2 μeV, and Tc = 1 μeV. The values of Qh, Qc, and W are given in
units of μeV.

A. The refrigerator regime

After the point where the heat fluxes are inverted that
we discussed previously, the machine starts behaving as a
refrigerator, thus we can evaluate the COP for it. Similarly
as before, we make plots containing all the important infor-
mation about the refrigerator at this stage. This is carried out
in Fig. 7 where we put the heat transferred to the hot and
to the cold reservoirs, the work done, the COP of a Carnot
refrigerator and the COP against the compression ratio r. It
is important to mention that the definition of COP is only
valid in the region III (see Fig. 6). Note that the COP is a
monotonically decreasing function of the compression ratio.

B. The influence of the quantum tunnelling

Early we have restricted ourselves to the case where there is
no change on the tunneling parameters �1 and �2. Although
we have found some interesting features for the heat engine,
still nothing too different from the classical one was observed.
As it is well known, quantum tunneling is not predicted by
the laws of classical mechanics: For a particle to surpass a
potential barrier it is required potential energy. In the light
of recent papers, in particular the Klimovsky work [43], we
can extract some unexpected features of our machine if we
consider the quantum tunneling. For instance, we observe a
regime where work can be extracted for unchanged Coulomb
coupling, which we considered to define the compression
ratio. This can be achieved by varying some gate voltages that
control the tunneling parameters of the DQDs.

The classical Otto engine assumes the efficiency ηO = 1 −
1

rγ−1 , γ = Cp/Cv being the specific heat ratio and r the com-
pression ratio. Note that for r = 1 the efficiency goes to zero
and if r < 1 the efficiency becomes negative corresponding

FIG. 7. As illustrated, we have the heat exchanges of the working
substance with the hot and cold reservoirs (Qh and Qc, respec-
tively), the work done and the COP ε of the refrigerator against
the compression ratio r. To plot this graph we have chosen the val-
ues Vh = 10 μeV, �1 = 10 μeV, �2 = 3 μeV, Th = 2 μeV, and
Tc = 1 μeV. The values of Qh, Qc, and W are given in units of μeV.

to the heater regime. This is exactly what happens if we keep
�c

1 = �h
1 and �c

2 = �h
2, which is depicted in the solid blue

curves of Fig. 8, thereat we will refer this particular case as
the classical case. At this point we can abandon the constraint
we made before and consider �h

1 �= �c
1 and �h

2 �= �c
2, so that

new parameters δ1 = �c
1/�

h
1 and δ2 = �c

2/�
h
2 can be defined.

The full description of the operation modes of the engine is no
longer described by a single compression ratio r, but by the set
of parameters {r, δ1, δ2}. In the Fig. 8 we plot the efficiency
normalized to the Carnot efficiency ηN = η/ηc in terms of r
for some different values of the quantities δ1 and δ2. We can
observe a shift of the curve to the left (right) when we have
δ1(2) < 1 (δ1(2) > 1) individually or we can have a stretching
(squeezing) for the left and right if we have δ1 > 1 and δ2 < 1
(δ1 < 1 and δ2 > 1) simultaneously, where δ1(2) stands for “δ1

or δ2.”
In the Fig. 8(a), specifically in the dashed red curve corre-

sponding to δ1 = 1 and δ2 < 1, it is observed an enhancement
in the efficiency in comparison to the case where the tun-
neling parameters are kept fixed throughout the cycle. As a
consequence, no heat pump regime appears, which means that
the heater was changed to a highly efficient engine and we
now have a positive efficiency even for unchanged Coulomb
coupling, for which r ≡ 1. Also, the point of inversion from
heat engine to refrigerator is shifted to a lower value of r.
On the other hand, when δ1(2) > 1 (dash-dotted green curve),
we have a larger region for the operation of the heat pump
and the point of inversion from heat engine to refrigerator is
also shifted, but to a higher value of r instead. This means
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(a) (b)

(c) (d)

FIG. 8. In (a), it is depicted the normalized efficiency ηN and in (b), it is shown the normalized COP εN curve. It is considered in both
of them δ1 = 1: the classical case (δ2 = 1, solid blue), the δ2 > 1 case (with �c

2 = 4 μeV, dash-dotted green), and the δ2 < 1 case (with
�c

2 = 2 μeV, dashed red). In (c) and in (d), we have the normalized efficiency ηN and the normalized COP εN , respectively: the classical
case (δ1 = δ2 = 1) in solid blue, the stretched dash-dotted magenta curve for δ1 > 1 and δ2 < 1 (with �c

1 = 18 μeV and �c
2 = 2 μeV) and

the squeezed dashed orange curve for δ1 < 1 and δ2 > 1 (with �c
1 = 7 μeV and �c

2 = 4 μeV). For all the plots we have set Vh = 10 μeV,

�h
1 = 10 μeV, �h

2 = 3 μeV, Th = 2 μeV, and Tc = 1 μeV.

that the efficiency is reduced but the region which describes
the refrigerator now is valid for highly efficient engine. In
Fig. 8(b), the normalized COP εN = ε/εC , with εC being
the Carnot COP, is plotted for the same set of parameters
values, which reinforces the results previously discussed for
the efficiency η. Moreover, we observe that the refrigerator
presents a better performance for higher values of r (see the
dash-dotted green curve). In the Fig. 8(c), we can observe a
special case for which the efficiency can be enhanced bellow
some value of r while it can be diminished above it. This
means that the heater is turned into an engine (not to efficient)

and the refrigerator is changed to a highly efficient engine (see
the dash-dotted magenta curve). The Fig. 8(d), which stands
for the normalized COP εN = ε/εC completes the analyzes
and it shows that a refrigerator can have an improvement in
its performance as well (see the dash-dotted magenta curve).

For almost all of the previous plots, we analyze the com-
pression ratio r increasing up to 6 times, but experimental
data [38] shows a variation for interaction coupling V up to
almost 3 times at least (the change was from 25 to 75 μeV).
This way, the previous discussions of the Fig. 8 becomes more
relevant since we have, in some cases, a shift for the curve
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to the left, where the compression ratio is lower, supporting
the experimental possibility for the realization of all operation
modes.

During this whole paper we focus only in the two-level
approach, but what happens when we have higher temper-
atures? If we increase the temperatures of the reservoirs
the most excited states in the system becomes relevant (see
Appendix B). In this case, there is no inversion for the heat
exchanged with the reservoirs as we can see in Fig. 9(a). The
machine will never turns into a refrigerator, which sustain our
explanation from the Fig. 5 where the inversion of the flow
of the heat occurs because of the inversion on the occupation
probabilities. Figure 9(b) shows that the machine presents
very unusual properties even without varying the tunneling
parameters, although no work can be done for r ≡ 1. In the
region r < 1 the machine behaves as a heat engine producing
useful work and for r > 1 the machine will be a heat pump.

Some disadvantages of our model includes a requirement
of approximating our system by a two-level one for most part
of our results and we consider the system completely isolated
during the adiabatic processes. It is important to note that the
irreversibility of the isochoric processes does not affect the
efficiency of the Otto cycle. Our aim for future researches in-
volves considering the finite time cycles, covering the problem
in the open quantum systems context [5,40].

V. CONCLUSIONS

In conclusion, in this paper, we addressed a theoretical
proposal for a quantum heat machine with two sets of coupled
DQDs interacting via Coulomb interaction of excess electrons
inside each DQD, which in turn acts as our charged qubits. We
discussed the appearing of different regions of operation for
our machine: the heat pump, the heat engine and the refriger-
ator. These operation modes can be switched by adjusting the
value of the interaction coupling. We also discussed the reason
why these transitions occur and what is truly happening with
the machine in the null work points.

Furthermore, we do not just calculate the work done and
the efficiency of the heat engine, but also the COP of the
refrigerator. In addition, we gave a description on how we
can escape the results expected for a classical machine. These
findings rely in the effects due to variations of the parame-
ters that control the quantum tunneling of a single electron
between each individual DQD. We have observed that the
performance of both the engine and the refrigerator can be
modified due to the manipulation of this well known quantum
phenomenon. Also, it allows the modification of the operation
mode of the machine: Either a heater or a refrigerator can
be switched to a highly efficient engine in some cases. We
have observed the possibility of work extraction even for
the case where the Coulomb coupling is kept constant. Our
results follows the spirit of those found in Ref. [43], where
the possibility of the modification of the operation mode of
a quantum heat machine was observed as a consequence of a
nonhomogeneous energy scaling.

In summary, the present work brings a new example to
increment the set of already known quantum heat engines with
very promising devices as the working substance, which are
the DQDs, also bringing the recipe for the total manipula-

(a)

(b)

FIG. 9. In (a) we have the heat exchanged with the hot (dotted
red) and cold (loosely dashed blue) reservoirs and in (b) it is depicted
the work done (dash-dotted green) and the efficiency (solid black)
against the compression ratio r. We have fixed Vh = 10 μeV, �h

1 =
10 μeV, �h

2 = 3 μeV, Th = 20 μeV, and Tc = 10 μeV. The values
of Qh, Qc, and W are given in units of μeV.

tion of the operation modes. Thereat, the main complications
still lies in the coupling with the heat baths and, thinking
ahead, how the time can plays a role on this engine, but
we leave these questions opened to be explored in future
works.
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FIG. 10. The work done against the tunneling parameter �2 for
different values of Vc and fixed values: Vh = 10 μeV and �1 =
10 μeV. We have Vc = 5 μeV [solid magenta (lower) curve], Vc =
15 μeV (dash-dotted green curve), Vc = 20 μeV [solid blue (upper)
curve] and Vc = 25 μeV (dashed red curve). The case Vc = 10 μeV
is not plotted, but it corresponds to a null work.
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APPENDIX A: WORK CURVES FOR DIFFERENT
VALUES OF COULOMB COUPLING

In order to achieve an optimized value for the work done
by the heat engine, we plot in the Fig. 10 the work done W
against the tunneling parameter �2 for some different values
of the Coulomb coupling Vc (it could also be �1 because,
as we discussed early, the Hamiltonian is symmetric). Thus,
we fix Vh = 10 μeV and �1 = 10 μeV for the temperatures
Th = 2 μeV and Tc = 1 μeV, and we can see that the peak of

FIG. 11. The occupation probabilities pn against the temperature
T for fixed values: V = 10 μeV, �1 = 10 μeV, and �2 = 3 μeV.

the curve does not shift considerable, so we can approximately
estimate the best value for �2, at least for the order of magni-
tude, that optimize the work done, to know �2 ≈ 3 μeV.

Note that, in concordance with Fig. 4, increasing the in-
teraction coupling Vc will increase the work done for a while
[dash-dotted green and solid blue (upper) curves], and then
it will start to decrease it (dashed red curve). Also we see
that for Vc < Vh, the work becomes drastically negative [solid
magenta (lower) curve], which also agrees with the positive
work condition stated in the Fig. 4.

APPENDIX B: PROBABILITIES DISTRIBUTION

In the Fig. 11 we see the occupation probabilities dis-
tribution pn = exp(−En/kT )/Z for the four possible states
|ψn〉n=1..4 in terms of the temperature. We see that for T =
1 μeV or even T = 2 μeV (values used in most of our plots),
the second and the third excited states has practically zero
probability (p3 ≈ p4 ≈ 0) for the system to be found in, this
way we can neglect this two most excited states and approxi-
mate our system by a two-level one. On the other hand, if we
have T = 10 μeV or T = 20 μeV (values used in Fig. 9), we
see that p3 and p4 are no longer negligible, thus the two-level
approximation is no longer valid.
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