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Entanglement distribution in the quantum symmetric simple exclusion process
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We study the probability distribution of entanglement in the quantum symmetric simple exclusion process, a
model of fermions hopping with random Brownian amplitudes between neighboring sites. We consider a protocol
where the system is initialized in a pure product state of M particles, and we focus on the late-time distribution of
Rényi-q entropies for a subsystem of size �. By means of a Coulomb gas approach from random matrix theory,
we compute analytically the large-deviation function of the entropy in the thermodynamic limit. For q > 1, we
show that, depending on the value of the ratio �/M, the entropy distribution displays either two or three distinct
regimes, ranging from low to high entanglement. These are connected by points where the probability density
features singularities in its third derivative, which can be understood in terms of a transition in the corresponding
charge density of the Coulomb gas. Our analytic results are supported by numerical Monte Carlo simulations.
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I. INTRODUCTION

Many physical phenomena admit a description in terms of
random variables, whose dynamics is dictated by stochastic
processes. While they have been traditionally introduced for
open systems, where randomness is acquired through the in-
teraction with the environment [1], stochastic processes have
recently received renewed attention in connection with inves-
tigations of typical features of isolated many-body systems.
This trend was driven by the study of random unitary circuits
[2], which proved to be ideal toy models to investigate aspects
of the dynamics that are notoriously hard to tackle, includ-
ing entanglement growth [2–8], operator spreading [9–16],
dynamical correlations [16–18], and scrambling of quantum
information [19–21]. Similar ideas were also explored in the
context of continuous-time Hamiltonian dynamics [22–27]
and stochastic conformal field theories [28].

The relevance of stochastic models for generic systems
relies on the assumption that the properties of individual ran-
dom realizations are close to the averaged ones. While this
is often a natural expectation, it is typically difficult to ob-
tain quantitative results on the full probability distribution of
coherent phenomena such as quantum entanglement [4,8,29–
31]. At the same time, understanding the nature of fluctuations
is clearly an important task and a necessary step towards the
generalization of powerful methods developed for classical
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stochastic systems, such as the well-established macroscopic
fluctuation theory [32,33].

Here, we initiate a series of investigations aimed at under-
standing entanglement fluctuations in a prototypical model
for quantum many-body stochastic dynamics: the quantum
simple symmetric exclusion process (Q-SSEP), cf. Fig. 1.
This model, recently introduced in Refs. [22,34], describes
fermions hopping with random amplitudes between neighbor-
ing sites and is particularly useful from the theoretical point
of view. On the one hand, given the quadratic form of the
Hamiltonian generator, it allows us to employ analytic tech-
niques which are not available in other models. On the other
hand, while its mean dynamics reduces to the classical SSEP
[35–43], quantum coherent effects have been shown to display
a rich phenomenology in this system and its generalizations
[40,44,45], making it an ideal toy model to build a quantitative
understanding of quantum fluctuations.

We focus on the simplest setting where the system is initial-
ized in a pure product state and compute the large-deviation
function for the Rényi-q entropy of subsystems at late times.
Using the Coulomb gas (CG) approach from random matrix
theory (RMT), we find that it displays distinct phases, with
two of them corresponding to states approaching either a pure
state or a maximally mixed one (defining regimes of low and
high entanglement, respectively). These regimes are separated
by critical points where the probability density features sin-
gularities in its third derivative and which can be understood
in terms of a transition in the corresponding charge density
of the CG. Our results are supported by numerical Monte
Carlo simulations and open the way towards further studies of
fluctuations of entanglement-related quantities in the Q-SSEP
and its generalizations.

The rest of this article is organized as follows. In Sec. II
we introduce the Q-SSEP and review previous results on
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FIG. 1. Pictorial representation of the Q-SSEP. M fermionic par-
ticles, initially in a pure product state, hop with random amplitudes
between neighboring sites. We focus on the probability distribution
of the entanglement of a subsystem A�, containing � neighboring
sites.

the characterization of the stationary state approached at late
times. In Sec. III we lay out the Coulomb gas approach to
the computation of the large-deviation function. We derive a
set of equations whose exact solution is presented in Sec. IV.
Finally, our conclusions are reported in Sec. V.

II. THE MODEL

We consider a chain of L sites with periodic boundary con-
ditions. The Q-SSEP is formally defined by the Hamiltonian
generator

dHt =
L∑

j=1

(
c†

j+1c jdW j
t + c†

j c j+1dW̄ j
t

)
, (1)

where c j and c†
j are canonical fermionic operators, with

{c j, c†
k} = δ j,k , and W j

t and W̄ j
t are pairs of complex-

conjugated Brownian motions. They satisfy dW j
t dW̄ k

t =
δ j,kdt and dW̄ j

t dW k
t ′ = dW k

t dW̄ j
t ′ = 0 for t �= t ′, where we

used the standard notation in Itô calculus [46]. The system is
initialized in a pure product state of M particles. Late-time
properties turn out to be independent of the specific initial
state chosen, but for concreteness we may take |�(0)〉 =
c†

1 · · · c†
M |0〉, where |0〉 is the vacuum. We consider the en-

tanglement of a subsystem A� = {1, . . . , �}, as measured by
the Rényi-q entropies

Sq(t ) = (1 − q)−1 ln tr
[
ρ

q
� (t )

]
, (2)

where ρ�(t ) = trL\�|�(t )〉〈�(t )|. Clearly, sq(t ) = Sq(t )/� is a
stochastic variable distributed according to some probability
density pq,t (s), with 0 � s � ln 2. Our goal is to compute
the full distribution of sq(t ) for large times, namely, pq(s) =
limt→∞ pq,t (s), in the limit of large L, �, and M, where we fix
the ratios ξ = �/L and m = M/L.

As a preliminary observation, note that the initial state
|�(0)〉 satisfies Wick’s theorem, and its density matrix is
completely specified by its covariance matrix (G0)i, j :=
〈�(0)|c†

i c j |�(0)〉. Since the Hamiltonian is quadratic, this
remains true for the evolved state |�(t )〉, and the system is ef-
fectively described by the evolved covariance matrix Gt . The
latter also fully determines the value of the Rényi entropies
Sq(t ) [47]: denoting by A(�) the matrix obtained by selecting
the first � rows and columns of a matrix A, we have

Sq(t ) = (1 − q)−1
�∑

j=1

ln
[
λ

q
j + (1 − λ j )

q
]
, (3)

where {λ j}�j=1 are the eigenvalues of G(�)
t , satisfying 0 � λ j �

1.
In order to make progress, we use that the density pq(s)

satisfies a large-deviation principle; in particular, we prove
that, for � < L, ln pq(s) ∼ −�2Iq(s), for some rate function
Iq(s). In this situation, the Gärtner-Ellis theorem applies [48],
stating that Iq(s) can be computed from the knowledge of the
cumulant-generating function by a Legendre transform:

Iq(s) = − inf
w

{ws − fq(w)} , (4)

where we introduced fq(w) = −�−2 lnFq(w), with Fq(w) =
limt→∞ Et [e−w�Sq (t )]. Writing Sq(t ) = Sq,�[Gt ], where we de-
fined the function

Sq,�[Gt ] = (1 − q)−1tr ln
[(

G(�)
t

)q + (
1 − G(�)

t

)q]
, (5)

we can make use of a result derived in Ref. [34], relating large-
time expectation values to averages over the unitary group
U (L) equipped with the Haar invariant measure. Explicitly,
we obtain

Fq(w) =
∫

U (L)
dη(V ) exp (−w�Sq,�[GV ]), (6)

with GV = V †G0V and where dη(V ) denotes the Haar mea-
sure over U (L). It follows from Eqs. (4) and (6) that the
problem is reduced to computing the distribution of the sub-
system entanglement for a random pure fermionic Gaussian
state. It is important to stress that this is different from the
analogous problem for Haar random states sampled over the
whole many-body space (having dimension 2L). In that case,
several exact results were obtained for the full probability dis-
tribution of entanglement [49–55]. While we employ similar
techniques, qualitative and quantitative differences arise in our
case.

III. THE COULOMB GAS APPROACH

The Haar measure over U (L) induces a probability distri-
bution P[{λ j}] on the set of eigenvalues of G(�)

V , which allows
us to express Eq. (6) in the form

Fq(w) =
∫ (

�∏
j=1

dλ j

)
P[{λ j}]e−w�Sq[{λ j}], (7)

where Sq[{λ j}] = (1 − q)−1 ∑
j ln[λq

j + (1 − λ j )q]. For the

initial state chosen, simple manipulations give G(�)
V =

V †
M,�VM,�, where VM,� is the M × � submatrix containing the

first M rows and � columns of V . Thus, in order to evaluate
Eq. (7), we need the probability distribution induced on the
eigenvalues of V †

M,�VM,�, when V is sampled from the Haar
invariant measure. It turns out that the latter is known in RMT
[56] and takes the form

P[{λi}] = 1

N
∏
j<k

|λ j − λk|2
�∏

i=1

λM−�
i (1 − λi )

L−�−M, (8)

where N is a normalization constant. This distribution defines
the so-called β-Jacobi ensemble (with β = 2) and has been
recently exploited for the computation of averaged subsys-
tem entanglement in the context of random noninteracting
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fermionic ensembles [57–60] (see also Ref. [61]). Note that
the distribution depends on both � and M. In the following,
we may restrict to � � L/2, since the entanglement for pure
states is symmetric under � 	→ L − �. Furthermore, we may
also choose � � M [62].

Following Refs. [51–55], we use Eq. (8) as the starting
point of our computations, which are based on the CG ap-
proach. This is a method routinely applied in RMT, consisting
of a mapping between random matrix eigenvalues and re-
pulsive point charges [56]. The CG analysis of the Jacobi
ensemble has been already employed in physical problems,
e.g., to study the conductance and the shot noise power for
a mesoscopic cavity with two leads [63,64] or to compute
the so-called Andreev conductance of a metal-superconductor
interface [65]. In order to see how it works, we rewrite

Fq(w) = 1

N

∫ 1

0

(
�∏

j=1

dλ j

)
e−�2Ew[{λ j}], (9)

with

Ew[{λi}] = − 2

�2

∑
i< j

ln |λi − λ j | − (M − �)

�2

∑
i

ln λi

− (L − M − �)

�2

∑
i

ln (1 − λi) + wSq[{λi}]/�.

Within the CG approach, the function Ew[{λi}] is interpreted
as the energy of a gas of charged particles with coordinates
λ j ∈ [0, 1], which are subject to an external potential. The
integral (9) is then understood as a thermal partition func-
tion for the CG. In the large-� limit, the configuration of the
Coulomb charges may be described in terms of the normalized
density ρ(λ, �) = �−1 ∑

j δ(λ − λi ), and the multiple integral
in Eq. (9) can be replaced by an integral over all possible
density functions ρ(λ), i.e.,

Fq(w) =
∫
Dρ e−�2Ew[ρ]∫
Dρ e−�2E0[ρ]

, (10)

where the denominator corresponds to the normalization con-
stant N . To the leading order in � [66], Ew[ρ] reads

Ew[ρ] = −
∫ 1

0
dλ

∫ 1

0
dμρ(λ)ρ(μ) ln |λ − μ|

+
∫ 1

0
dλρ(λ)Vw(λ) + u

{∫ 1

0
dλ ρ(λ) − 1

}
, (11)

where we introduce the Lagrange multiplier u enforcing nor-
malization and the effective potential

Vw(λ) = −
(

m

ξ
− 1

)
ln λ −

(
1 − m

ξ
− 1

)
ln (1 − λ)

+ w

1 − q
ln [λq + (1 − λ)q], (12)

where m and ξ are the density of fermions and the rescaled
interval length introduced before. The functional integrals
in Eq. (10) may be evaluated by the saddle-point method.
This yields

∫
Dρe−�2Ew[ρ] ∼ e−�2Ew[ρ∗

w], where ρ∗
w(λ) is the

“optimal” charge density, minimizing Ew[ρ∗
w(λ)] and

(a) (b)

FIG. 2. (a) Shifted effective potential Vw (λ), defined in Eq. (12),
for different values of w and m = 0.5, ξ = 0.25, and q = 2. (b) Op-
timal charge distribution for q = 2 and m = ξ = 0.5. The plot shows
ρ∗

w (λ) for three values of w, each corresponding to a different regime.

satisfying∫
dλρ∗

w(λ) ln |μ − λ| = (1/2)V (μ) + u/2. (13)

Differentiating the last equation with respect to μ, we arrive
at

−
∫

dλ
ρ∗

w(λ)

μ − λ
= 1

2
V ′

w(μ), (14)

where −
∫

denotes the principal-value integral. Equation (14)
can be formally solved using the so-called Tricomi’s formula
[68,69] or a resolvent method [70,71], which both yield inte-
gral representations of the solution which can, in general, be
evaluated numerically. Plugging

fq(w) = Ew[ρ∗
w] − E0[ρ∗

0 ], (15)

which is derived from the saddle-point method, into Eq. (4),
this finally allows us to obtain a numerical value for Iq(s).
In fact, we find that Eq. (14) can be solved analytically for
all integers q > 1. Before discussing the mathematical details,
however, it is interesting to observe that its qualitative features
can be understood based on the analysis of the CG picture, as
we now briefly discuss.

First of all, we note that for 0 � ξ � m � 1/2, the
effective potential (12) is always bounded from below. Fur-
thermore, for w negative and with large absolute value, Vw(λ)
has a single local minimum close to λ = 1/2 (cf. Fig. 2).
Recalling that ρ∗

w(λ) describes the distribution of charges
subject to the external potential Vw(λ), we expect ρ∗

w(λ) to
develop an increasingly sharp peak around this point. This is
consistent with our intuition based on the quantum problem:
for w → −∞, maximal entanglement entropies are favored in
the average corresponding to Fq(w), and the most significant
states in the average approach the maximally mixed one; i.e.,
all the eigenvalues of the covariance matrix should be close to
λ = 1/2. For w very large, instead, Vw(λ) develops a local
maximum close to λ = 1/2, and the Coulomb charges are
pushed at the boundaries of [0,1], eventually depleting its cen-
tral region. Accordingly, we expect ρ∗

w(λ) to become peaked
around λ = 0 and λ = 1 and vanish in the neighborhood of
λ = 1/2. In terms of the quantum problem, this means that all
eigenvalues of the covariance matrix are close to 0 or 1; i.e.,
the entanglement vanishes and we approach a pure state. We
will see that the two limits w → ±∞ correspond to different
phases of the rate function.
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IV. THE EXACT SOLUTION

We now present our analytic solution to Eq. (14). While we
were able to obtain explicit expressions for all integers q > 1
and arbitrary ξ and m, they are very cumbersome for general
q and ξ, m < 1/2. For this reason, here we report only the
case q = 2 and ξ = m = 1/2. Furthermore, we only present
the final result of our analysis, while all the details of our
derivations will be reported elsewhere [72].

In general, we find that ρ∗
w(λ) displays either two or three

distinct phases as a function of w, separated by points where
Iq(s) develops a discontinuity in its third derivative. Simi-
lar kinds of “third-order phase transitions” are ubiquitous in
RMT, appearing in a wide variety of contexts [69]. In our
case, for m = ξ = 1/2 and q = 2, there are three phases, sep-
arated by the points w∗

1 = −2 − √
2 and w∗

2 = 1 + √
2. The

first one is characterized by states with large entanglement
and corresponds to −∞ < w < w∗

1 . In this case, ρ∗
w(λ) has

nonzero support over the interval J I = [ν−, ν+] ⊂ [0, 1], with
ν± = (1 ± ν)/2 and ν = −√−2w − 1/(w + 1). It reads

ρ∗
w(λ) = −(2/π )(w + 1)

√
λ − ν−

√
ν+ − λ

λ2 + (1 − λ)2
. (16)

As expected, ρ∗
w(λ) becomes a δ function peaked around

λ = 1/2 for w → −∞. Next, for w∗
1 < w < w∗

2 , we enter a
transition regime: ρ∗

w(λ) has support over the whole inter-
val J II = (0, 1) and develops two integral singularities at its
boundaries. It reads

ρ∗
w(λ) = 1√

π2λ(1 − λ)
g(λ), (17)

with

g(λ) = 1 + w{1 − 2−1/2[λ2 + (λ − 1)2]−1}. (18)

Note that for w = 0 we recover the spectral density of the
Jacobi ensemble (see, e.g., Refs. [56,73,74]). As w varies
from w∗

1 to w∗
2 , the charge density decreases at the center

of the interval, eventually vanishing in λ = 1/2 at w = w∗
2 .

Here, we enter the third phase, spanning w∗
2 < w < ∞, which

is that of low-entangled states. In this regime, ρ∗
w(λ) has

nonvanishing support over J III = (0, ν−) ∪ (ν+, 1), with ν± =
(1 ± ν)/2 and

ν =
√

(w − 1)2 − 2

w + 1
. (19)

It has the form

ρ∗
w(λ) = |λ − 1/2|[2 + wh(λ)]

π
√

(1 − λ)λ
√

(1 − 2λ)2 − ν(w)2
, (20)

with h(λ) = 2 −
√

2 + 2ν(w)2/[1 − 2(1 − λ)λ]. Importantly,
we see that as w → ∞ the support of ρ∗

w(λ) localizes around
0 and 1, yielding vanishing entanglement. We plot the optimal
density ρ∗

w(λ) in Fig. 2, for three values of w corresponding
to the phases discussed above.

Let us also mention how this picture is modified when
ξ < 1/2 (and m = 1/2). In this case, the potential Vw(λ) is
divergent at λ = 0 and 1, and the support of the optimal charge
ρ∗

w(λ) is strictly contained in [0,1]. Accordingly, we find that
phases I and II merge, so that ρ∗

w(λ) only displays two phases,

(a) (b)

FIG. 3. (a) Rate function for the Rényi-2 entropy, for m = 1/2
and different values of ξ . For ξ < m and ξ = m, respectively,
two and three phases appear, which correspond to different colors.
(b) Analytic predictions for the derivative I ′

2(s) (solid lines), against
numerical data from Monte Carlo simulations for � = 32, L = �/ξ ,
and M = L/2 (dots). The numerical error is not visible at the scales
of the plot.

separated by the point

w∗(ξ ) = 1 + 2
√

2
√

(1 − ξ )ξ

2ξ
. (21)

The qualitative features of the optimal distributions remain
the same, although they do not display singularities at the
boundaries of their support for ξ �= 1/2.

From the knowledge of ρ∗
w(λ), we can compute the rate

function Iq(s). First, it is convenient to rewrite the Legendre
transform (4) as

Iq(s) = −wss + fq(ws), (22)

where ws satisfies dfq(ws)/dw = s. Using Eq. (15) and the
fact that ρ∗

w(λ) is the saddle point of Ew[ρ], this condition is
equivalent to Sq[ρ∗

ws
] = s, where

Sq[ρ] =
∫

dλ ρ(λ)(1 − q)−1 ln [λq + (1 − λ)q]. (23)

From Eq. (22) we see that Iq(s) can be computed by evaluating
numerically simple integrals [75]. We followed this procedure
to generate plots of the function Iq(s) for different values of ξ ,
as reported in Fig. 3. As a general feature, we see that the rate
function develops singularities at s = 0 and s = ln 2. We also
note that we may read off the average value for the entropy,
corresponding to the minimum of Iq(s).

To obtain an analytic form for Iq(s), one should invert the
relation Sq[ρ∗

ws
] = s and express ws as a function of s. While

this is difficult for general values of q, ξ , and m, due to the
complicated form of ρ∗

w(λ), it may be done in some cases. In
particular, fully analytic results can be obtained for q = 2 and
ξ = m = 1/2. In this case, I2(s) can be written explicitly in
phase II, displaying the simple form

I2(s) = (s − s̄)2

2γ
, (24)

where s̄ = 3 ln 2 − 2 ln(1 + √
2) is the average Rényi-2 en-

tropy, while γ � 0.06 is a numerical constant. Hence, for
w ∈ (w∗

1,w
∗
2 ) the probability density for the Rényi-2 entropy

is simply Gaussian. In phases I and III, instead, a large-w
expansion reveals that I2(s) develops logarithmic singularities
for s → 0 and s → ln 2: we find

I2(s) = − 1
2 ln |s − s̃| + O(|s − s̃|), (25)

with s̃ = 0 and s̃ = ln 2, respectively.
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We have tested our predictions against Monte Carlo sim-
ulations [76], numerically constructing a histogram of the
probability pq(s) based on a sampling of Eq. (8). Since the
distribution of the Rényi entropies is highly peaked around
its average, a standard Metropolis approach is not adequate to
efficiently explore a wide range of its values, and we imple-
ment the numerical scheme introduced in Ref. [53], where one
forces the Metropolis algorithm to explore regions of large
values of the Rényi entropy. As explained in Ref. [53], this
method gives us access to the derivative of the rate function
I ′
2(s) for finite systems [72]. The numerical data obtained

using this method are reported in Fig. 3 for the case q =
m−1 = 2 and different values of ξ . The plot shows excellent
agreement with our predictions, revealing that finite-size ef-
fects are very small for the set of parameters considered.

V. CONCLUSIONS

We have computed the large-deviation function for the
entanglement of subsystems in the steady state of the Q-SSEP.

We have shown that its distribution is characterized by differ-
ent phases connected by points where the probability density
features singularities in its third derivative. Our work raises
several questions. First, it would be interesting to understand
how our predictions are modified for suitable generalizations
of the model, such as the Q-SSEP with dissipative bound-
aries [40,44], or its “asymmetric” version [45]. Furthermore,
a natural direction to explore pertains to the dynamics of
entanglement, which should be, in principle, accessible from
the stochastic equations of motion studied in Ref. [34]. These
questions are left for future work.
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