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Topological sectors, dimer correlations, and monomers from the
transfer-matrix solution of the dimer model
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We solve the classical square-lattice dimer model with periodic boundaries and in the presence of a field t that
couples to the (vector) flux, by diagonalizing a modified version of Lieb’s transfer matrix. After deriving the torus
partition function in the thermodynamic limit, we show how the configuration space divides into topological
sectors corresponding to distinct values of the flux. Additionally, we demonstrate in general that expectation
values are t independent at leading order, and obtain explicit expressions for dimer occupation numbers, dimer-
dimer correlation functions, and the monomer distribution function. The last of these is expressed as a Toeplitz
determinant, whose asymptotic behavior for large monomer separation is tractable using the Fisher-Hartwig
conjecture. Our results reproduce those previously obtained using Pfaffian techniques.
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I. INTRODUCTION

The dimer model is a paradigmatic example of a strongly
correlated system, in which dimers cover the edges of a lat-
tice subject to a close-packing constraint; i.e., each vertex
touches exactly one dimer. It was first solved independently by
Kasteleyn [1,2] and Temperley and Fisher [3,4] in 1961 using
a combinatoric method, in which the partition function is
expressed as the Pfaffian of a signed adjacency matrix known
as the Kasteleyn matrix.

Because the dimer model is exactly solvable, it offers a use-
ful setting for the study of novel phenomena in geometrically
frustrated systems [5] or, more specifically, “Coulomb-phase”
physics [6]. In particular, its extensive entropy reflects macro-
scopic ground-state degeneracy, while the configuration space
splits into topological sectors labeled by horizontal and ver-
tical flux components, reflecting topological order [7]. The
Pfaffian method can be used to calculate partial partition func-
tions for these sectors, as demonstrated by Boutillier and de
Tilière [8].

Moreover, a dimer can be replaced by a pair of monomers,
which can be separated by subsequent dimer updates and
thus play the role of fractionalized excitations. Fisher and
Stephenson’s Pfaffian calculation of the monomer distribu-
tion function in 1963 [9] implies that, due to the entropy of
the background dimer configuration, the monomers interact
through an effective Coulomb potential, which is logarithmic
in two dimensions. They have also shown that dimer-dimer
correlations are long range with algebraic, rather than expo-
nential, dependence on separation. This is despite the absence
of long-range order and instead a consequence of the close-
packing constraint.

Perhaps a more elegant solution of the dimer model is
Lieb’s transfer-matrix method [10], analogous to the well-
known solution of the Ising model by Schultz et al. [11],
which maps the problem to free fermions. In this approach,

the partition function is expressed in terms of a transfer
matrix, which, given a configuration on a row of vertical
bonds, generates all dimer configurations compatible with the
close-packing constraint on the subsequent row of horizontal
and vertical bonds. This can be expressed in terms of spin- 1

2
operators and mapped to fermions through a Jordan-Wigner
transformation.

This method has been used in the literature to derive
the partition function [10] and to determine its vertical-flux
decomposition [12,13]. In this work, we show how Lieb’s
transfer matrix can be modified in order to calculate the full
flux-sector decomposition. We also provide a general frame-
work for the calculation of expectation values and explicitly
calculate dimer occupation numbers, dimer-dimer correlation
functions, and the monomer distribution function. For the
last of these, we show how the asymptotic dependence for
large monomer separation, which was deduced by numerical
means in Ref. [9], can be evaluated exactly by applying the
Fisher-Hartwig conjecture [14].

In Sec. II, we define the model before showing how it
can be formulated in terms of a transfer matrix in Sec. III.
We then diagonalize the two-row transfer matrix in Sec. IV,
whose spectrum is used to calculate the partition function,
including its flux-sector decomposition, in Sec. V, and various
expectation values in Sec. VI. We conclude in Sec. VII.

II. MODEL

We consider the close-packed dimer model on an Lx × Ly

square lattice with periodic boundary conditions (PBCs), as-
suming both Lx, Ly even. In the following, we define the flux
along with the weights that appear in the partition function.

Denoting by dr,μ the dimer occupation number (equal to
zero or one) on the bond joining sites r and r + δμ, with δμ a
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FIG. 1. An example configuration of the close-packed dimer
model on a 6 × 6 lattice with periodic boundaries. The number of
horizontal dimers is Nx = 8 and the flux is � = (1, 1) [see Eq. (1)
and text thereafter]. Hence, this configuration has weight α8eit·(1,1).

unit vector in direction μ ∈ {x, y}, the flux is given by

�μ = 1

Lμ

∑
r

εrdr,μ , (1)

where εr = (−1)rx+ry = ±1 depending on the sublattice. Due
to the close-packing constraint, this is equivalent to the sum of
εrdr,μ on links crossing a surface normal to δμ (to see this, one
usually defines an effective magnetic field [6,15]). The latter
definition highlights that �μ is integer valued and can only be
changed by shifting dimers around a loop encircling the whole
system [16]. The flux thus plays the role of a topological
invariant.

To each configuration, we assign weight αNx eit·�. In the
first factor, α > 0 and Nx are the activity and number of
horizontal dimers, respectively. (The total number of dimers
Nx + Ny = 1

2 LxLy is fixed, so the activity of vertical dimers
is set to unity without loss of generality.) Hence, for α �= 1,
the model is anisotropic, with horizontal (vertical) dimers
favored for α > 1 (α < 1). In the second factor t is a field,
with components tμ ∈ (−π, π ], that couples to the flux �. An
example configuration is shown in Fig. 1.

The partition function is

Z (t ) =
∑
c∈C0

αNx eit ·� , (2)

where C0 denotes the set of all close-packed dimer configura-
tions and can be thought of as a moment-generating function
for �μ. Similarly, expectation values of a function O of the
dimer occupation numbers dr,μ are given by

〈O〉 = 1

Z (t )

∑
c∈C0

OαNx eit ·� . (3)

III. TRANSFER MATRIX

We construct the partition function, Eq. (2), by modifying
Lieb’s transfer matrix [10] to include the �x weighting (the
�y weighting can be included without modifying the transfer
matrix).

We first define a vector space whose basis vectors |d̄y〉
correspond to all possible configurations d̄y of the dimer
occupation numbers on a single row of vertical bonds. As
illustrated in Fig. 2, the transfer matrix V is defined so that

V |d̄y〉 =
∑

d̄
′
y

|d̄ ′
y〉

∑
d̄x∈C(d̄y,d̄

′
y )

w(d̄x ) , (4)

where d̄
′
y is the configuration on the subsequent row of vertical

bonds and C(d̄y, d̄
′
y) is the (possibly empty) set of configura-

tions d̄x of the intermediate row of horizontal bonds that are
compatible with d̄y and d̄

′
y. The weight function w is chosen to

give the correct weights for Nx and �x in the partition function
of Eq. (2). On even rows, where εr = (−1)rx in Eq. (1), it is
given by

w(d̄x ) =
Lx∏
j=1

μ
d̄ j,x

j , (5)

where

μ j = α exp
[
i(−1) j tx

Lx

]
, (6)

while on odd rows w is defined in the same way, but with μ j

replaced by μ∗
j . (Here, d̄ j,x denotes the occupation number of

the bond between sites rx = j and j + 1 in the configuration
d̄x of the horizontal bonds.)

It is convenient to split the action of V into two steps:
(1) Generate the (single) configuration d̄

′
y =

(1, 1, . . . , 1) − d̄y with all horizontal bonds on the
intermediate row empty (left configuration in Fig. 2).

(2) Starting with the result of step 1, one may produce all
other configurations by replacing pairs of neighboring vertical
dimers with a horizontal dimer (middle and right configura-
tions in Fig. 2). The effect on d̄

′
y is that an adjacent pair of

dimers is removed.
In order to reproduce the weight function w, a horizontal

dimer on the bond between sites j and j + 1 in step 2 comes
with a factor μ j (μ∗

j ) on even (odd) rows.
An explicit operator expression for the transfer matrix is

obtained by representing occupied and empty vertical bonds
by spin-up |↑〉 and spin-down |↓〉 states, respectively [i.e.,
eigenstates of σ z

j , where σ j = (σ x
j , σ

y
j , σ

z
j ) are the Pauli ma-

trices]. The above steps are easy to formulate in the spin
language. As shown in Fig. 2, step 1 is equivalent to flipping
all spins, which is achieved by the operator

V1 =
Lx∏
j=1

σ x
j , (7)

since σ±
j = 1

2 (σ x
j ± iσ y

j ) satisfy σ+|↓〉 = |↑〉 and σ−|↑〉 =
|↓〉.

In step 2, pairs of neighboring up spins are flipped, so the
operator

d j,x = μ jσ
−
j σ−

j+1 (8)

effectively generates a horizontal dimer between sites j and
j + 1, with the correct weight on even rows. Because (σ−

j )2 =
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FIG. 2. Action of the transfer matrix V of Eq. (10) on a row of vertical bonds (top), in which occupied and empty vertical bonds are
represented by spin-up |↑〉 and spin-down |↓〉 states (red), respectively. The result is all dimer configurations on the subsequent row of vertical
bonds that are consistent with the close-packing constraint (bottom). The left configuration with all dimers vertical is generated by V1, which
flips all spins. The middle and right configurations, obtained from the left configuration by replacing pairs of neighboring vertical dimers
with horizontal dimers, are generated by V3, which flips neighboring up spins. In order to obtain the correct weights in the partition function,
Eq. (2), V and V ∗ = V † act on alternate rows and assign weight μ j = α exp [itx (−1) j/Lx] and μ∗

j to a horizontal dimer between sites j and
j + 1, respectively.

0, the operator (m!)−1(
∑Lx

j=1 d j,x )m generates m horizontal
dimers (PBCs require σ−

Lx+1 = σ−
1 ), and hence

V3 = exp

(
Lx∑
j=1

d j,x

)
(9)

generates an arbitrary number of horizontal dimers. To obtain
the correct weights on odd rows, one should instead use the
operator V ∗

3 .
It is therefore necessary to define two transfer matrices,

V = V3V1 (10)

on even rows and V ∗ = V † on odd rows.1 (Note that V T = V
because σ xσ+ = σ−σ x.) We also define the two-row transfer
matrix

W = VV † = V3V
†

3 , (11)

which is manifestly Hermitian.
The �y weighting is included in the transfer-matrix formal-

ism as follows: The operator for the dimer occupation number
on a vertical bond is simply

d j,y = 1
2

(
1 + σ z

j

)
, (12)

since spin up (down) corresponds to an occupied (empty)
bond. In terms of this, the vertical flux component on even
rows is [see Eq. (1) and text thereafter]

�y =
Lx∑
j=1

(−1) jd j,y , (13)

which satisfies the (anti)commutation relations {�y,V } = 0
and [�y,W ] = 0.2 The latter implies that it is possible to

1Lieb’s transfer matrix V = V3V2V1 includes a third operator V2,
which generates an arbitrary number of monomers on a row [10].

2�y appears in Refs. [12,13,17] as the operator V , whose eigenval-
ues are referred to as the “variation index.”

construct mutual eigenstates of the two-row transfer matrix
W and �y. The partition function, Eq. (2), is then given by

Z (t ) = Tr[eity�yW
Ly
2 ] (14)

(the trace arises due to PBCs in the vertical direction).
Similarly, the operator analog of Eq. (3), in the case of the

correlation function between observables O and O′ in rows
1 � l � l ′ � Ly, is given by

〈O′(l ′)O(l )〉 = 1

Z (t )
Tr[eity�yW

Ly
2 O′(l ′)O(l )] , (15)

where O(l ) = U (l )−1OU (l ) and

U (l ) = · · ·V †VV †︸ ︷︷ ︸
l

=
{

V †W (l−1)/2 for l odd
W l/2 l even.

(16)

Note that [O(l )]† = O†(−l ), where U (−l ) = [U (l )†]−1 is de-
fined by the second equality of Eq. (16).

To compute expectation values of dimer observables, it is
necessary to find operators that correspond to these quantities.
While a suitable operator for the dimer occupation number on
vertical bonds has already been defined in Eq. (12), no such
operator exactly represents the dimer occupation number on
horizontal bonds, since the vector space on which the transfer
matrix acts contains only dimer configurations on vertical
bonds.

One can nonetheless calculate expectation values involving
horizontal dimers using an appropriately constructed operator.
From Eqs. (4) and (5), one finds

μ j
∂

∂μ j
V |d̄y〉 =

∑
d̄

′
y

|d̄ ′
y〉

∑
d̄x∈C(d̄y,d̄

′
y )

d̄ j,xw(d̄x ) , (17)

whereas Eqs. (8)–(10) give the operator identity

μ j
∂

∂μ j
V = d j,xV , (18)

since [d j,x, d j′,x] = 0. Comparing the right-hand sides, we
therefore interpret d j,x as the operator corresponding to the
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horizontal dimer occupation number d̄ j,x on an even row, but
only when appearing in the combination3 d j,xV . Similarly, d∗

j,x
acts as the horizontal dimer occupation number on an odd
row in the combination d∗

j,xV
†. Setting O equal to d j,x (d∗

j,x)
on even (odd) rows in Eq. (15) gives the correct combination
d j,xV (d∗

j,xV
†) in O(l ), allowing one to calculate expectation

values involving the horizontal dimer number.

IV. DIAGONALIZATION OF THE TWO-ROW TRANSFER
MATRIX

To calculate Eq. (14) it is sufficient to diagonalize the
two-row transfer matrix W . We do so in this section through a
series of transformations.

We map between spins and spinless fermions using the
Jordan-Wigner transformation [18–20]

Cj =
(

j−1∏
i=1

−σ z
i

)
σ−

j , (19)

C†
j =

(
j−1∏
i=1

−σ z
i

)
σ+

j , (20)

C†
j Cj = 1

2

(
1 + σ z

j

)
, (21)

which identifies spin up and down with filled and empty
fermion orbitals, respectively, while preserving the usual
(anti)commutation relations[

σ
μ
i , σ ν

j

] = 2iδi jεμνρσρ, (22)

{Ci,Cj} = {C†
i ,C†

j } = 0, {Ci,C†
j } = δi j . (23)

In terms of fermions, Eqs. (8) and (12) become

d j,x = −μ jCjCj+1, (24)

d j,y = C†
j Cj , (25)

while the condition σ−
Lx+1 = σ−

1 is equivalent to

CLx+1 = −C1(−1)�y = (−1)�yC1 (26)

with

�y =
∑

j

(−1) jC†
j Cj . (27)

We now define projectors

�p = 1
2 [1 + (−1)p(−1)�y ] (28)

into the subspaces with even (p = 0) or odd (p = 1) �y,
which satisfy

∑
p �p = 1 and (−1)�y�p = (−1)p�p. Then,

since (−1)�y commutes with any quadratic form in fermions,
we have

W = W
∑

p

�p (29)

=
∑

p

Wp�p , (30)

3This means that, for example, d2
j,x does not give the square of the

horizontal dimer number; in fact d2
j,x = 0, whereas d̄2

j,x = d̄ j,x .

where

Wp = exp

(
−

Lx∑
j=1

μ jCjCj+1

)
× H.c. , (31)

and the fermion operator CLx+1 depends implicitly on p
through the boundary condition

CLx+1 = −(−1)pC1. (32)

More generally, for any operator O containing CLx+1 of
Eq. (26), we define an operator Op that instead only contains
CLx+1 of Eq. (32) (and thus depends on p), such that the action
of both operators on a state with �y parity p yields the same
result, i.e., O = ∑

p Op�p. (For operators that do not contain
CLx+1, such as �y, one has Op = O.)

For later reference (see Sec. VI) we note that, after the
Jordan-Wigner transformation, the single-row transfer matrix
is given by V = ∑

p Vp�p, with

Vp = exp

(
−

Lx∑
j=1

μ jCjCj+1

)
Lx∏
j=1

[Cj + (−1) jC†
j ] , (33)

where the operators in the product should be ordered from
right to left.

We now make a Fourier expansion

Cj = e−iπ/4

√
Lx

∑
k∈Kp

eik jηk , (34)

with

K0 = {±π/Lx,±3π/Lx, . . . ,±(Lx − 1)π/Lx} (35)

and

K1 = {0,±2π/Lx,±4π/Lx, . . . ,±(Lx − 2)π/Lx, π} ,
(36)

which ensures the correct boundary condition on CLx+1 in
Eq. (32) [10].4 The ηk fermions obey standard anticommu-
tation relations, as follows from Eq. (23).

Using the result

1

Lx

Lx∑
j=1

μ je
i(k+k′ ) j

= α
[
δk+k′,0 cos

( tx
Lx

)
+ iδk+k′,π sin

( tx
Lx

)]
, (37)

valid for both k and k′ in either K0 or K1, the op-
erator appearing in the exponential of Eq. (31) can be

4As an alternative to the approach in Sec. III, one could instead
implement the �x weighting using μ j = α and twisted boundary
conditions σ−

Lx+1 = eitx σ−
1 in place of Eq. (6) and σ−

Lx+1 = σ−
1 , respec-

tively [see Eq. (1) and text thereafter]. However, a Fourier expansion
of the new set of fermions C̃j is no longer useful because of the
absence of translation symmetry [21,22]. Instead, one would have
to perform the gauge transformation C̃j = e−i j(−1) j tx/LxCj back to Cj

fermions, before proceeding as in the main text.
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written as

−
Lx∑
j=1

μ jCjCj+1

= iα
∑
k∈Kp

e−ikηk

[
cos

( tx
Lx

)
η−k − i sin

( tx
Lx

)
ηπ−k

]
. (38)

Restricting the sum to 0 � k � π
2 , this becomes

−
Lx∑
j=1

μ jCjCj+1 =
∑

k ∈ Kp

0 � k � π
2

Qk (A(k)) , (39)

where the quadratic form

Qk (X) =
{ 1

2η†
kXηk for k ∈ {0, π

2 }
η†

kXηk otherwise.
(40)

Here,

ηk =

⎛
⎜⎜⎝

ηk

ηk−π

η
†
−k

η
†
π−k

⎞
⎟⎟⎠ (41)

[its Hermitian conjugate means the row vector η†
k =

(η†
k η

†
k−π

η−k ηπ−k )], while the 4 × 4 matrix

A(k) =
(

0 0
A21 0

)
, (42)

with

A21 = 2α

[− sin k cos
( tx

Lx

)
cos k sin

( tx
Lx

)
− cos k sin

( tx
Lx

)
sin k cos

( tx
Lx

)] . (43)

The additional factor of 1
2 for k ∈ {0, π

2 } prevents double
counting of these terms in Eq. (39) and ensures the commuta-
tion relation

[Qk (X), Qk′ (Y)] = δkk′Qk ([X, Y]) (44)

is valid for all 0 � k � π
2 .5

Since Q†
k (X) = Qk (X†), and all quadratic forms in Eq. (39)

commute by Eq. (44), the two-row transfer matrix, Eq. (31),

5For k ∈ {0, π

2 }, because of the nonzero anticommutator
{ηk,i, ηk, j} = (Wk )i, j , where

W0 = σx ⊗ I2 Wπ/2 = σx ⊗ σx , (45)

with ⊗ denoting the Kronecker product, Eq. (44) is only true if X sat-
isfies the condition WkXT Wk = −X (or the same for Y). However,
it is always possible to symmetrize X to meet this condition: Using
(η†

k )T = Wkηk, j , one can show

Qk (X) = Qk (X′) + 1

2
Tr(WkXT Wk ) , (46)

where X′ = 1
2 (X − WkXT Wk ) is a matrix that satisfies the condition.

The matrix A(k) in Eq. (42) has been constructed in this way.

is given by

Wp =

⎡
⎢⎢⎢⎣

∏
k ∈ Kp

0 � k � π
2

eQk (A(k))

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

∏
k ∈ Kp

0 � k � π
2

eQk (A†(k))

⎤
⎥⎥⎥⎦ , (47)

which can be reordered as the following product of commut-
ing terms:

Wp =
∏

k ∈ Kp

0 � k � π
2

eQk (A(k))eQk (A†(k)) . (48)

To proceed, we map to the corresponding one-dimensional
quantum Hamiltonian H through

W = e−2H . (49)

Then, by Eq. (30), we have

H =
∑

p

Hp�p , (50)

where

Wp = e−2Hp , (51)

since the projectors satisfy [�p,Wp′] = 0 and �p�p′ =
�pδpp′ . After inserting Eq. (48), this implies

Hp = −1

2

∑
k ∈ Kp

0 � k � π
2

ln[eQk (A(k))eQk (A†(k))] . (52)

The Baker-Campbell-Hausdorff formula [23] states that
the logarithm in Eq. (52) can be expressed in terms of nested
commutators of Qk (A) and Qk (A†). Using Eq. (44), these can
be expressed in terms of nested commutators of A and A†,
giving

Hp = −1

2

∑
k ∈ Kp

0 � k � π
2

Qk (ln(eA(k)eA†(k) )) . (53)

The problem is thus reduced to diagonalization of the 4 × 4
matrix eAeA†

for each k.
In order to solve the eigenvalue problem

eAeA†
v = λv , (54)

we expand eA as a power series and use A2 = 0 to obtain

eAeA† = I + A + A† + AA† . (55)

After substituting Eq. (42) and writing v = (v1 v2)T , Eq. (54)
reduces to a pair of simultaneous equations which, on rear-
rangement, read

v1 = 1

λ − 1
A†

21v2, (56)

A21A†
21v2 = (λ − 1)2

λ
v2 . (57)

The latter is a 2 × 2 eigenvalue problem, which is easily
solved. The result implies

eAeA† = Udiag[λ−(k − tx/Lx ), λ+(k − tx/Lx ),
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λ−(k + tx/Lx ), λ+(k + tx/Lx )]U† , (58)

where

λ±(k) = [α sin k ± (1 + α2 sin2 k)
1
2 ]2 , (59)

and U is a unitary matrix whose columns are the eigenvectors
of eAeA†

.
By inserting Eq. (58) into Eq. (53), we obtain the free-

fermion Hamiltonian

Hp =
∑
k∈Kp

ε(k − tx/Lx )ζ †
k ζk , (60)

with dispersion

ε(k) = 1
2 ln λ+(k) = sinh−1(α sin k) , (61)

where the ζk and ηk fermions are related by the Bogoliubov
transformation

ζk =

⎛
⎜⎜⎝

ζk

ζk−π

ζ
†
−k

ζ
†
π−k

⎞
⎟⎟⎠ = U†ηk , (62)

for 0 � k � π/2. Both sets of fermions obey standard anti-
commutation relations.

The transformation of Eq. (62) may be expressed as a
single transformation valid for all k:

ηk = 1√
2

(cos θk−tx/Lx ζk + cos θk+tx/Lx ζ
†
−k

− sin θk+tx/Lx ζ
†
π−k + sin θk−tx/Lx ζk−π ) , (63)

with

tan(2θk ) = 1

α sin k
, θk ∈

[
0,

π

2

]
. (64)

Combining Eqs. (34) and (63), the transformation relating the
Cj and ζk fermions is

Cj =
√

2

Lx
e−iπ/4

∑
k∈Kp

eik j ×
{

cos θk+tx/Lx ζ
†
−k for j odd

cos θk−tx/Lx ζk j even,

(65)
with inverse

ζk =
√

2

Lx
eiπ/4 cos θk−tx/Lx

∑
even j

e−ik jCj

+
√

2

Lx
e−iπ/4 sin θk−tx/Lx

∑
odd j

e−ik jC†
j . (66)

This makes it clear that the annihilation operator ζk removes a
fermion (or equivalently, removes a vertical dimer) on even
sites or adds one on odd sites. According to Eq. (27), it
therefore reduces �y by one.

We now construct the spectrum of H. As discussed in
Sec. III, one can find simultaneous eigenstates of H and �y.
After substituting Eq. (65) into Eq. (27), the latter is given by

�y = −Lx

2
+
∑
k∈Kp

ζ
†
k ζk (67)

in terms of ζk fermions, which counts the number of occupied
states relative to half filling [the number of available k states
is Lx by Eqs. (35) and (36)].6.

The occupation-number states of the ζk fermions with k ∈
Kp form a complete set of mutual eigenstates of Hp and �y.
From Eq. (50), the complete set of eigenstates of H is given by
the union of all eigenstates of H0 that have even �y eigenvalue
and all eigenstates of H1 that have odd �y eigenvalue. We will
denote |�y〉n as the nth excited eigenstate of H with vertical
flux �y and En(�y) as its eigenenergy. The spectrum of the
two-row transfer matrix W follows from that of H through
Eq. (49): |�y〉n is also an eigenstate of W , but with eigenvalue
e−2En (�y ).

As illustrated in Fig. 3 (top left panel), the ground state is
half filled and thus denoted by |0〉0. Formally, it is defined by

ζk|0〉0 = 0 for 0 < k < π,

ζ
†
k |0〉0 = 0 for − π < k < 0 ,

(68)

where k ∈ K0, and has energy

E0(0) =
∑
k∈K0
k<0

ε(k − tx/Lx ) . (69)

Figure 3 also illustrates some eigenstates with higher energy.
To calculate the ground-state energy E0(0), in the limit

Lx → ∞ and including O(1/Lx ) corrections, we rewrite the
sum in Eq. (69) as an integral using the Euler-Maclaurin
formula

n∑
i=0

f (a + iδ) = 1

δ

∫ a+nδ

a
f (φ) dφ

+ 1

2
[ f (a) + f (a + nδ)]

+ δ

12
[ f ′(a + nδ) − f ′(a)] + O(δ3) , (70)

with a = −(Lx − 1) π
Lx

, δ = 2π
Lx

, and n = Lx
2 − 1. The integral

can be performed by extending the range of integration to
[−π, 0] and expanding ε(k − tx/Lx ) as a power series in 1/Lx.
The leading term is then

Lx

2π

∫ 0

−π

dk sinh−1(α sin k) = iLxχ2(iα)

π
, (71)

where χ2(z) = 1
2 [Li2(z) − Li2(−z)] is the Legendre χ func-

tion [in particular, χ2(i) = iG, where

G =
∞∑

n=0

(−1)n

(2n + 1)2
(72)

is Catalan’s constant]. The O(L0
x ) term vanishes, while the

O(1/Lx ) term is t2
x α/2πLx.

The correction terms

−1

δ

[∫ a

−π

f (φ) dφ +
∫ 0

a+nδ

f (φ) dφ

]
, (73)

6�y does not contain CLx+1 and so does not depend on p; either p
gives the same result.
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FIG. 3. Simultaneous eigenstates of the Hamiltonian H, given by Eqs. (50) and (60), and the vertical flux �y of Eq. (67), for Lx = 12,
α = 1, and tx = π/2: The nth excited eigenstate with vertical flux �y is denoted by |�y〉n, while filled and empty circles represent filled and
empty ζk orbitals, respectively. Top left panel: Ground state |0〉0, where k states, given by Eq. (35) for �y even (dashed blue lines), are all
occupied for ε(k − tx/Lx ) < 0. Top right panel: First excited state in the �y = 0 sector |0〉1, obtained by adding a particle-hole excitation to
|0〉0. Bottom left panel: Lowest energy state in the �y = 1 sector |1〉0, where k states, given by Eq. (36) for �y odd (dashed red lines), are
occupied for −π � k � 0. Bottom right panel: Lowest energy state in the �y = 2 sector |2〉0, obtained by adding two particles to |0〉0.

which arise when extending the integration bounds, as well as
the remaining terms in Eq. (70), can be calculated using the
Taylor expansion

ε(k) = vFk + O(k3), |k| � 1 , (74)

where vF = α is the Fermi velocity. The final result is

E0(0) = iLxχ2(iα)

π
− πα

6Lx
+ t2

x α

2πLx
+ O

(
1

L3
x

)
, (75)

and a similar calculation for the lowest energy state in the
�y = 1 sector gives

E0(1) = E0(0) + πα

2Lx
+ O

(
1

L3
x

)
. (76)

Note that the tx dependence of E0(0) is the standard result
[24] for the O(L−1

x ) correction to the ground-state energy of
fermions with a twist tx in their boundary conditions (see note
4). Relating this to the (effective) central charge c [25], we
have

−πcα

6Lx
= − πα

6Lx
+ t2

x α

2πLx
, (77)

and so

c = 1 − 3t2
x

π2
. (78)

In particular, for tx = 0, this gives the expected result of c = 1
for a theory containing a single complex fermion. We note,
however, that the value of the central charge in the dimer
model is controversial, with other arguments suggesting in-
stead c = −2 when tx = 0 [13].

V. PARTITION FUNCTION

In this section, we write down the partition function Z (t )
using Eq. (14) and eigenvalues of the two-row transfer matrix,
before taking the thermodynamic limit.

By Eqs. (30) and (51), one can split Z (t ) into contributions
from each parity sector, giving

Z (t ) = Tr

(∑
p

eity�y e−LyHp�p

)
. (79)

The projector �p can be expanded using Eqs. (28) and (67) as

�p = 1

2

∑
σ=±

σ p exp

⎡
⎣−iπδσ,−

⎛
⎝−Lx

2
+
∑
k∈Kp

ζ
†
k ζk

⎞
⎠
⎤
⎦, (80)

and hence

eity�y e−LyHp�p = 1

2

∑
σ=±

σ pe−LyH̃p,σ , (81)

where

H̃p,σ = iLx

2Ly
(ty − πδσ,−) +

∑
k∈Kp

ε̃σ (k)ζ †
k ζk , (82)

with

ε̃σ (k) = ε(k − tx/Lx ) − i

Ly
(ty − πδσ,−) . (83)
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The partition function, Eq. (79), can therefore be written as

Z (t ) = 1

2

∑
p,σ

σ pZp,σ , (84)

where Zp,σ = Tre−LyH̃p,σ . Because the trace of an operator is
equivalent to the sum of its eigenvalues, one has

Zp,± = (±eity )−Lx/2
∏

k∈Kp

[1 ± e−Lyε(k−tx/Lx )eity ] , (85)

which reduces to Lieb’s partition function for t = 0 [see
Ref. [10], Eq. (3.14)].

We now take the thermodynamic limit, retaining leading-
order corrections to the free-energy density. To do so for Z0,±,
we factor out ±e−Lyε(k−tx/Lx )eity for all terms in the product
with k < 0 and restrict the product to 0 < k � π/2, which
gives

Z0,± = e−LyE0(0)

×
{ �Lx/4�∏

n=1

[1±e−Lyε(k−tx/Lx )eity ][1±e−Lyε(k+tx/Lx )e−ity ]

}

×
{ �Lx/4�∏

n=1

[1±e−Lyε(k−tx/Lx )e−ity ][1±e−Lyε(k+tx/Lx )eity ]

}
,

(86)

where k = (2n − 1) π
Lx

by Eq. (35).
In the limit Lx, Ly → ∞, we can replace ε(k ± tx/Lx ) by its

leading-order dependence α(k ± tx/Lx ) [see Eq. (74)], since
the next-order terms will eventually be of order Ly/L3

x . Hence,
Eq. (86) becomes

Z0,± = e−LyE0(0)
∞∏

n=1

(1 ± yqn−1/2)(1 ± y−1qn−1/2)

× (1 ± y∗qn−1/2)(1 ± y∗−1qn−1/2) , (87)

where y = eρtx eity , q = e−2πρ , and ρ = αLy/Lx. This can be
expressed in terms of Jacobi θ functions using the first equal-
ity of Eqs. (A4) and (A5):

Z0,+ = e−LyE0(0)q1/12 θ3(y|q)θ3(y∗|q)

η2(q)
, (88)

where η(q) is the Dedekind η function defined in Eq. (A1),
and the same for Z0,− but with θ3 → θ4. An analogous calcu-
lation for Z1,± yields

Z1,+ = e−LyE0(1)q−1/6 θ2(y|q)θ2(y∗|q)

η2(q)
, (89)

with θ2 → θ1 for Z1,−.
Combining the results for Zp,σ with Eqs. (75) and (76),

Eq. (84) becomes

Z (t ) = exp

[−iLxLyχ2(iα)

π

]
exp

(
−ρt2

x

2π

)

×
∑4

i=1 θi(y|q)θi(y∗|q)

2η2(q)
, (90)

which is consistent with Eq. (8.41) of Ref. [12] when tx = 0.
When t = 0, θ1(1|q) = 0 and the partition function is

Z (0) = exp

[−iLxLyχ2(iα)

π

]∑4
i=2 θ2

i (1|q)

2η2(q)
, (91)

in agreement with Ref. [26].
The first factor in Eq. (90) grows exponentially with system

volume and represents the weight of dimer configurations in
the bulk; i.e., it specifies the bulk free-energy density [12]

fbulk = − lim
Lx,Ly→∞

1

LxLy
ln Z (t ) (92)

= iχ2(iα)

π
. (93)

As one might expect, fbulk does not depend on the choice of
boundary conditions, although we note that this is not true in
the case of the honeycomb lattice [27].

The remaining terms in Z (t ), which give leading finite-size
corrections to the free-energy density, are boundary dependent
and, in the case of PBCs, encode information about topo-
logical flux sectors (see subsection below). Previously, these
terms have also been evaluated (for t = 0) with closed [26]
and cylindrical [28] boundaries, as well as embeddings on the
Möbius strip and Klein bottle [29]. In general, one obtains
terms in the free energy proportional to the edge of the system
[e.g., 2(Lx + Ly) for closed boundaries] and of order Ly/Lx.
However, with PBCs (i.e., a torus), the edge is zero and we
only observe the latter.

Using the modular identities given in the Appendix, one
can confirm that the partition function Z (t ) behaves as ex-
pected under 90◦ rotations, in spite of the asymmetry between
x and y in the transfer-matrix method. Such a rotation takes
(tx, ty) → (−ty, tx ), while swapping Lx ↔ Ly and making the
replacement αNx → αNy = α

1
2 LxLy−Nx in the definition of the

partition function, Eq. (2). We therefore expect Z (t ) to be
multiplied by α

1
2 LxLy while ρ = αLy/Lx becomes 1/ρ.

From Eqs. (A6) and (A7), we find

exp

(
−ρt2

x

2π

)∑4
i=1 θi(y|q)θi(y∗|q)

2η2(q)

= exp

(
− t2

y

2πρ

)∑4
i=1 θi(y′|q′)θi(y′∗|q′)

2η2(q′)
, (94)

where y′ = e−ty/ρeitx and q′ = e−2π/ρ correspond to y and q
under rotation. Since χ2(i/α) = χ2(iα) − iπ

2 ln α [[30], Sec.
25.12], the remaining (bulk) factor in Eq. (90) is replaced by

exp

[−iLyLxχ2(i/α)

π

]
= α

1
2 LxLy exp

[−iLxLyχ2(iα)

π

]
, (95)

giving the expected transformation of Z (t ).
We now show how the partition function, Eq. (91), divides

into topological sectors labeled by the flux. By construction,
Z (t ) is periodic in tμ (with period 2π ), so can be expressed as
a Fourier series

Z (t ) =
∑
�

Z̃�eit ·� . (96)
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Comparison of Eqs. (2) and (96) implies

Z̃� =
∑

c∈C0(�)

αNx , (97)

where the set C0(�) contains all close-packed dimer config-
urations with flux �. In other words, the Fourier coefficient
Z̃� can be interpreted as the partial partition function, or total
weight, of flux sector �.

To calculate Z̃�, we use the second equality of Eqs. (A2)–
(A5) to rewrite Eq. (90) as [8]

Z (t ) = e−LxLy fbulk

∑
m∈Z e−ρ(tx−2πm)2/2π

∑
n∈Z einty e−πρn2/2

η2(q)
(98)

(the periodicity in tx is now apparent). The sum over m can
be written in the same form as the sum over n through the
Poisson summation formula, giving

Z (t ) = e−LxLy fbulk

∑
m∈Z eimtx e−πm2/2ρ

∑
n∈Z einty e−πρn2/2

√
2ρη2(q)

,

(99)
which allows us to read off from Eqs. (96) and (99)

Z̃� = e−LxLy fbulk
e−π (�2

x/ρ+ρ�2
y )/2

√
2ρη2(q)

. (100)

This result has previously been obtained for the honeycomb-
lattice dimer model using Pfaffian methods [8], while
Ref. [12] has used the transfer matrix to calculate the partial
partition function of flux sector �y, equivalent to

∑
�x

Z̃� [see
their Eqs. (8.19) and (8.36)].

Knowledge of Z̃� can be used to calculate flux moments.
The probability of flux � is given by

P(�) = Z̃�∑
� Z̃�

(101)

= e−π (�2
x/ρ+ρ�2

y )/2∑
m,n∈Z e−π (m2/ρ+ρn2 )/2

, (102)

which implies that �x and �y are independent variables. This
form is known from effective field theories [31,32]. The mean
flux vanishes by symmetry, while the mean-square flux is
given by

〈
�2

x

〉 = ∑
n∈Z n2e−πn2/2ρ∑

n∈Z e−πn2/2ρ
, (103)

and the same for �y but with ρ → 1/ρ.

VI. EXPECTATION VALUES

In this section, we compute various expectation values in
the thermodynamic limit, using the spectrum of the two-row
transfer matrix.

We use Eq. (15) and restrict to operators O that con-
serve parity of �y, i.e., [O, (−1)�y ] = 0. From Eq. (27), this
includes any product of an even number of Cj fermions,
and hence any operator constructed from dj,x and d j,y [see
Eqs. (24) and (25)]. It also allows us to calculate the monomer
distribution function, as we show in Sec. VI D. With this
restriction, and because (−1)�y commutes with any quadratic

form in fermions, O(l ) = U (l )−1OU (l ) can be written as

O(l ) = O(l )
∑

p

�p (104)

=
∑

p

O(l )p�p , (105)

where

O(l )p = Up(l )−1OpUp(l ) , (106)

and Up(l ) is given by Eq. (16) but with V replaced by Vp.
As for the partition function, the trace in Eq. (15) can be

split into parity sectors by inserting Eqs. (30), (51), and (105),
which yields

〈O′(l ′)O(l )〉 = 1

Z (t )

∑
p

Tr[eity�y e−LyHp�pO′(l ′)pO(l )p] ,

(107)
where we have used [Vp,�p] = 0 and assumed [Op,�p] = 0
(it is always possible to choose Op in this way). By Eq. (81),
this can be rewritten as

〈O′(l ′)O(l )〉 =
∑

p,σ σ pZp,σ 〈O′(l ′)O(l )〉p,σ∑
p,σ σ pZp,σ

, (108)

where, assuming Zp,σ �= 0,

〈O′(l ′)O(l )〉p,σ = 1

Zp,σ
Tr[e−LyH̃p,σ O′(l ′)pO(l )p] . (109)

Expectation values are therefore given by an average over the
four (p, σ ) sectors, each weighted by Zp,σ .

A. Two-point correlation functions of Cj fermions

For an operator O given by a product of Cj fermions,
the corresponding time-evolved operator O(l )p can also be
expressed as a product of Cj (l )p, with the same p for each.
For example, when O = dj,y one has

d j,y(l )p = Up(l )−1C†
j CjUp(l ) (110)

= Up(l )−1C†
j Up(l )Up(l )−1CjUp(l ) (111)

= C†
j (l )pCj (l )p . (112)

Here, Cj (l )p is defined by extending the definition in Eq. (106)
to Cj , even though it does not conserve parity and so does not
obey Eq. (105).

An expectation value 〈O′(l ′)O(l )〉p,σ can then be expressed
in terms of a product of an even number of Cj (l ) operators.
Because this is a time-ordered product and H̃p,σ is a free-
fermion Hamiltonian, Wick’s theorem [33] applies, which
allows us to write 〈O′(l ′)O(l )〉p,σ as a sum over products of
two-point Cj (l ) correlators in each (p, σ ) sector. [We simi-
larly extend the definition Eq. (109) to include O = Cj , even
though Eq. (108) is not valid in this case.] We calculate these
two-point correlators in this section.

To do so, we first use Eqs. (16) and (106) to derive an
expression for Cj (l )p in terms of ζk fermions. For l even,
Eq. (60) implies

W −1
p ζkWp = e−2ε(k−tx/Lx )ζk , (113)
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which can be used in Eq. (65) to give

Cj (l )p =
√

2

Lx
e−iπ/4

∑
k∈Kp

eik j

{
cos θk+tx/Lx e

−lε(k+tx/Lx )ζ
†
−k for j odd

cos θk−tx/Lx e
−lε(k−tx/Lx )ζk j even.

(114)

For l odd, as well as Eq. (113) we additionally require the results

(V †
p )−1ζ ∗

k V †
p = −e−ε(k−tx/Lx )ζ

†
k−π

,

(V †
p )−1

(
ζ

†
k

)∗
V †

p = −eε(k−tx/Lx )ζk−π ,
(115)

which can be derived from Eq. (33). This time we use these in the complex conjugate of Eq. (65) to find

Cj (l )p =
√

2

Lx
eiπ/4

∑
k∈Kp

eik j

{
cos θk−tx/Lx e

−lε(k−tx/Lx )ζk for j odd
− cos θk+tx/Lx e

−lε(k+tx/Lx )ζ
†
−k j even.

(116)

Finally, by combining Eqs. (114) and (116), we have

Cj (l )p =
√

2

Lx
e−i(−1)l π/4

∑
k∈Kp

eik j

{
(−1)l cos θk+tx/Lx e

−lε(k+tx/Lx )ζ
†
−k for j + l odd

cos θk−tx/Lx e
−lε(k−tx/Lx )ζk j + l even,

(117)

for all l .
Since H̃p,σ , defined in Eq. (82), is a free-fermion Hamiltonian with dispersion ε̃σ , and Eq. (109) describes a thermal

distribution with effective temperature 1/Ly, the two-point correlation functions of the ζk fermions are given by

〈ζkζk′ 〉p,σ = 〈ζ †
k ζ

†
k′ 〉 = 0,

〈ζ †
k ζk′ 〉p,σ = δkk′nF(Lyε̃σ (k)),

〈ζkζ
†
k′ 〉p,σ = δkk′nF(−Lyε̃σ (k)) ,

(118)

where nF(z) = (ez + 1)−1 is the Fermi-Dirac distribution function.
Hence, denoting R = (X,Y ), the Cj (l ) correlators are

〈Cj+X (l + Y )Cj (l )〉p,σ =
⎧⎨
⎩

−eiϕ(l,Y )�p,σ (R,−t ) for X + Y odd, j + l odd
−e−iϕ(l,Y )�p,σ (R, t ) X + Y odd, j + l even
0 X + Y even

, (119)

〈C†
j+X (l + Y )C†

j (l )〉p,σ =
⎧⎨
⎩

e−iϕ(l,Y )�p,σ (R, t ) for X + Y odd, j + l odd
eiϕ(l,Y )�p,σ (R,−t ) X + Y odd, j + l even
0 X + Y even

, (120)

〈C†
j+X (l + Y )Cj (l )〉p,σ =

⎧⎨
⎩

0 for X + Y odd
eiϕ(l,Y )[�p,σ (R,−t ) − �p,σ (R,−t )] X + Y even, j + l odd,
e−iϕ(l,Y )[�p,σ (R, t ) − �p,σ (R, t )] X + Y even, j + l even

, (121)

〈Cj+X (l + Y )C†
j (l )〉p,σ =

⎧⎨
⎩

0 for X + Y odd
e−iϕ(l,Y )[�p,σ (R, t ) + �p,σ (R, t )] X + Y even, j + l odd,
eiϕ(l,Y )[�p,σ (R,−t ) + �p,σ (R,−t )] X + Y even, j + l even

, (122)

where

ϕ(l,Y ) =
{

(−1)l π
2 for Y odd

0 Y even
, (123)

and

�p,σ (R, t ) = 1

Lx

∑
k∈Kp

e−ikX eY ε(k−tx/Lx )nF(Lyε̃σ (k))
{

i sin(2θk−tx/Lx ) for X + Y odd
− cos(2θk−tx/Lx ) X + Y even , (124)

�p,σ (R, t ) = 1

Lx

∑
k∈Kp

e−ikX eY ε(k−tx/Lx )nF(Lyε̃σ (k)) . (125)

These results are exact, with the correct (anti)periodicity in the horizontal direction, and could be used to calculate expectation
values for finite system sizes as a function of flux sector.
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Instead, we take the thermodynamic limit Lx, Ly → ∞, keeping the ratio Ly/Lx and the separation |R| finite. In this limit,
nF(z) can be replaced by a step function ϑ (− Re z) and the discrete k values become continuous, giving

�p,σ (R, t ) ≈ �(R) =
∫ π

0

dk

2π
eikX e−Y ε(k)

{
i sin(2θk ) for X + Y odd
cos(2θk ) X + Y even , (126)

�p,σ (R, t ) ≈ �(R) =
∫ π

0

dk

2π
eikX e−Y ε(k) . (127)

Some values of these integrals for small |R| are shown in
Table I, expressed in terms of the quantities

ρx = arctan α

π
, ρy = arctan (1/α)

π
, (128)

which satisfy ρx + ρy = 1
2 . For large |R|, the asymptotic be-

havior is obtained by integrating by parts repeatedly, treating
the cases Y � 1 [where Eq. (74) can be used] and Y of order
unity separately.

These expressions are independent of p and σ , i.e., all four
(p, σ ) sectors make equal contributions in the thermodynamic
limit. Hence, Eq. (108) is redundant to this order, and we sim-
ply have 〈O′(l ′)O(l )〉 = 〈O′(l ′)O(l )〉0,+ for operators O that
are products of an even number of Cj fermions. We therefore
drop the (p, σ ) indices from now on.

Furthermore, they are independent of t , whose leading-
order dependence is O(L−1

x , L−1
y ). This implies that expec-

tation values are the same in any fixed flux sector in the
thermodynamic limit (but note that that we have taken

TABLE I. Values of the integrals �(R) and �(R), defined in
Eqs. (126) and (127), respectively, for small |R|, as well as their
asymptotic behavior for |R| � 1. Values for X < 0 may be obtained
using the relation �(−X,Y ) = (−1)X �(R) and the same for �(R).

Integral Value

�(0) ρx

�(1, 0) −ρx

α
�(0, 1) iρy

�(2, 0) − 1

πα
+ ρx

α2

�(1, 2) − 1

π
+ αρy

�(2, 1) − i

α2
(ρx − α

π
)

�(3, 0) −ρx (
1

α
+ 2

α3
) + 2

πα2

�(0, 3) i[ρy(1 + 2α2) − 2α

π
]

�(|R| � 1), X odd, Y even − 1

π

X

X 2 + (αY )2

�(|R| � 1), X even, Y odd
i

π

αY

X 2 + (αY )2

�(|R| � 1), X odd, Y odd
2iα

π

XαY

[X 2 + (αY )2]2

�(|R| � 1), X even, Y even − α

π

X 2 − (αY )2

[X 2 + (αY )2]2

�(Xeven, 0) 1
2 δX,0

�(|R| � 1), X odd
i

π

X

X 2 + (αY )2

�(|R| � 1), X even
1

π

αY

X 2 + (αY )2

Lx, Ly → ∞, so this does not apply for � ∼ Lx, Ly). To see
this, we rewrite Eq. (3) as a sum over Fourier modes [cf.
Eqs. (96) and (97)]

〈O〉 = 1

Z (t )

∑
�

〈O〉�Z̃�eit ·� , (129)

where

〈O〉� = 1

Z̃�

∑
c∈C0(�)

OαNx (130)

is the expectation value of the observable O in a fixed flux sec-
tor �. After multiplying both sides of Eq. (129) by Z (t )e−it ·�′

and integrating over t , one finds that 〈O〉� = 〈O〉 when the
latter is independent of t .

In subsequent sections, we use Eqs. (119)–(122) to
calculate various observables in the dimer model in the ther-
modynamic limit. We expect our results to reproduce those of
Ref. [9] in this limit, since the choice of boundary conditions
(PBCs versus closed) becomes irrelevant. We also note that
asymptotic behavior of correlation functions can be predicted
using effective field theories, although the results depend on
phenomenological parameters known as the stiffnesses [32].

B. Dimer occupation numbers

We first calculate the probability that a vertical or hori-
zontal bond is occupied by a dimer, given by 〈d j,y(l )〉 and
〈d j,x (l )〉, respectively. (In the thermodynamic limit, there is
no t dependence, and so d∗

j,x = d j,x .)
Using Eqs. (24) and (25), one finds

〈d j,x (l )〉 = −α�(1, 0) (131)

= ρx (132)

and

〈d j,y(l )〉 = �(0) − �(0) (133)

= ρy , (134)

consistent with Sec. 5 of Ref. [9]. As required, each lat-
tice site is touched by a dimer with probability unity, since
〈d j,x (l )〉 + 〈d j,y(l )〉 = 1

2 . In the isotropic case, α = 1, one has
〈d j,x (l )〉 = 〈d j,y(l )〉 = 1

4 , whereas in the limit α → 0 (α →
∞) only vertical (horizontal) bonds are occupied.

C. Dimer-dimer correlation functions

Due to the close-packing constraint, the occupation of a
given bond by a dimer is influenced by dimers far away.
Hence, dimer-dimer correlations are nontrivial even in the
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FIG. 4. Dimer-dimer correlation function between two horizon-
tal dimers (top), two vertical dimers (bottom left), and a horizontal
and vertical dimer (bottom right). In each case, the disconnected part
of the correlator [i.e., the first term in Eqs. (135), (145), and (147)]
is equal to the probability that the two bonds with separation R are
both occupied.

absence of interactions. In this section, we show how they can
be calculated by extending the above discussion to two-point
correlators of d j,x and d j,y.

The connected correlation function of two horizontal
dimers with separation R, illustrated in Fig. 4 (top), is given
by (we assume Y > 0 throughout this section)

Gxx(R) = 〈d j+X,x (l + Y )d j,x(l )〉−〈d j+X,x (l+Y )〉〈d j,x (l )〉,
R �= 0 (135)

[for R = 0 the first term vanishes due to C2
j (l ) = 0; see note

3]. Inserting Eq. (24) and using Wick’s theorem [33] yield

Gxx(R)

α2
= 〈Cj+X+1(l + Y )Cj (l )〉〈Cj+X (l + Y )Cj+1(l )〉

− 〈Cj+X+1(l + Y )Cj+1(l )〉〈Cj+X (l + Y )Cj (l )〉 ,
(136)

and hence, by Eq. (119),

Gxx(R)

α2
=
{−�(R)2 for X + Y odd
�(X − 1,Y )�(X + 1,Y ) X + Y even.

(137)
From Table I, some values for small |R| are

Gxx(1, 0) = −ρ2
x , (138)

Gxx(0, 1) = α2ρ2
y , (139)

Gxx(1, 1) = ρy

(
ρx − α

π

)
, (140)

Gxx(2, 1) =
(

ρx

α
− 1

π

)2

, (141)

Gxx(0, 2) = −
(α

π
− α2ρy

)2
, (142)

Gxx(0, 3) = α2

[
ρy(1 + 2α2) − 2α

π

]2

, (143)

while the asymptotic behavior for |R| � 1 is algebraic, rather
than exponential:

Gxx(R)

α2
≈ (−1)X 1

π2[X 2 + (αY )2]2

×

⎧⎪⎪⎨
⎪⎪⎩

X 2 for X odd, Y even
(αY )2 X even, Y odd
(αY )2 X odd, Y odd
X 2 − 1 X even, Y even.

(144)

Similarly, the connected correlation function of two verti-
cal dimers with separation R, illustrated in Fig. 4 (bottom left),
is

Gyy(R) = 〈d j+X,y(l + Y )d j,y(l )〉 − 〈d j+X,y(l + Y )〉〈d j,y(l )〉 .
(145)

Following the same procedure as for Gxx(R), but now using
Eqs. (25) and (119)–(122), yields

Gyy(R) =
{
�(R)2 for X + Y odd
�(R)2 − �(R)2 X + Y even.

(146)

Note that the correlators Gxx and Gyy should be related by 90◦
rotations, in a similar way to that shown for Z (t ) in Sec. V.

The third possibility is the connected correlation function
of horizontal and vertical dimers with separation R, illustrated
in Fig. 4 (bottom right), which is

Gxy(R) = 〈d j+X,y(l + Y )d j,x (l )〉 − 〈d j+X,y(l + Y )〉〈d j,x (l )〉 .
(147)

The result is

Gxy(R)

α

=
{
�(R)[�(X − 1,Y ) − �(X − 1,Y )] for X+Y odd
�(X − 1,Y )[�(R) − �(R)] X+Y even,

(148)

with asymptotic behavior

Gxy(R)

α
≈ (−1)X+Y 1

π2[X 2 + (αY )2]2

×

⎧⎪⎨
⎪⎩

Xα(Y + 1) for X odd, Y even
(X − 1)αY X even, Y odd
XαY X odd, Y odd
(X − 1)α(Y + 1) X even, Y even.

(149)

The results in this section are in agreement with Sec. 7 of
Ref. [9].
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D. Monomer distribution function

Finally, we characterize the (entropic) interaction between
a pair of inserted test monomers by calculating the monomer
distribution function

Gm(R) = 1

Z (t )

∑
c∈C(r+,r− )

αNx , (150)

where the set C(r+, r−) contains all configurations with
monomers at sites r±. For simplicity, we consider the case of
two monomers on the same row, though the formalism can be
extended to the general case.

Because σ−
j inserts a monomer on site j, in the transfer-

matrix formalism one has

Gm(X, 0) = 〈σ−
j (l )σ−

j+X (l )〉 , (151)

which becomes

Gm(X, 0) = −
〈

Cj

[
j+X−1∏
i= j+1

(1 − 2C†
i Ci )

]
Cj+X

〉
(152)

after performing the Jordan-Wigner transformation,
Eqs. (19)–(21) (from here on we do not explicitly show
dependence on the row l).7

Following Refs. [11,19,20], we now define operators

Aj = C†
j + Cj, (153)

Bj = C†
j − Cj (154)

(note that 1 − 2C†
j Cj = AjBj), which, by Eqs. (119)–(122),

satisfy

〈AjAj+X 〉 = δX,0, (155)

〈BjBj+X 〉 = −δX,0, (156)

〈BjAj+X 〉 = −〈Aj+X Bj〉 = −2�(X, 0) . (157)

In terms of these, Eq. (152) is a sum of four 2X -point corre-
lators, each of which can be expressed as a sum of products
of two-point correlators through Wick’s theorem [33]. Then,
by Eqs. (155) and (156), the two correlators containing an
unequal number of Aj and Bj vanish, while the remaining two
are

W (B, A) = 1

4

〈
j+X−1∏

i= j

BiAi+1

〉
(158)

= 1

4

∑
σ∈SX

sgn(σ )
X∏

i=1

〈Bj+i−1Aj+σi〉 , (159)

where SX denotes the symmetric group of order X , and
(−1)X−1W (A, B). Inserting Eq. (157) and using the relation

7In the case of two monomers on different rows, the operator
on each row has an odd number of Cj operators and so does not
commute with (−1)�y . To treat this case, we would not be able to
use Eq. (108) and would instead require the analogous expression
for O anticommuting with (−1)�y .

�(−X, 0) = (−1)X �(X, 0) with
∏X

i=1(−1)i−σi = 1, it follows
that W (A, B) = W (B, A), and hence

Gm(X, 0)

=

⎧⎪⎨
⎪⎩

1

2

∑
σ∈SX

sgn(σ )
X∏

j=1

−2�(1 − ( j − σ j ), 0) for X odd

0 Xeven,
(160)

which can be expressed as a Toeplitz determinant

Gm(X, 0) = 1
2 det TX for X odd, (161)

where TX is an X × X matrix with elements (TX ) j, j′ =
−2�(1 − ( j − j′), 0).

From Table I, the first two nonzero values are

Gm(1, 0) = ρx

α
, (162)

Gm(3, 0) = 4ρx

α5

[
(1 + α2)2ρ2

x − α2

π2

]
(163)

(cf. Eqs. (11.1) and (11.3) of Ref. [9]), where, up to a factor
of α, the former is equivalent to the occupation probability of
a horizontal bond as calculated in Sec. VI B.

To calculate the asymptotic behavior for large X , we de-
fine ϕ(k) = −2

∑∞
j=−∞ eik j�(1 − j, 0) = −eike2iθk sgn(k) for

−π � k < π . Unlike on the triangular lattice [34,35], Szegő’s
limit theorems do not apply, since ϕ is not a continuous
function, and instead we apply the Fisher-Hartwig conjecture
[14].

The discontinuities at k = 0 and k = ±π can be expressed
by defining tβ (k) = e−iβ(π−k) for 0 < k < 2π [36], in terms
of which ϕ(k) = b(k)t1/2(k)t1/2(k − π ). Here, b(k) = −ie2iθk

is continuous and has zero winding number when viewed as a
map from eik to the unit circle. Its Wiener-Hopf factorization,
b(k) = b+(eik )b−(eik ), with b+ (b−) analytic and nonzero ev-
erywhere inside (outside) the unit circle [37], is

b±(z) =
√

±c± − z

c± + z
, (164)

where c± = α−1 ± √
1 + α−2.

According to the Fisher-Hartwig conjecture [36], we then
have

det TX ≈ G[b]X X �E , (165)

for large X , with G[b] = 1, � = − 1
2 , and

E = 22/3e6ζ ′(−1)

(1 + α2)1/4
�
(

1 + α2

2

)−1/4

× 0.494744 , (166)

where ζ ′ is the derivative of the Riemann ζ function.
The monomer distribution function therefore obeys

Gm(X, 0) ≈ E

2
√

X
for X � 1, odd. (167)

A consistent result was found by Hartwig [38] for the case of
monomers separated along a diagonal (i.e., X = Y ) using the
Pfaffian method.

Note that the algebraic dependence on X , stemming math-
ematically from the discontinuity in ϕ, contrasts with the
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exponential behavior on the triangular lattice [34,35]. As
noted by Au-Yang and Perk [39], the decrease with X −1/2 can
be understood by relating the dimer model to two uncoupled
Ising models at the critical point.

VII. CONCLUSIONS

We have expressed Lieb’s transfer matrix for the clas-
sical square-lattice dimer model in terms of a free-fermion
Hamiltonian and used its spectrum to rederive some useful
results. Although these can equally be derived using Pfaffian
techniques, the second quantized approach presented in this
paper is perhaps more elegant.

Specifically, our results include the torus partition function
which, by including a field t , can be interpreted as a moment-
generating function of the flux. We have also shown how
expectation values can be expressed in terms of the fermionic
operators, and evaluated dimer occupation numbers, dimer-
dimer correlation functions, and the monomer distribution
function in the thermodynamic limit, all of which are inde-
pendent of flux sector for not too large flux. Finally, we have
derived the asymptotic behavior of the monomer distribution
function for large monomer separation along the same row.

The results in this paper are also relevant to the correspond-
ing quantum dimer model at its Rokhsar-Kivelson point [40],
while the transfer-matrix method can be extended to other
two-dimensional lattices. Indeed, the straightforward general-
ization of Lieb’s transfer matrix to the (bipartite) honeycomb
and square-octagon lattices, which can both be viewed as
a square lattice with certain horizontal bonds removed [i.e.,
certain terms omitted from the sum in V3; see Eq. (9)], has
already been demonstrated in Ref. [41].

One advantage of the transfer-matrix method is that dimer-
dimer interactions can be easily included in the operator
formalism, in terms of products of the dimer occupation num-
bers d j,x and d j,y. For example, on a row of vertical bonds, the
operator

∑
j d j,yd j+1,y describes interactions between parallel

pairs of nearest neighbor dimers, as studied in Refs. [31,42].
This is a four-fermion interaction, which is nonintegrable [31]
but could be included perturbatively using standard diagram-
matic perturbation theory.

Furthermore, as we will show in a forthcoming publica-
tion [43], the well-known height field theory [44,45] of the
two-dimensional classical dimer model can be rigorously de-
rived from the fermionic Hamiltonian of Eq. (60). This can
be achieved by taking a long-wavelength limit and using the
technique of bosonization [46] to express the theory in terms
of a single free bosonic field. Interaction operators included
perturbatively in this context manifest themselves through
renormalization of the stiffness as well as the introduction

of (cosine) potential terms consistent with symmetry require-
ments [43].

APPENDIX: JACOBI θ FUNCTIONS

We define the Dedekind η function

η(q) = q1/24
∞∏

n=1

(1 − qn) , (A1)

for nome q such that |q| < 1. For a complex number y, the
Jacobi θ functions are

θ1(y|q) = −i
√

yq1/12η(q)
∞∏

n=1

(1 − yqn)(1 − y−1qn−1)

= −i
∑

r∈Z+1/2

(−1)r−1/2yrqr2/2,

(A2)

θ2(y|q) = √
yq1/12η(q)

∞∏
n=1

(1 + yqn)(1 + y−1qn−1)

=
∑

r∈Z+1/2

yrqr2/2,

(A3)

θ3(y|q) = q−1/24η(q)
∞∏

n=1

(1 + yqn−1/2)(1 + y−1qn−1/2)

=
∑
n∈Z

ynqn2/2,

(A4)

θ4(y|q) = q−1/24η(q)
∞∏

n=1

(1 − yqn−1/2)(1 − y−1qn−1/2)

=
∑
n∈Z

(−1)nynqn2/2 .
(A5)

In terms of these definitions, which follow Ref. [12], the
functions defined in Section 20 of Ref. [30] are θNIST

i (z, q) =
θi(e2iz|q2).

These functions obey the modular identities [[30], Sec.
20.7]

θ(es|e−2πρ ) = 1√
ρ

e
s2

4πρ

⎛
⎜⎝

−i 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎞
⎟⎠θ(eis/ρ |e−2π/ρ ) ,

(A6)
where θ(y|q) = (θ1(y|q), . . . , θ4(y|q))

T
, and [[30], Sec.

23.18]

η(e−2πρ ) = 1√
ρ

η(e−2π/ρ ) . (A7)
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