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Phase distribution including a bubblelike region in supercritical fluid
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Pseudoboiling in supercritical fluid (SF) has been paid great attention in recent years. Available works mainly
focus on thermodynamics analysis. Fewer studies were reported on the spatial time phase distribution. Here,
SF is investigated in a multiphase fluid framework using molecular dynamics (MD) simulations. A simulation
box contains 10 976 argon atoms, with periodic boundary conditions applied on all the box surfaces. Pressure
and temperature are well controlled. Based on MD simulation results, an onset pseudoboiling temperature T −

and a termination pseudoboiling temperature T + are defined using the neighboring molecules method, the
radial distribution function method, and the two-body excess entropy method. The two transition temperatures
divide the whole phase diagram into three regimes of liquidlike, two-phase-like (TPL), and gaslike, and the MD
determined T − and T + well matched the thermodynamics-determined values. In the TPL regime, nanovoids are
observed to have two distinct characteristics: (1) Particles are sparsely distributed to have gas density inside the
void, but are densely populated to have liquid density outside the void. (2) Voids have a curved interface. These
characteristics are very similar to bubble characteristics in subcritical pressure. Hence, voids in the supercritical
state are called “bubblelike” in this paper. Nonlinear dynamics demonstrates chaotic behavior in the TPL regime,
similar to the two-phase regime in the subcritical domain. The above findings give strong evidence that SF
in the TPL regime consists of a mixture of bubblelike voids and surrounding liquids. Our work highlights
the multiphase feature of a SF, hence, the well-established multiphase theory in subcritical pressures can be
introduced to handle the complex SF.

DOI: 10.1103/PhysRevE.104.014142

I. INTRODUCTION

Supercritical fluids (SFs) were first discovered by Cagniard
de la Tour in 1822 [1]. Such SFs have received great atten-
tion for advanced power cycles in power generation [2,3],
thermochemical conversion of biomass [4,5], wastewater
treatment [6], and hydrothermal synthesis of nanomateri-
als [7]. The large scale utilization of supercritical technologies
is still far from development due to an unfavorable energy
balance and challenges in separating useful products from
bulk fluids [8,9]. SFs have been documented as a continuous,
homogeneous, and single-phase fluid without bubbles or an
interface [10]. However, the measured heat transfer signifi-
cantly deviates from the predictions using single-phase fluid
theory [11,12].

Pseudoboiling was initially mentioned in the literature in
the 1960s to1970s [13,14]. For forced convection heat transfer
in tubes, investigators observed wall temperature overshoot
before the pseudocritical point, which is similar to the crit-
ical heat flux condition in the subcritical domain [13–15].
Pseudoboiling was assumed to explain the observed phe-
nomenon. The basic idea is that even in supercritical pressure,
the second order phase change may happen, which is analo-
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gized to subcritical boiling. Recently, pseudoboiling has
received interest. In a series of works by Banuti’s group,
pseudoboiling was analyzed using the thermodynamics ap-
proach [16,17]. An onset pseudoboiling temperature T − and a
termination pseudoboiling temperature T + are defined based
on the enthalpy analysis [16,17]. The neutron measurement
technique was applied to visualize the SF structure dur-
ing heating [17,18]. Together with the molecular dynamics
(MD) simulations [19–21], SF is believed to have a transi-
tion between liquidlike (LL) and gaslike (GL), instead of the
single-phase structure [22,23].

MD simulations have been widely applied to study SFs.
Bolmatov et al. [24] studied the thermodynamic properties of
the supercritical state and found that the specific heat has a
crossover between the LL and GL regimes. Gallo et al. [19]
studied the thermodynamic properties of water in the su-
percritical region and found that the lines connecting the
maxima of the response functions converge when approaching
the critical point in a single line, called the Widom line.
They further showed that the Widom line coincides with the
crossover from LL to GL behavior, which is clearly visible
in the transport properties. The transition between the two
regimes when crossing the Widom line was experimentally
demonstrated using x-ray scattering [20]. Raju et al. [25]
shows that in the supercritical regime, a mutually miscible
binary mixture experiences a transition between LL and GL
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FIG. 1. Well-defined heat transfer problem in ultralong tubes at equilibrium state. (a) Subcritical fluid contains three regimes of liquid, two
phase, and gas, in which the two-phase regime occurs at a constant saturation temperature Tsat , containing spherical or deformable bubbles
with liquid-gas interface. (b) Current cognition on SF shows sharp transition from LL to GL when crossing a temperature TWL at the Widom
line. (c) By crossing two transition temperatures, T − and T +, SF contains three regimes of LL, TPL, and GL. We use different approaches to
determine T − and T +, and find a bubblelike regime.

across a single Widom line, but two Widom lines are present
in the supercritical regime for an immiscible binary mixture.

Classically, bubbles can exist in subcritical pressures but
cannot exist in supercritical pressures [see Figs. 1(a) and 1(b)].
When crossing the Widom line, heat added to the SF can be
divided into two parts. One is for the temperature rise and
the other is to overcome intermolecular attraction to sepa-
rate neighboring molecules, which forms the theoretical basis
for pseudoboiling and is clarified as the second order phase
change [16]. Hence, we propose the three-regime model by
adding the two-phase-like (TPL) regime [see Fig. 1(c)]. Two
important issues need to be solved for pseudoboiling. The

first is to quantitatively determine the two transition temper-
atures, and the second is to answer the question of whether
bubbles exist in a SF. For the first issue, Banuti [16] stated
that supercritical state transitions require energy to increase
the temperature. Thus, a new equation for the Widom or
pseudoboiling line was given. Recently, Ha et al. [26] deter-
mined two transition boundaries instead of the single Widom
line to divide the entire P-T phase diagram into three zones
using the machine learning technique. The second issue is
to find what the phase distribution is in the TPL regime. In
fact, available studies indicate a bubblelike phase for pressure
slightly larger than the critical pressure [27,28]. However, a
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FIG. 2. Molecular dynamics simulations of supercritical argon. (a) Simulation cubic box of Lx = Ly = Lz is set to contain 10 976 atoms for
all considered cases. Periodic boundary conditions are applied along the x, y, and z coordinates. The box size may differ at various pressures.
The face centered cubic (fcc) structure is initially assumed but will evolve when the simulation begins. (b) Data points are shown on the Pr-Tr

phase diagram, where Pr = P/Pc and Tr = T/Tc are the reduced pressure and temperature, respectively. The Widom line is determined based
on the maximum specific heat at various supercritical pressures. (c) The molecule marking method refers to a molecule being marked as a
liquid molecule if it has at least five neighboring molecules within a distance of rs = 1.5σ ; otherwise, it is marked as gas. (d) Probability
distribution of liquid and gas dependent on the number of neighboring molecules at the coexistence point [38].

bubblelike phase was never reported for pressures far above
the critical pressure.

Here, we start with MD simulations of argon. Such
fluid has been widely used as a model fluid in MD sim-
ulations. Great attention was paid to the the multiphase
characteristic. Three different approaches, the neighboring
molecules method, the radial distribution function (RDF)
method, and the two-body excess entropy method, were ap-
plied to determine the two transition temperatures, matching
the thermodynamics-determined values. The bubblelike struc-
ture was observed and explained. The bubblelike structure
is not found in the LL and GL regimes, but it does appear
for temperatures larger than T − but smaller than T +. Non-
linear analysis was performed using the time series density
fluctuations. We show that both the LL and GL regimes be-
have with random characteristics. However, the TPL regime
displays chaotic behavior, which is similar to the nonlinear
characteristic of two-phase fluid in subcritical pressure. Our

work highlights the multiphase feature including bubblelike
structure in SF.

II. METHODS AND SIMULATIONS

A. Computation domain, method, and data process

Figure 2(a) shows the computation domain, where x, y, z
are the three-dimensional coordinates. Molecular dynamics
(MD) simulations were performed in a cubic box containing
10 976 argon atoms, resulting in better control of the ther-
modynamic state of pressure and temperature and improved
statistical averaged parameters. The 10 976 particles were also
used in Refs. [29,30]. The cubic box has the size of Lx = Ly =
Lz = L, determined by the average density of fluid deduced
from pressure P and temperature T. Periodic boundary condi-
tions are applied on the six box surfaces. For MD simulations,
Lx, Ly, and Lz should be larger than the cutoff distance, which
is ∼5.8σ for argon [31,32]. This size criterion is well satisfied
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in this paper; for example, Lx = Ly = Lz = 32.5331σ at Pc =
4.863 MPa and Tc = 150.69 K, where “c” refers to the critical
condition. Initially, the argon atoms are assumed to have face
centered cubic (fcc) structure, but with time evolution such
configuration will be melting to form different fluid structures,
which are interest in this paper. MD simulations covered the
following data ranges of P = (1.0–3.5)Pc and (1.0–2.2)Tc.
At each P, different runs are scanned with a continuous in-
crease of T [see Fig. 2(b) for the simulation runs in the Pr-Tr

phase diagram]. The density ρ is defined as the number of
particles (N) in a fluid volume (V = L3) : ρ = N/L3, which is
treated as a target control parameter. The size of the simulation
box can be determined based on ρ and N as L = (N/ρ )1/3,
where N = 10 976 in this paper. Because different densities
are treated in this paper, our calculations need to update the
simulation box size for different runs. In one word, density
is controlled in the target value via controlling the simulation
box size.

For the argon molecule, the Newton equation is written as

m
d�r2

dt2
=

N∑
j �=i, j=1

�Fi j + �Fex. (1)

The first term of the right side of Eq. (1) represents the
force between argon atoms, where m is the argon atom mass,
and r is the distance between atom i and atom j. Because there
is no external force in this study, �Fex = 0. The intermolecular
force is related to the potential as

Fi j = −∂φi j

∂ri j
. (2)

The Lennard Jones (LJ) potential for argon is written
as [33]

φ(r) = 4ε

[(
σ

r

)12

−
(

σ

r

)6]
, (3)

where ε is the energy scale and σ is the length scale, which
are ε = 1.67 × 10−21 J and σ = 3.405 × 10–10 m.

The velocity Verlet method is used to integrate the momen-
tum equation and the cell subdivision technique is applied to
improve the computational efficiency. The position r(t + �t ),
velocity v(t + �t ), and a(t + �t ), at the time t + �t are
updated based on the values at the previous time t [34].

r(t + �t ) = r(t ) + v(t )�t + 1
2 a(t )�t2, (4)

v(t + �t ) = v(t ) + 1
2 [a(t ) + a(t + �t )]�t, (5)

where �t is the time step which is �t = 0.000 46 τ corre-
sponding to 1 fs; τ =

√
mσ 2/ε = 2.16 × 10–12 s is the time

scale. In this study, NVT is used for MD simulations. The
reason why we choose NVT instead of NPT is explained
in Sec. III. At each pressure, the fluid temperature is well
controlled by the Nosé-Hoover method [35,36]. A total of
6 000 000 time steps are calculated for each run. The first
1 000 000 steps are regarded as the transition from the ini-
tial fcc structure to the steady oscillation stage. Various
statistical parameters are achieved for the latter 5 000 000
steps. The simulation is conducted using the open source
large scale atomic/molecular massively parallel simulator
(LAMMPS) [37]. The OVITO software is used for the atomic
visualization.

TABLE I. The nondimensional parameters.

Property Parameters

Length r∗ = r
σ

Time t∗ = t
τ

Force F ∗ = Fσ

ε

Temperature T ∗ = kBT
ε

Velocity v∗ = vτ

σ

Density ρ∗ = ρσ 3

m

Energy Pe∗ = Pe
ε

In order to perform the transient and nonlinear analysis
of local fluid densities, we select the centered 10σ thickness
in the y direction over the xz plane as a slice to obtain the
statistical density in such a slice at t . The nondimensional
particle density is

ρloσ
3 = σ 3

A�y(JStart − JEnd + 1)

JEnd∑
JStart

Nlo, (6)

where JStart and JEnd are the start and end time step of the
statistics, A is the xz plane area (A = LxLz), �y = 10σ , and
Nlo is the total number of molecules in the slice. Because
Nlo is changed versus time, the fluid density varies with time,
indicating the mass exchange between the selected slice and
the nearby fluid volumes. In order to present results in a
general sense, computations are performed using a set of
nondimensional parameters, which are expressed in Table I.
All the parameters are scaled by m, σ , and ε of argon atoms.

The Ten Wolde and Frenkel (TWF) method is applied
to mark the target molecule as a liquid molecule or gas
molecule [38,39]. If there are at least five molecules except
for the target molecule in such a sphere, the target molecule
is marked as a liquid molecule; otherwise, it is marked as a
gas molecule [see Fig. 2(c)]. Hence, all molecules are marked
as either a liquid molecule or a gas molecule. We define the
vapor mass quality as χgas = Ngas/N , where Ngas and N are the
number of gas molecules and the total number of molecules
in the box, respectively. Figure 2(d) shows the probability
distribution when using different neighboring molecules of
the target molecule, which will be analyzed in Sec. III B.

The radial distribution function (RDF), which is given as
g(rc), characterizes the local density fluctuations with a dis-
tance rc from the center of a specific atom or molecule [40],

g(rc) = 1

ρave4πr2
c δrc

∑Nt
t=1

∑N
j=1 �N (rc → rc + δrc)

NNt
, (7)

where Nt is the total steps for the integration; �N is the
number of particles for a size interval from rc to rc + δrc. The
g(rc) approaches 1 when rc is large.

Previous studies have shown a strong connection between
the degree of ordering, the transport properties of fluids, and
their excess entropy [41]. The excess entropy is defined as the
entropy of the fluid relative to that of the ideal gas at the same
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temperature and pressure, and is expressed as

sex = s − sid, (8)

where s is the total entropy, sid is the ideal gas entropy, and
sex can be expressed based on the expansion of n-body cor-
relation functions, which is often approximated by the first
term, namely, the two-body contribution on excess entropy
s(2). Indeed, for the LJ system, this two-body contribution to
the entropy is between 85% and 95% over a fairly wide range
of densities [31]. The sex can be estimated from the two-body
contribution on the excess entropy s(2) based on g(rc) as [41]

s(2) = −2πρavekB

∫
[g(rc) ln g(rc) − g(rc) + 1]r2

c drc, (9)

where kB is Boltzmann’s constant. As s(2) is related to g(rc), it
can be used to characterize the degree of ordering for a fluid.
Since s(2) equals zero for completely disordered systems (i.e.,
the ideal gas), but becomes large and negative for ordered
structures (s(2) → −∞ for perfect crystalline arrangements),
it provides a method to characterize the degree of disorder-
ing in a system [42]. The scaled two-body excess entropy
ln[ − s(2)/kB] is used in this paper.

B. Thermodynamically determined transition
temperatures for pseudoboiling

Section II A involves the details of MD simulation and the
data process, which form the basis to generate the three meth-
ods of neighboring molecules, radial distribution function, and
two-body excess entropy, yielding the transition boundaries
for different phase distribution of LL, GL, and TPL, which are
further discussed in the Results and Discussion. The transition
boundaries determined by the three methods are compared
with the thermodynamically determined values.

Banuti [16] used enthalpy asymptotes for the ideal gas ig
and liquid il reference states to evaluate the temperature inter-
vals for supercritical phase change. Pseudoboiling enthalpy is
recorded as the enthalpy difference between T + and T −. As
seen in Fig. 3, the two blue lines represent enthalpy lines for
the ideal gas and liquid, where i is the enthalpy of the fluid.
The enthalpy curves of argon at pressures of 1.1Pc, 1.5Pc,
and 2.0Pc consist of a curved CD part and two parts beyond
the CD section. The former includes a pseudoboiling point
(pb), in which the temperature and enthalpy are recorded as
Tpb and ipb, respectively. The red line AB is the tangent line
that passes through the pb. The two points of A and B can
be precisely determined by crossing the tangent line with the
two enthalpy lines of the ideal liquid and gas. In this way,
the onset pseudoboiling temperature T − is located at point
A, while the termination pseudoboiling temperature T + is at
point B. Correspondingly, the points C and D are marked on
the enthalpy curve of the supercritical fluid defined at the two
temperatures of T − and T +, respectively.

C. Nonlinear analysis of fluids

Multiphase flow in subcritical pressure behaves with a
strong nonlinear characteristic. Thus, nonlinear analysis has
been widely applied for phase change heat transfer [43,44].
The outcomes of nonlinear analysis help us to understand

FIG. 3. The i-Tr curves across the pseudocritical point to de-
fine the two transition temperatures of T − and T +. (a) Pr = 1.1Pc,
(b) Pr = 1.5, and (c) Pr = 2.0. This method is also called the thermo-
dynamically determined method [16].

the complicated mass, momentum, and energy interaction be-
tween the vapor phase and liquid phase. A major contribution
of the present paper is to demonstrate the multiphase feature
for supercritical fluids. Hence, it is necessary to introduce
the nonlinear analysis to understand the complicated fluid in
supercritical pressure.

Nonlinear dynamics was introduced to analyze the tran-
sient densities in the center slice of 10σ . The behavior of a
nonlinear system can be analyzed based on the trajectories
of attractors in the phase space. Therefore, the multidimen-
sional phase space portraits can be reconstructed from the
time series of density fluctuations over the entire cubic box.
The time series density signal X, as obtained from the sim-
ulations, is digitized with the time step �t for the resultant
(n + 1) signal values. The vector time series is defined as
{X (t ), X (t+τD), X (t+2τD), . . . , X (t + (n−1)τD}, where n
is the embedded dimension and τD is the time delay. The
dynamic properties of a system can be studied by reconstruct-
ing the phase space if n � 2D + 1, where D is the fractal
dimension of the system [45].

To reasonably reconstruct the phase space, careful attention
is given to the choice of the embedding dimension n and delay
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time τD. If τD is too small, the attractor becomes flattened,
making the analysis impossible. Alternatively, if τD is too
large, the attractor becomes too complex and outputs incorrect
information on the dynamic behavior of the system. Several
methods, such as time delay, mutual information, autocorre-
lation, and C-C, could determine a suitable time delay [46].
C-C method is a simpler method for estimating τD using the
correlation integral. Here, the proper value of τD is determined
by the C-C method.

For nonlinear analyses, the correlation dimension is the
most widely used approach to estimate the fractal dimensions
of an attractor. The correlation dimension D2 can be decided
from the power law relationship between the correlation inte-
gral of an attractor and the neighborhood radius of the analysis
hypersphere [45,47]:

D2 = lim
rd→0

ln C(rd )

ln rd
, (10)

where C(rd ) is the correlation integral defined as C(rd ) =
2

Nd (Nd−1)

∑Nd
j=1

∑Nd
i= j+1 θ (rd − |�xi − �x j |), xi are the points on

the attractor, and Nd is the number of embedding points in
the phase space. The correlation integral is a measure of
the number of points within a neighborhood of radius rd as
averaged over the entire attractor. The θ (x) is the Heaviside
step function of

θ (x) =
{

0 x � 0
1 x > 0 . (11)

Usually, D2 is determined by calculating the slope of the
fitting curve crossing the middle scale region of ln C(rd )
versus ln rd. If Nd in the denominator is significant, the D2

for a chaotic system converges with an increased embedding
dimension n. In contrast, D2 for a random system increases
with an increased embedding dimension n.

III. RESULTS AND DISCUSSION

A. Model validation

It is noted that both NVT and NPT are used in MD sim-
ulations. For NVT, volume and temperature are controlled to
target values. Instead, for NPT, pressure and temperature are
controlled. For both methods of NVT and NPT, oscillating
of any parameter is unavoidable. Allen and Tildesley [48]
pointed out that oscillations of various parameters are weaker
for NVT than those for NPT. Skarmoutsos and Samios [49]
commented on the fact that NPT creates oscillation of the
system volume, which is not suitable for spatial time density
analysis, but the density analysis can be conveniently per-
formed using NVT.

Based on the control strategy of NVT, kBT/ε, Pσ 3/ε, and
Pe/ε are plotted in Fig. 4(a), including three regimes of an
initial stage within 0 ps < t < 3 ps, a transition stage within
3 ps < t < 100 ps, and an equilibrium stage for t > 100 ps.
At the initial time of t = 0, all the fluid atoms are assumed to
have the fcc structure with zero velocities. Hence, the system
temperature is zero at t = 0. Following t > 0, intermolecular
forces are applied on each atom based on Eq. (1) to achieve
kinetic energy. Hence, the system temperature is small, on
the magnitude of (10–14–10–10)kBT/ε, but not zero within

FIG. 4. Validation of MD simulations results: (a) variations of
various parameters versus time; (b) comparison of MD results with
those coming from NIST software.

the initial stage. We note that the characteristic time of ar-
gon molecules is τ =

√
mσ 2/ε = 2.16 ps, matching the time

duration of ∼3 ps for the initial stage. Thus, the relaxation
time for the Nosé-Hoover thermostat temperature control is
∼1τ . Following the initial stage, the system switches to the
transition stage and the system temperature sharply increases
and is stabilized at the target value.

In order to characterize the oscillation characteristic in the
steady stage, standard deviation between average value and
instantaneous value of any parameter is [50]

ek =
{[ k∑

1

(e − eR)2

]/
(k − 1)

}0.5

× 100%, (12)

where e refers to the deviation, eR means the average devia-
tion, and k is the number of data samples. For temperature T
in the period of 100–1000 ps, the computation outcomes give
the average value of 1.246 for kBT/ε, exactly matching the
setting value. ek equals 0.77% in this period, meaning very
small oscillation due to the controlled temperature using the
Nosé-Hoover method. Other parameters show similar behav-
ior. Thus, the time period for t > 1000 ps is used for the data
analysis in this study.

Another issue is to verify that our MD simulation results
are correct. In order to do so, we compared the simulated
physical properties of argon with those coming from the NIST
software [see Fig. 4(b)]. The latter has sufficient accuracy for
engineering applications. Viscosity is selected as an example
physical property to be compared. The pressure is chosen as
1.2Pc but the temperature is increased from Tc to 2.0Tc. It is
seen that our simulation results agree well with the values
coming from the NIST software.
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FIG. 5. Comparison between setting values and final computed values (a) for reduced temperature and (b) for reduced pressure.

In our simulation, the setting parameters are temperature
and density, but density is dependent on the setting pressure
and temperature. During the simulation, the temperature is
well controlled to be the setting value, with the maximum
deviation between the setting value and the final averaged
value less than 0.07% [see Fig. 5(a)]. Hence, the following
results are plotted using the setting temperature. However, the
computed pressures are oscillating during simulation with the
maximum deviation less than 3.90% [see Fig. 5(b)]. Hence,
the following results are presented using the final calculated
pressure, instead of the setting pressure.

B. Transition boundaries determined
by neighboring molecules method

In this section, we show the transition boundaries among
the three regimes of LL, GL, and TPL using the neighboring
molecules method. Figure 2(c) presents a 1.5σ radius sphere
encircling a target molecule and its neighboring molecules
(marked as j = 1, 2, . . . , l), where n is the maximum number
of molecules that can be included in the sphere except the tar-
get molecule. Actually, the neighboring molecules method is a
statistical method. As seen from Fig. 2(d), the target molecule
has the largest probability to be a gas molecule if l < 5, but
has the largest probability to be a liquid molecule if l � 5.
This method is recommended by Wedekind and Reguera [51]
and Losey and Sadus [39], and is also used here.

For multiphase flow in subcritical pressure, vapor mass
quality (χgas), characterizing the vapor mass relative to the
total mass for a specific two-phase mixture, is an important
parameter to influence various performance parameters such
as pressure drop and heat transfer coefficient [52]. Here, we
try to provide a similarity between subcritical pressure and
supercritical pressure. Therefore, we define the vapor mass
quality as χgas = Ngas/N , where Ngas and N are the number
of gas molecules and the total number of molecules in the
box, respectively. The vapor mass quality increases with tem-
peratures for a given pressure but decreases with pressure for
a given temperature, as seen in Fig. 6(a). Under subcritical

pressures, fluids are regarded as a liquid if ρ > 0.9ρsat,l and
as a gas if ρ < 0.1ρsat,l, where ρsat,l is the saturation density
of the liquid. This is called the 10%–90% method [53]. This
method is extended to the supercritical pressure to classify
SFs into LL, TPL, and GL with χgas < 0.1, 0.1 < χgas < 0.9,
and χgas > 0.9, respectively. Two transition temperatures of
T − and T + are defined at the crossing points between the
vapor mass quality curve and the criteria of χgas = 0.1 and
χgas = 0.9, as seen in Fig. 6(a). The two transition boundaries
divide the entire space into the three regimes of LL, TPL,
and GL, which is called the neighboring molecules method,
as seen in Fig. 6(b).

At the critical point with Pr = 0.995 and Tr = 1, the co-
existence of liquid and gas molecules is observed to show
the TPL behavior, as seen in Fig. 6(c) (see Supplemental
Material [54] for videos corresponding to figures in text).
Liquid molecules are populated together with a curved in-
terface that is opposite to the gas molecule cluster in a
three-dimensional (3D) manner. The TPL structure at the
critical point is sensitive to variations in the temperature. The
system is switched from TPL to GL at 1.05Tc, in which more
than 90% of molecules are yellow, as seen in Fig. 6(d) (see
Supplemental Material [54] for 3D movie). At the sufficiently
high pressure of 2.419Pc, the LL, TPL, and GL appear consec-
utively at temperatures of Tc, 1.17Tc, and 1.7Tc; see snapshots
in Figs. 6(e)–6(g) (see Supplemental Material [54] for 3D
movie). In summary, previous studies show that SFs are either
LL or GL, while TPL is not observed for pressures far above
the critical pressure [22]. Here, we determine the temperature
interval to contain TPL including the coexistence of liquidlike
and gaslike regimes, which is presented later.

It is noted that the computation outcomes may be depen-
dent on the setting l value (see Fig. 7). Even though there
exists a difference between l = 5 and 6, the major finding
and conclusion are the same for different l . Here, the l = 5
is applied, which is also used by other investigators [38,39].
Based on the T − and T + in Figs. 6(a) and 6(b), we show that
argon exhibits a LL regime with ρσ 3 > 0.4956 ± 0.004 and a
GL regime with ρσ 3 < 0.1755 ± 0.01, while the TPL regime
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FIG. 6. The neighboring molecules method determines three regimes in a SF. (a) The vapor mass quality χgas depends on the reduced
temperature and pressure, and the LL, TPL, and GL regimes are defined by crossing the two lines of χgas = 0.1 and 0.9. (b) The three-regime
model in supercritical argon is interfaced with two linear transition boundaries. Three-dimensional snapshots at 0.995Pc, with (c) TPL at Tc

and (d) GL at 1.05Tc. Snapshots at 2.419Pc, with (e) LL at Tc, (f) TPL at 1.17Tc, and (g) GL at 1.7Tc.

occurs for 0.1755 < ρσ 3 < 0.4956, where liquid molecules
are marked as blue and gas as yellow, as seen in Fig. 8.

C. Radial distribution function and excess entropy

Among the three states of solid, liquid, and gas, the gas
molecules have the largest distance between neighboring par-
ticles with random motion, which is summarized as long
range disorder and short range disorder [55,56]. The radial

distribution function g(rc) quickly decays to 1 without obvious
peaks and valleys. In contrast, liquid molecules are closely
packed to yield short range order and long range disor-
der [55,56]. The ratio of first valley value gmin relative to the
first peak value gmax, η = gmin/gmax, has been used to study
freezing and melting problems [57,58]. Here, this method is
extended to determine T − and T +. The g(rc) in the liquid
regime has the largest oscillations but in the gas regime it has
weak oscillations, which agrees with the results of Ref. [59].
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FIG. 7. The outcomes of χgas dependent on neighboring
molecules of target molecule.

The g(rc) in the TPL regime is in between those of liquid and
gas at 1.478Pc, as seen in Fig. 9(a). By comparing the four
panels in Fig. 10 with P = 1.957Pc, 2.419Pc, 2.956Pc, and
3.419Pc, different pressures share common variation trends
of g(rc) with respect to rc(σ ), but temperatures have a strong
effect on g(rc) distribution. LL displays multiple peak distri-
bution at T = Tc, but only a single peak occurs for higher
temperatures such as 1.5Tc at 1.957Pc and 1.7Tc at 2.419Pc,
as seen in Figs. 10(a) and 10(b), which are consistent with
those reported in Ref. [60].

The η curve is plotted versus the reduced temperatures in
Fig. 9(b) at 1.478Pc, including two linear parts and a curved
part. In the lower temperature region, the curved section be-
gins to deviate from the linear section at the point t1, with
the corresponding temperature marked as T − at the onset
pseudoboiling temperature. At the higher temperature region,
the curved section begins to deviate from the linear section at
the point t2, with the corresponding temperature marked as T +
as the termination pseudoboiling temperature. The slopes of
the η curves vary over the entire temperature range; they are

FIG. 8. Effects of reduced temperatures and pressures on the
number density. The LL, TPL, and GL regimes are defined by two
transition boundaries of ρσ 3|T − and ρσ 3|T + .

FIG. 9. Radial distribution function (RDF) and two-body excess
entropy-determined transition boundaries. (a) g(rc ) function versus
rc for the three regimes at 1.478Pc. (b) Three parts of the curves η =
gmin/gmax at 1.478Pc. (c) The η at various temperatures and pressures.
(d) Three parts of the two-body excess entropy curves versus Tr .
(e) Excess entropy-determined transition boundaries.

0.8755 for section t1 and 0.2412 for section t2. We summarize
the η curves in Fig. 9(c) at various pressures from 1.5Pc to
3.5Pc. Switching the T − and T + values at different pressures
and temperatures based on Fig. 9(c) could give a regime map
that includes LL, TPL, and GL, which is similar to Fig. 6(b).

We present the outcomes of T − and T + based on the two-
body excess entropy, s(2), which characterizes the degree of
ordering [42]. The two-body excess entropy is modified into a
nondimensional and log form at 1.478Pc, as seen in Fig. 9(d).
It is noted that there is a three-part structure in supercritical
argon. The two linear sections have slopes of −7.3634 and
−2.8103 in the lower and higher temperature regions, respec-
tively. Similar to the radial distribution function g(rc) method
shown in Fig. 9(b), the excess entropy approach yields the
two transition points of t1 and t2 corresponding to T − and T +,
respectively. Additional data for the excess entropy curves are
provided in Fig. 11. These data allow us to generate the regime
map to include LL, TPL, and GL in Fig. 9(e).

D. Comparison between different approaches

There is a saturation temperature for subcritical boiling.
However, a supercritical pressure for pseudoboiling cor-
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FIG. 10. Radial distribution function (RDF) at different pressures showing different responses versus rc in three different regimes, with (a)
Pr = 1.957, (b) Pr = 2.419, (c) Pr = 2.956, and (d) Pr = 3.419.

responds to a temperature interval between T − and T +.
Figure 12(a) reconstructs the regime map to include LL, TPL,
and GL based on T − and T + as determined using the neigh-

FIG. 11. Two-body excess entropies versus reduced tempera-
tures at different reduced pressures.

boring molecules, g(rc), excess entropy, and thermodynamic
methods. These four methods are compared and summarized
in Fig. 12(b) and Table II. The thermodynamically determined
values are taken as the reference data for the comparison. The
conclusions are as follows. (1) Perfect agreement is achieved
between the four methods. More than half of the data points
have relative errors of less than 2%. (2) The relative errors
slightly increase with pressure, and approximately 80% of the
data points have relative errors less than 5%. (3) The largest
deviation occurs at ∼3Pc but is less than 10%.

The enthalpies are plotted in Fig. 12(c) with a maximum
pressure of up to 3.5Pc. At subcritical pressures, the latent
heat of evaporation, ilg, quantifies how much energy is needed
for the phase change from pure liquid to pure gas, which
decreases with pressure until reaching zero at the critical
pressure. Now that T − and T + are determined at super-
critical pressures, the pseudoboiling enthalpy is defined as
�it = iT + − iT − , which reflects an integration of the specific
heat (cp) curve in the temperature interval of T − to T +.
A nonmonotonic increase is observed for �it to include an
initial increase rise section with 1 < Pr < 1.6, a nearly hor-
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FIG. 12. Summary of the outcomes for the two transition temperatures. (a) Comparison between different approaches and (b) the error
distribution. (c) Enthalpy distribution versus pressure when interfaced at the critical pressure.

izontal section with 1.6 < Pr < 2.0, and a second increase
section with Pr > 2. Decoupling �it into two parts yields
�it = �ipt + �ith, where �ipt is used to overcome inter-
molecular attraction, which is an excess energy to enlarge the
distance between neighboring molecules and is similar to the
function of latent heat of evaporation in subcritical boiling,

and �ith is used to increase the temperature only. We note
that for subcritical phase change, �ith = 0 exists due to the
constant temperature evaporation. The �ipt/�it is defined to
characterize the ratio of the energy to overcome intermolec-
ular attraction relative to the total energy for pseudoboiling.
The �ipt accounts for ∼22% of the total pseudoboiling en-
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TABLE II. T − and T + determined using various methods and comparisons between them.

(a) T −/Tc values and their errors related to theoretical values

Decided by neighboring molecules Decided by g(rc ) Decided by excess entropy Decided by thermo
Pr = P/Pc method and error (%) method and error (%) method and error (%) dynamic method

Pr = 1.02 – 1.00157 1.00349 –
1.2 1.0023, 0.684 1.0108, 0.159 1.0119, 0.268 1.0092
1.5 1.015, 0.265 1.0137, 0.393 1.0128, 0.481 1.0177
2.0 1.055, 2.288 1.0466, 1.474 1.0229, 0.824 1.0314
2.5 1.095, 4.715 1.0682, 2.181 1.0342, 1.071 1.0454
3.0 1.134, 7.123 1.0962, 3.552 1.0790, 1.927 1.0586
3.5 1.170, 9.366 1.1202, 4.711 1.1619, 8.609 1.0698

(b) T +/Tc values and their errors related to theoretical values

Decided by neighboring molecules Decided by g(rc ) Decided by excess entropy Decided by thermo
Pr = P/Pc method and error (%) method and error (%) method and error (%) dynamic method

Pr = 1.02 – 1.11890 1.08018 –
1.2 1.127, 4.024 1.1434, 5.538 1.1454, 5.723 1.0834
1.5 1.227, 1.572 1.2201, 1.002 1.2217, 1.051 1.2080
2.0 1.393, 0.115 1.3919, 0.194 1.4161, 1.542 1.3946
2.5 1.566, 0.578 1.5243, 2.100 1.6199, 4.040 1.5570
3.0 1.717, 1.059 1.7307, 1.866 1.8574, 9.323 1.6990
3.5 1.887, 3.312 1.9182, 5.021 1.9216, 5.207 1.8265

ergy for Pr < 1.6, then decays with increase of pressures,
and becomes unimportant for Pr > 3. Hence, we conclude the
important role of �ipt to overcome intermolecular attraction,
which is a core mechanism to form the bubblelike regime in
SFs.

E. Bubblelike regime in SF

The grid marking technique is developed to determine the
fluid phase (liquid or gas) that is occupied by each grid with
a cell size of 1σ × 1σ and a 10σ thickness in the y direction
(see Fig. 13). The MD simulation outcomes yield ρσ 3 for each
grid. Based on Fig. 8, each grid is filled with either blue for
liquid or white for gas with ρσ 3 > 0.4956 and ρσ 3 < 0.1755,
respectively. The gray color in a grid is given for 0.1755 <

FIG. 13. The grid marking method to decide the density for the
judgment whether a grid is occupied by LL, transition, or GL in such
a grid.

ρσ 3 < 0.4956. Three pressures of 1.064Pc, 1.155Pc, and
1.478Pc are paid attention to here. The continuous phase is
liquidlike for T � T −, but the continuous phase is gaslike for
T � T + [see Fig. 14(a)].

For the three groups of combined parameters of Pr and
Tr given in Fig. 14(b) (see Supplemental Material [54] for a
two-dimensional (2D) movie), voids are observed in th eTPL
regime. These voids are ∼10σ in size and have a curved
interface. To understand the voids shown in Fig. 14(b), the
snapshot for 1.046Pc and 1.0056Tc is enlarged in Fig. 15
focusing on a void. The void has the following characteris-
tics. First, the void contains sparsely populated molecules,
but outside the void there are densely populated molecules. It
cannot say that the void is a “vacuum.” The void has a gaslike
density with ρσ 3 < 0.1755, but outside of the void there is a
liquidlike density with ρσ 3 > 0.4956. Second, the void has a
curved interface. These two features conclude the bubblelike
pattern in the TPL regime, which is analogous to bubbles in
subcritical pressure. A bubblelike structure occurs for pres-
sures of ∼1.5Pc and even higher. It is impossible to arrange
uniformly distributed molecules in SF. A Bubblelike structure
helps to minimize the free energy of the SF system, satisfying
the minimum energy principle. The bubblelike structure in the
TPL regime needs further investigation.

F. Nonlinear analysis of SF

Nonlinear analysis has been widely applied in biology,
weather forecasting, mechanical damping, electronic signals,
and complex fluids [61,62]. Multiphase fluids have been
investigated using nonlinear analysis [63]. Because most mul-
tiphase systems display chaotic behavior, we explore whether
SFs also display chaotic features. If the answer is yes, the
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FIG. 14. Snapshots showing the phase distributions at a layer thickness of 10σ in the y direction. (a) Phase distributions in the LL and GL
regimes and at the two transition boundaries, and (b) the TPL regime showing a bubblelike region.
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FIG. 15. The phase and molecule distributions at 1.064Pc and 1.0056Tc.

evidence of bubblelike related two-phase structure will be
enhanced for SFs. We select the centered 10σ thickness in
the y direction and plot the time series ρσ 3 in Fig. 16(a), in
which three regimes, LL at Tc, TPL at 1.068Tc, and GL at
1.3Tc, are demonstrated. We note the constant fluid density in
the whole box. In this paper, 1000 data samples in 5 ns after
the system equilibrium were chosen for nonlinear analysis.
Density fluctuations in the 10σ thickness reflect the mass
exchange between such layer and its neighboring layers. Even
though outcomes are only presented at 1.478Pc, the time series
signals at other supercritical pressures are similar to those at
1.478Pc. The square root error es is

es =
√√√√ Ns∑

f =1

(
ρσ 3| f − ρσ 3|ave

ρσ 3|ave

)2

/Ns, (13)

where Ns is the total number of data samples, f is the f
th time step, and ave is the average value. Evidenced by
larger square root error in the TPL regime, we conclude there
are stronger oscillations in the TPL regime than in the LL
and GL regimes. We identify different responses of correla-
tion dimensions at different structures, as seen in Figs. 16(b)
and 16(c). In the LL and GL regimes, correlation dimensions
show monotonic rises versus embedding dimensions to dis-
play random behavior. In the TPL regime with increase of
embedding dimensions, correlation dimensions rise, attain the
maximum, and then decrease. At 1.478Pc and 1.121Tc, the
peak point is located at the embedding dimension of 8 and
the correlation dimension of 4.7104, concluding that SF at
this state should be described using at least five independent
parameters, but the number of independent parameters should
be smaller than nine. The largest Lyapunov exponent is an
important parameter. Especially, in a fluid system, the positive
and negative Lyapunov exponents refer to chaotic and random
behavior, respectively. Figure 16(d) shows the Lyapunov ex-
ponents versus the reduced temperature at 1.478Pc, showing
chaotic behavior corresponding to a two-phase-like (TPL)
regime, which is similar to a two-phase mixture in subcritical

pressure. The random behavior corresponds to a liquidlike
(LL) regime at lower temperature and gaslike (GL) at higher
temperature. The attractor pattern is important to classify the
dynamic features of a system (see Fig. 17). Attractor portraits
in the LL and GL regimes display irregular patterns, with the
attractor converging towards the portrait center. The internal
structure of the attractor patterns cannot be seen, indicating
random behavior in LL and GL fluids. However, the TPL
regime has a different attractor pattern, which is formed by
superimposing a set of line rings. Fine internal structures can
be seen, belonging to a chaotic dynamic which is similar to
two-phase structure in subcritical pressure.

In summary, our work demonstrates that a supercritical
fluid can be a mixture of LL and GL. The multiphase fluid
theory in subcritical pressure can be introduced to deal with
complicated SFs. The similarity between subcritical pressure
and supercritical pressure is a prospective research direction
for SFs. To establish such a connection, various parameters
are to be determined. Here, we analogize the pseudoboil-
ing enthalpy �it in supercritical pressure to the latent heat
of evaporation in subcritical pressure. The temperature in-
terval between T − and T + is analogized to the saturation
temperature in subcritical pressure. To introduce the mul-
tiphase theory framework, some parameters have not been
decided yet, but should be done in the future. Physical pa-
rameters such as viscosity, thermal conductivity, and specific
heat should be defined for GL and LL, respectively. The
two transition temperatures T − and T + may be the temper-
atures to determine the parameters at the liquid state and gas
state, respectively. Besides, there are several nondimensional
parameters in subcritical multiphase systems, including the
Bond number, Weber number, and capillary number [52].
These nondimensional parameters are also needed in super-
critical pressure, representing the importance of one force
relative to another. Both numerical simulations and experi-
mental techniques widely applied in subcritical pressure are
to be introduced in supercritical pressure. Our work opens an
interesting research direction to introduce the multiphase the-
ory framework to the supercritical domain, not only enhancing
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FIG. 16. Nonlinear analysis of the SF. (a) Density fluctuations for a 10σ layer thickness in the y direction showing larger oscillations in the
TPL regime. (b)–(c) Correlation dimensions versus the embedding dimensions showing an increasing trend for LL and GL, but saturation for
TPL. (d) Nonlinear characteristics showing randomness in the LL and GL regimes and chaotic behavior in the TPL regime, which is similar to
the two-phase regime at subcritical pressures.

the understanding of SFs, but also improving design accuracy
for advanced energy systems.

IV. CONCLUSIONS

SFs are a natural phenomenon and can find various applica-
tions in industries. The SF is regarded as a homogeneous and

single-phase fluid (which is documented in textbooks [10]),
displays a sharp transition between LL and GL by crossing
the Widom line [19,20,22], or is divided into three regimes
by two transition temperatures T − and T + based on en-
thalpy analysis [16]. Because at this stage, fluid structures
in SFs are not fully understood, the predicted thermal per-
formance greatly deviates from experimental data, limiting
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FIG. 17. Attractor patterns with (a), (c) for random behavior in the LL and GL regimes, and (b) chaotic behavior in the TPL regime.

large scale utilizations of supercritical technologies in energy
systems and synthesis of functional nanomaterials [12,18]. In
this paper, MD simulations with argon fluid were simulated
focusing on the phase distribution in SF. Periodic boundary
conditions were applied on all the surfaces of a simulation
box including 10 976 argon atoms. The onset pseudoboiling
temperature T − and termination pseudoboiling temperature
T + were evaluated using the neighboring molecules method,
the radial distribution function (RDF) method, and the two-
body excess entropy method, based on MD simulation results.
By verifying phase distribution in different pressures and
temperatures, we show that the two transition temperatures
divide the whole phase diagram into three regimes, LL, TPL,
and GL, instead of the sharp transition between LL and GL

reported in the literature. Most importantly, the TPL regime is
found to contain voids and surrounding liquids. The observed
voids have gas densities inside and a curved interface. Hence,
voids are said to be bubblelike. We further explain why the
term “bubblelike” is reasonable in the supercritical domain,
by making a link with the subcritical domain. Our work high-
lights important multiphase features of the SF including the
bubblelike feature. Nonlinear analysis based on time series
density data supports the multiphase feature of the SF.
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