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We derive a quantum kinetic equation under discrete impurities for the Wigner function from the quantum
Liouville equation. To attain this goal, the electrostatic Coulomb potential is separated into the long- and short-
range parts, and the self-consistent coupling with Poisson’s equation is explicitly taken into account within the
analytical framework. It is shown that the collision integral associated with impurity scattering as well as the
usual drift term is derived on an equal footing. As a result, we find that the conventional treatment of impurity
scattering under the Wigner function scheme is inconsistent in the sense that the collision integral is introduced
in an ad hoc way and, thus, the short-range part of the impurity potential is double-counted. The Boltzmann
transport equation (BTE) is then derived without imposing the assumption of random impurity configurations
over the substrate. The derived BTE would be applicable to describe the discrete nature of impurities such as
potential fluctuations.
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I. INTRODUCTION

Electron transport properties associated with impurity scat-
tering under inhomogeneous structures such as semiconductor
devices have been traditionally studied with the semiclas-
sical Boltzmann transport equation (BTE) coupled self-
consistently to Poisson’s equation [1,2]. The self-consistent
coupling with Poisson’s equation is necessary as far as the
structure is bounded and inhomogeneous because the carrier
density is inherently nonuniform. However, such theoretical
approaches based on the BTE are incomplete in some re-
spects, namely, when taking into account the discrete nature
of impurities. For instance, the electrostatic Hartree poten-
tial determined by Poisson’s equation represents the potential
under the long-wavelength limit [3], and impurity scatter-
ing in the collision integral is evaluated under the implicit
assumption of self-averaging over all possible impurity con-
figurations [4–8]. As a result, the traditional framework based
on the BTE coupled with Poisson’s equation completely ig-
nores the discreteness of impurities and cannot describe the
phenomena such as potential fluctuations or, equivalently,
multi-ion screening effects [9].

A quantum mechanical approach based on the Wigner
function does not resolve the problem described above; the
classical electron distribution function is replaced by the
Wigner function, and the Hartree potential is replaced by
the quantum potential derived from the quantum Liouville
equation under the long-wavelength limit [4,10]. The scat-
tering processes are introduced through the collision integral
with the same reasoning as that in the BTE [11–14]. Namely,
the rate of change of the electron distribution function must
be balanced between drift and scattering processes [15–17].
We should also mention that the conventional framework of
the Wigner function is inconsistent from both mathematical

and physical perspectives: The Wigner function cannot be
interpreted as a probability density because it is not posi-
tive semidefinite, and the scattering potential of impurities
is double-counted in both the drift term through the Hartree
potential and the collision integral, as we shall explore in the
present paper.

After all, under the traditional framework based on the
BTE and the Wigner function schemes, impurity scattering is
treated independently from the transport equation because the
transition probability due to impurity scattering is evaluated
by Fermi’s golden rule with the a priori screened Coulomb
potential. This implicitly implies that impurities are always
fully screened by carriers no matter whether the system is in
equilibrium or nonequilibrium. In other words, as far as im-
purity scattering is concerned, the “self-consistent coupling”
between the transport equation and Poisson’s equation is not
actually consistently coupled within the framework.

Of course, the problems associated with the discrete nature
of impurities and charged particles have been numerically
tackled over the past half century. Under the homogeneous
case where Poisson’s equation under the long-wavelength
limit is not required, the direct incorporation of the Coulomb
interaction among charged particles in high-temperature plas-
mas has been made by molecular dynamics (MD). Later, the
coupling of MD with the Monte Carlo (MC) method was in-
troduced for semiconductors [18–20]. This approach has been
further extended to take into account the exchange interaction
among electrons [21] and also applied to the electron-impurity
systems [22]. The coupled MC-MD method is indeed able
to take into account the potential fluctuations associated with
the discreteness of charged particles and impurities. Yet, un-
fortunately, it is applicable only to homogeneous structures.
To apply the MC-MD approach to inhomogeneous struc-
tures, which are characteristic of semiconductor devices, the
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Coulomb potential has been explicitly separated into the long-
and short-range parts so that only the short-range part of
the potential is introduced via the MD method, whereas the
long-range part is taken into account by the mesh field from
Posisson’s equation [23].

In reality, the discrete nature of impurities is now playing a
crucial role in the state-of-the-art technology associated with
electron devices: Because of drastic miniaturization of device
size, electron transport is now quasiballistic [24–27], and the
discrete nature of doped impurities is manifested in various
transport characteristics [28]. In particular, discrete impurities
induce local potential fluctuations around impurities. Such
potential fluctuations are usually masked by screening carriers
and do not show up explicitly in equilibrium under bulk struc-
tures. This is why the long-wavelength limit imposed on the
electrostatic potential in Poisson’s equation is justified under
the traditional framework. However, electron devices operate
under nonequilibrium conditions, and the semiconductor sub-
strate is strongly inhomogeneous. As a result, screening by
free carriers is in most cases incomplete, and potential fluctu-
ations always show up during device operation. This leads to
threshold voltage variabilities (called random dopant fluctua-
tions, RDFs for short), which cannot be artificially controlled
due to the random nature of impurity configurations [29,30].
Such variabilities in device characteristics are considered to
be a dominant factor preventing further miniaturization of
the leading-edge electron devices. Many numerical studies
on the issues of RDF have been conducted under the fluid
approximation, the Drift-Diffusion (DD) scheme, because of
computational burden [31–35]. We should mention, however,
that a rigorous physical justification based on the transport
theory of incorporating the discrete nature of impurities into
the DD scheme is still missing. This study also makes a step
toward such a goal.

In the present paper, we discuss the quantum and semiclas-
sical transport equations with impurity scattering from two
different perspectives: One is about the inconsistency between
the kinetic equation for the Wigner function and Poisson’s
equation that exists in double-counting the impurity scatter-
ing potential. The other is about the implementation of the
discrete nature of impurities into the BTE framework. These
issues may seem to be uncorrelated, but actually, they are
intimately linked. The relationship between the self-consistent
Hartree potential in the drift term and the scattering potential
in the collision integral becomes clearer only if the discrete
nature of impurities is explicitly introduced into the kinetic
equation. To achieve this goal, we separate the long- and
short-range parts of the impurity potential in both the quantum
kinetic equation for the Wigner function and Poisson’s equa-
tion, and, thus, the self-consistent coupling between the two
equations is explicitly taken into account within the analytical
framework. As a matter of fact, the idea of separating the long-
and short-range parts of the Coulomb potential has been used
in many areas in physics such as plasma simulations [36] and
the density functional theory [37]. The above-mentioned MC-
MD scheme applicable to inhomogeneous structures is also
based on a similar idea [23,38]. Here we follow the conven-
tional approach; the short-range part of the potential is treated
as scattering, and the long-range part is taken into account
through Poisson’s equation. We show by analytical means that

the collision integral and the self-consistent Hartree poten-
tial can be naturally derived in the quantum kinetic equation
on an equal footing. Then the semiclassical BTE is reduced
from the quantum kinetic equation without relying on self-
averaging of random impurity configurations, which is a key
ingredient to derive the BTE for impurity scattering under
the long-wavelength limit [15,16,39,40]. We would like to
stress that the BTE for impurity scattering has been indeed
derived before from the Wigner equation of motion yet under
the homogeneous cases so that the assumption of random
impurity configurations was crucial in its derivation [41,42].

The present paper is organized as follows. In Sec. II the
Wigner function is defined and explicit separation of impurity
potential into the long- and short-range parts is introduced
in the theoretical framework. In Sec. III, the quantum kinetic
equation for the Wigner function is derived and the physical
interpretations of the Hartree potential and scattering potential
are presented. In Sec. IV, the coarse-grained Wigner function
is introduced to derive the quantum kinetic equation in a
closed form. In Sec. V, the BTE applicable to the cases under
discrete impurities is derived. Finally, some conclusions are
drawn in Sec. VI.

II. WIGNER FUNCTION AND IMPURITY POTENTIAL

The Wigner function is defined by the Wyle transform of
the density operator [41,42] and expressed by

f (p, R, t ) =
∫

d3r

(2π )3 e−ip·r
〈
R + r

2

∣∣∣∣ρ̂(t )

∣∣∣∣R − r
2

〉
, (1)

where ρ̂(t ) is the density operator of electrons in a semicon-
ductor substrate. In the present study, we assume that electrons
are so dilute that these electrons are treated as completely
independent of the others and the system is dealt with as a
single-electron problem. Hence, the electron density operator
is represented by a mixed state such that

ρ̂(t ) = 1

ν

∑
α

|ψα (t )〉〈ψα (t )|, (2)

where ν is the number of electrons, |ψα (t )〉 is the single-
electron state vector, and the sum is taken over all elec-
trons [43]. ρ̂(t ) satisfies the quantum Liouville equation

i
∂ρ̂(t )

∂t
= [Ĥ, ρ̂(t )], (3)

where Ĥ is the single-electron Hamiltonian and given by Ĥ =
p̂2/(2m) − eV̂ , where V̂ is the external potential (operator)
including the impurity potential, which is self-consistently
coupled with the Poisson equation. In the present paper, units
are chosen such that h̄ ≡ 1. The quantum kinetic equation for
the Wigner function is then derived as

[
∂

∂t
+ p

m
· ∂

∂R

]
f (p, R, t ) = −e

i

∫
d3rd3 p′

(2π )3 ei(p′−p)·r

×
[
V

(
R + r

2
, t

)
− V

(
R − r

2
, t

)]
f (p′, R, t ). (4)
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The discrete impurity density is approximated by a set of δ

functions and expressed by

N+
d (R) =

NI∑
i=1

δ(R − Ri ), (5)

where Ri is the position of the ith impurity and NI is the total
number of impurities in the substrate. The external potential
V (R, t ) in Eq. (4) satisfies Poisson’s equation, which is, for
later discussion, written by

∇2V =− e

εs
{[N+

d (R)−N+
d,long(R)]+[N+

d,long(R)−n(R, t )]},
(6)

where N+
d,long(R) inserted intentionally on the right-hand side

represents the impurity density associated with the long-range
part of the impurity Coulomb potential (determined below).
n(R, t ) is the electron density calculated from the Wigner
function by

n(R, t ) =
∫

d3p f (p, R, t ). (7)

By a proper choice of N+
d,long(R), Eq. (6) can be split into the

following two equations:

∇2Vlong = − e

εs
[N+

d,long(R) − n(R, t )] (8)

and

∇2Vshort = − e

εs
[N+

d (R) − N+
d,long(R)], (9)

where Vlong and Vshort are the long- and short-range parts
of the external potential, respectively, and fulfill the relation
V = Vlong + Vshort. We would like to point out that n(R, t )
calculated from Eq. (7) is regarded as a long-range quantity
since f (p, R, t ) is a continuous and smooth function of both
p and R.

The separation of impurity potential into the long- and
short-range parts becomes unique when one considers the
system in equilibrium under bulk structures where the charge
neutrality condition also holds [3,44]. Then Vlong reduces to
a flat potential because the long-range part of the impurity
potential is completely screened by free electrons and an un-
screened part of the potential is excluded from Vlong, owing to
the explicit separation of the potential. Hence, the right-hand
side of Eq. (8) must vanish in equilibrium, and we obtain

N+
d,long(R) ≈

NI∑
i=1

neq
i (R − Ri ). (10)

Notice that Eq. (9) is now decoupled from the quantum kinetic
equation (4) and closed by itself. This implies that poten-
tial modulations induced by screening are self-consistently
taken into account by Eqs. (4) and (8). In other words, static
screening and dynamical screening are separated under the
present framework, and the latter is treated as collective mo-
tion through the quantum kinetic equation, Eq. (4). Assuming
that the average impurity density is not extremely large, N+

d,long

is given by a sum of the electron density neq
i (R − Ri ) modu-

lated around each impurity. Then we may write Vshort (R) =

∑NI
i=1 vs(R − Ri ) and Eq. (9) reduces to Poisson’s equation

for a single impurity potential vs,

∇2vs = − e

εs

[
δ(R − Ri ) − neq

i (R − Ri )
]
. (11)

Clearly, this equation along with appropriate boundary con-
ditions leads to the (static) screened Coulomb potential due
to a single impurity at position Ri. When we solve Eq. (11)
under the linear approximation for unbounded bulk structure,
the usual Yukawa potential is derived [45].

III. QUANTUM KINETIC EQUATION
FOR THE WIGNER FUNCTION

We now derive the quantum kinetic equation for the
Wigner function under discrete impurities. The source term,
given by the right-hand side of Eq. (4), could be split into two
terms in accordance with the long- and short-range parts of
the potential, and we may rewrite Eq. (4) as(

∂

∂t
+ p

m
· ∂

∂R

)
f (p, R, t )

= Slong(p, R, t ) + Sshort (p, R, t ), (12)

where Slong and Sshort represent the source terms associated
with Vlong and Vshort, respectively.

A. Long-range part of the source term

The long-range part of the source term is treated in the
usual manner [46]. Expanding Vlong in Slong(p, R, t ) around
R by the Taylor series, we find

Slong(p, R, t ) = −2e sin

[
1

2

(
∂ (V )

∂R
· ∂ ( f )

∂p
− ∂ (V )

∂p
· ∂ ( f )

∂R

)]
×Vlong(R) f (p, R, t ), (13)

where sin(·) is a short-hand notation of its infinite series, and
the first and second derivatives inside the argument act on Vlong

and f , respectively.
Notice that this result is exact and no approximation has

been made. In the present paper, impurity scattering is our
main concern so that Vlong is independent of the electron’s
momentum. Therefore, the second term inside the argument
of the sin function has essentially no effect. However, it is
critical to keep this term in Eq. (13) for being equivalent to
the Poisson bracket of Eq. (3), namely,

Slong(p, R, t )=
∫

d3r

(2π )3 e−ip·r
〈
R+ r

2

∣∣∣∣i[eV̂long, ρ̂(t )]

∣∣∣∣R − r
2

〉
.

(14)

Of course, it plays a key role when the Lorentz force associ-
ated with magnetic field is involved. Also, we should mention
that the higher-order terms above the lowest-order in Eq. (13)
lead to the renormalization effects of the electronic states
in a similar manner to those found in the Kadanoff-Baym
equation [47,48].

B. Short-range part of the source term

Since the length-scale dominant in Sshort (p, R, t ) is in the
opposite limit of Slong(p, R, t ), it is more convenient to work
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in the Fourier-Laplace space, rather than in the real space. The
Fourier-Laplace-transform of Sshort is expressed by

S̃short (p, k, ω)

= −e

i

∫
d3q

(2π )3 Ṽshort (q)

[
f̃

(
p − q

2
, k − q, ω

)

− f̃

(
p + q

2
, k − q, ω

)]
, (15)

where S̃short (p, k, ω) and Ṽshort (q) are, respectively, defined by

S̃short (p, k, ω) =
∫ ∞

0
dt

∫
d3Re−ik·R+iωt Sshort (p, R, t ) (16)

and

Ṽshort (q) =
∫

d3Re−iq·RVshort (R). (17)

Equation (12) is formally solved in the Fourier-Laplace
space using the Green function. The Wigner function is then
given by

f̃ (p, k, ω) = i f (p, k, t = 0) + G+(p, k, ω)

×i[S̃long(p, k, ω) + S̃short (p, k, ω)], (18)

where G+(p, k, ω) is the retarded Green function and defined
by

G+(p, k, ω) = 1

ω + iε − p · k/m
. (19)

Here ε is a positive infinitesimal. Although Eq. (18) is an exact
solution, we need to make an approximation to evaluate S̃short

given by Eq. (15). First, we ignore the effects induced by Vlong

during the transition due to impurity scattering, namely, the
intracollisional field effect (ICFE) [49–52]. Hence, the Wigner
function in Eq. (15) is approximated by

f̃ (p, k, ω) ≈ G+(p, k, ω)iS̃short (p, k, ω). (20)

This approximation may be justified because the collision
duration is expected to be short, due to the short-range nature
of Vshort, so that the retardation effect during scattering should
be insignificant unless an electric field is extremely large.
However, as the impurity density increases, the magnitude
of the potential fluctuations associated with the long-range
part of impurity potential gets larger. In the depletion regions
where no carriers for screening exist, the magnitude of an
induced electric field exceeds 1 MV/cm when the average
impurity density is 1020 cm−3 [44]. Therefore, the ICFE could
be significant at such high impurity densities. However, a
large portion of potential fluctuations is usually masked by
carrier screening, and, thus, the ICFE would actually become
important only in very limited cases such as under the deple-
tion condition. In addition, we ignore a transient correlation
resulting from the initial condition of the Wigner function
f (p, k, t = 0), because the transport properties driven by the
source term of Eq. (12) are our main concerns.

Substitution of Eq. (20) into Eq. (15) leads to the following
expression for S̃short (p, k, ω):

S̃short (p, k, ω) = −e
∫

d3q

(2π )3 Ṽshort (q)

[
G+

(
p − q

2
, k − q, ω

)
S̃short

(
p − q

2
, k − q, ω

)

− G+
(

p + q
2
, k − q, ω

)
S̃short

(
p + q

2
, k − q, ω

)]
. (21)

This formula plays a similar role to the Lippmann-Schwinger equation in the scattering theory [41,53,54]. Hence, all higher-order
effects associated with short-range interaction between electrons and impurities such as multiple scattering are included. Keeping
only the second order in Ṽshort, which is equivalent to the Born approximation, S̃short (p, k, ω) is approximated by

S̃short (p, k, ω) ≈ e2

i

∫
d3qd3q′

(2π )6 Ṽshort (−q)Ṽshort (q′)

×
{

G+
(

p + q
2
, k + q, ω

)[
f̃

(
p + q − q′

2
, k + q − q′, ω

)
− f̃

(
p + q + q′

2
, k + q − q′, ω

)]

− G+
(

p − q
2
, k + q, ω

)[
f̃

(
p − q + q′

2
, k + q − q′, ω

)
− f̃

(
p − q − q′

2
, k + q − q′, ω

)]}
. (22)

C. Quantum kinetic equation

The quantum kinetic equation for the Wigner function is now given by{
−iω + p

m
· ∂

∂R
+ 2e sin

[
1

2

(
∂ (V )

∂R
· ∂ ( f )

∂p
− ∂ (V )

∂p
· ∂ ( f )

∂R

)]
Vlong(R)

}
f (p, R, ω) = Sshort (p, R, ω), (23)

where Sshort (p, R, ω) is the inverse-Fourier transform of
S̃short (p, k, ω) expressed by Eq. (22).

We would like to stress, however, that Eq. (23) is incom-
plete in the respect that the Fourier transform of f (p, R, ω) on
the left-hand side of Eq. (23) is not consistent with f̃ (p, k, ω)

in Sshort (p, R, ω): The ICFE associated with the (long-range)
spatial variation of Vlong(R) is ignored in f̃ (p, k, ω) of
Sshort (p, R, ω) because of the approximation employed by
Eq. (20). Therefore, the following two important facts must
be considered. First, f̃ (p, k, ω) in Eq. (22) is regarded as

014141-4



QUANTUM KINETIC EQUATION FOR THE WIGNER … PHYSICAL REVIEW E 104, 014141 (2021)

the Fourier-Laplace transform of f (p, R, t ) as if the elec-
trostatic potential were fixed with the “local” value Vlong(R)
during collision duration. Second, the Markov approximation
is inevitable at this stage because f̃ (p, k, ω) of Sshort (p, R, ω)
is not updated during collision duration consistently with
Vlong(R). As a result, ω-dependence in the retarded Green
function G+(p, k, ω) is decoupled from that of f̃ (p, k, ω) in
Eq. (22). In other words, the quantum kinetic equation (23)
is not actually closed for the Wigner function, and we need
to complement another relation between f (p, R, ω) of the
left-hand side of Eq. (23) and f̃ (p, k, ω) in Sshort (p, R, ω) of
the right-hand side.

IV. KINETIC EQUATION FOR THE COARSE-GRAINED
WIGNER FUNCTION

A. Coarse-grained Wigner function

To close the quantum kinetic equation (23) for the Wigner
function, we introduce the spatial average (coarse graining) of
the Wigner function with respect to the weight function g(R),
which is normalized to unity over the space. In fact, coarse
graining often has been introduced in past studies to explain
the appearance of irreversibility in the transport equations,
although in most cases it has been applied to the time or
energy domain [39,40]. In the present study, however, we
define the coarse-grained Wigner function in space by

〈 f (p, R, ω)〉 =
∫

d3R′g(R′) f (p, R − R′, ω), (24)

and g(R) is assumed to have the following expression:

g(R) = qc
3

(2π )3/2 e− qc2R2

2 . (25)

Here qc is the inverse of the screening length determined by
Poisson’s equation for the short-range part of the potential, as

given by Eq. (11). Since qc is dependent on the modulated
electron density neq

i (R − Ri ) around the impurity at Ri, it is
also dependent on R through Vlong(R). Notice that Eq. (24) is
also expressed by

〈 f (p, R, ω)〉 =
∫

d3k

(2π )3 eik·Rg̃(k) f̃ (p, k, ω)

≈ 1

��R
f̃ (p, k = 0, ω), (26)

where in the last line we used the fact that g̃(k) is given by
g̃(k) = exp(−k2/2qc

2) and sharply peaked at k = 0. ��R
is the volume with the screening length q−1

c and given by
��R = (2π )3/2/qc

3 and, thus, ��R also becomes depen-
dent on position R through q−1

c . It is clear from Eq. (26)
that 〈 f (p, R, ω)〉 is indeed the Wigner function averaged
over the (macroscopically small) volume at R. As a re-
sult, f̃ (p, k = 0, ω) is diagonal in momentum space and
〈 f (p, R, ω)〉 becomes positive semidefinite. Furthermore, as
seen from Eq. (24), f̃ (p, k = 0, ω) is the Fourier transform
of the Wigner function centered at the position R. Hence,
f̃ (p, k = 0, ω) may be regarded as the Fourier-transformed
Wigner function that is obtained under the assumption as if
the electrostatic potential were fixed with the value of Vlong(R)
over the volume �. This is exactly the same interpretation
employed for the Fourier-transformed Wigner function in
Sshort (p, R, ω) of Eq. (23). Therefore, Eq. (26) plays a com-
plementary relation to close Eq. (23).

B. Quantum kinetic equation in a closed form

We now impose the spatial average on both sides of
Eq. (23). Noting that the operation of space differentiation
commutes with the averaging operation, we immediately ob-
tain

(
−iω + p

m
· ∂

∂R

)
〈 f (p, R, ω)〉 + 2e sin

[
1

2

(
∂ (V )

∂R
· ∂ ( f )

∂p
− ∂ (V )

∂p
· ∂ ( f )

∂R

)]
〈Vlong(R) f (p, R, ω)〉 = 〈Sshort (p, R, ω)〉. (27)

Notice that Vlong(R) varies in space with the length scale greater than q−1
c , whereas the space average is taken over the region

smaller than q−1
c . Hence, the space averaging of Vlong(R) has little effect, and we can approximate

〈Vlong(R) f (p, R, ω)〉 ≈ Vlong(R)〈 f (p, R, ω)〉. (28)

On the other hand, the right-hand side of Eq. (27) becomes

〈Sshort (p, R, ω)〉 = e2

i

1

�2

∑
q,q′

Ṽshort (−q)Ṽshort (q′)
1

��R

{
G+

(
p + q

2
, q, ω

)[
f̃

(
p + q − q′

2
, q − q′, ω

)

− f̃

(
p + q + q′

2
, q − q′, ω

)]
− G+

(
p − q

2
, q, ω

)[
f̃

(
p − q + q′

2
, q − q′, ω

)
− f̃

(
p − q − q′

2
, q − q′, ω

)]}
, (29)

where � is the volume of the substrate and integral over the
momentum is now replaced by the sum by following the box
normalization rule. Also, the following relationship is used;

〈eik·R〉 = eik·Rg̃(k). (30)

Because of Eq. (26), 〈 f (p, R, ω)〉 on the left-hand side of
Eq. (27) is diagonal in momentum space and, thus, Eq. (29)

is singular with respect to the diagonal components of
f̃ (p, k, ω) [55]. Hence, we may write

f̃

(
p ± q ± q′

2
, q − q′, ω

)
≈ δq, q′ f̃

(
p ± q ± q

2
, 0, ω

)
.

(31)

014141-5



NOBUYUKI SANO PHYSICAL REVIEW E 104, 014141 (2021)

Notice that ω-dependence of G+(p, q, ω) represents the
energy change during collision duration due to impurity
scattering, whereas that of f̃ (p, k, ω) represents the en-
ergy change during an electron’s drift motion induced by
the left-hand side of Eq. (27). Therefore, ω-dependences
of G+(p, q, ω) and f̃ (p, k, ω) are not correlated with each
other, as discussed in Sec. III C. Hence, we may set ω = 0
in G+(p, q, ω) because impurity scattering is static, and we
obtain

G+
(

p ± q
2
, q, ω = 0

)
= 1

iε ∓ (Ep±q − Ep)

ε→0+−−−→ ∓P
1

Ep±q − Ep
− iπδ(Ep±q − Ep), (32)

where Ep is an electron’s energy with momentum p. Con-
sequently, the coarse-grained source term 〈Sshort (p, R, ω)〉 is
given by

〈Sshort (p, R, ω)〉 = 2π
e2

�2

∑
q

|Ṽshort (q)|2δ(Ep±q − Ep)

× 1

��R
[ f̃ (p + q, 0, ω) − f̃ (p, 0, ω)].

(33)

Using Eq. (26), the quantum kinetic equation (23) is now
closed for the coarse-grained Wigner function 〈 f (p, R, ω)〉,
and we obtain

{
−iω + p

m
· ∂

∂R
+ 2e sin

[
1

2

(
∂ (V )

∂R
· ∂ ( f )

∂p
− ∂ (V )

∂p
· ∂ ( f )

∂R

)]
Vlong(R)

}
〈 f (p, R, ω)〉

=
∑

q

Wimp(p, p + q)[〈 f (p + q, R, ω)〉 − 〈 f (p, R, ω)〉], (34)

where the transition probability Wimp(p, p + q) between an
electron’s momentum p and p + q via short-range impurity
scattering is defined by

Wimp(p, p + q) = 2π
1

�2
|eṼshort (q)|2δ(Ep+q − Ep). (35)

The square of the scattering potential is expressed by

1

�2
|eṼshort (q)|2 = 1

�2
|eṽs(q)|2

NI∑
i=1

(
1 +

NI∑
j �=i

e−iq·(Ri−R j )

)

≈ n̄imp

�
|eṽs(q)|2, (36)

where we used the fact that the zero-Fourier component of
ṽs(q) is already excluded so that the phase interference among
multiple impurities represented by the second term inside the
bracket of the second line is negligible. n̄imp is the average im-
purity density and is defined by n̄imp = NI/�. Then Eq. (36)
exactly coincides with the expression used for impurity scat-
tering under the conventional Wigner function framework.

This expression is, however, inappropriate under discrete
impurities. Noting that

1

�
eṼshort (q) = 1

�

∫
�

d3R e−iq·ReVshort (R)

= 〈p + q|eV̂short|p〉, (37)

the transition matrix associated with the short-range impu-
rity potential is evaluated by electron’s plane wave 〈R|p〉 =
eiR·p/

√
�, which spreads over the entire substrate �. On

the other hand, the transition probability Wimp(p, p + q) is
derived from 〈Sshort (p, R, ω)〉 under the assumption that the
electrostatic potential is fixed with a “local” value Vlong(R)
during collision duration. Hence, Eq. (36) should be inter-
preted only locally in space. Namely, we may regard it as
the transition probability obtained for the case as if impurities
were distributed over the substrate consistently with the “lo-
cal” long-range potential Vlong(R). As a result, NI in Eq. (36)

is replaced by N+
d,long(R) × � and Eq. (35) becomes

Wimp(p, p + q) = 2πN+
d,long(R)

1

�
|eṽs(q)|2δ(Ep+q − Ep).

(38)

The quantum kinetic equation derived here is nearly iden-
tical to the one widely used for quantum transport simulations
for semiconductor nanostructures under the Wigner func-
tion scheme [10–14]. Yet there are a few critical differences
between the present theory and the conventional Wigner func-
tion scheme: One is in the drift term of the left-hand side
of Eq. (34), in which the whole external potential V (R) in
the conventional scheme is now replaced by Vlong(R). Hence,
as mentioned earlier, the self-consistent Hartree potential is
given by Vlong(R), rather than V (R). Another point is that the
collision integral associated with Vshort (R) is naturally derived
from the quantum Liouville equation in the present theory.
Therefore, the double-counting of the short-range scattering
potential is eliminated under the present framework. Further-
more, the Wigner function in the conventional scheme is now
replaced by the coarse-grained Wigner function. Although
the Wigner function can be negative where quantum phase
interference is significant, the coarse-grained Wigner function
is always positive semidefinite, and, thus, it can be interpreted
as a probability density.

V. REDUCTION TO THE BOLTZMANN
TRANSPORT EQUATION

The reduction of Eq. (34) to the BTE is straightforward.
Since Vlong(R) varies gradually in space, the first term of
the series on the left-hand side of Eq. (34) is most signifi-
cant. Keeping only the lowest-order term, we obtain the drift
term, which is similar to the expression of the BTE with no
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magnetic field;

2e sin

[
1

2

(
∂ (V )

∂R
· ∂ ( f )

∂p
− ∂ (V )

∂p
· ∂ ( f )

∂R

)]
Vlong(R)

×〈 f (p, R, ω)〉 ≈ e
∂Vlong(R)

∂R
· ∂

∂p
〈 f (p, R, ω)〉. (39)

This simply reflects the fact that quantum phase interference
between the incident and reflected waves induced by Vlong(R)
is ignored because of gradual variations of the potential.
It should be pointed out, however, that this approximation
breaks down if the whole potential V (R), instead of Vlong(R),
is used as the Hartree potential. Consequently, Eq. (34) re-
duces to the BTE,[

−iω + p
m

· ∂

∂R
+ e

∂Vlong(R)

∂R
· ∂

∂p

]
〈 f (p, R, ω)〉

=
∑

q

Wimp(p, p + q)[〈 f (p + q, R, ω)〉 − 〈 f (p, R, ω)〉].

(40)

Although the above BTE is almost identical to the con-
ventional BTE with impurity scattering, we should regard
it as an extended version of the BTE applicable to discrete
impurities. Since Vlong(R) is self-consistently coupled with
Poisson’s equation, the discrete nature of impurities could be
represented as potential fluctuations when the screening of
impurities by electrons is incomplete. Furthermore, the tran-
sition probability due to impurities is evaluated by the local
impurity density N+

d,long(R), rather than the average impurity
density n̄imp(R). Therefore, impurity scattering becomes lo-
calized around impurities, and the discreteness of impurities
is also reflected in the collision integral. Last, yet most impor-
tantly, the present derivation has been possible only because
we do not rely on self-averaging over the random impurity
configurations.

The validity of the derived kinetic equation has been con-
firmed by applying it to the MC simulations under bulk
structures, in which impurities are distributed at random over
a Si substrate [56]. We have confirmed that the simulated
electron mobility is insensitive to the details of impurity con-
figurations due to self-averaging, although impurity scattering

is strongly localized in the present scheme. Furthermore, elec-
tron mobilities at various impurity densities coincide very well
with the results obtained under the conventional MC simula-
tions with “jellium” impurity in which impurity scattering is
delocalized.

Finally, we would also like to mention that a similar treat-
ment can be applied to the long-range part of the Coulomb
interaction among electrons. In such cases, the Coulomb in-
teraction induces “dynamical” potential fluctuations, namely,
plasma oscillations [57–59], and those collective motions
are taken into account through the Poisson equation in a
self-consistent manner, rather than the dynamical dielectric
function of the scattering potential. This is also consistent with
the fact that the plasma oscillation among electrons results
from the long-range part of the Coulomb potential Vlong(R).

VI. CONCLUSION

We have derived a quantum kinetic equation for the Wigner
function under discrete impurities from the quantum Liouville
equation in a closed form. This has been achieved by explic-
itly separating the electrostatic Coulomb potential into the
long- and short-range parts and taking into account the self-
consistent coupling with Poisson’s equation. We have shown
that the collision integral associated with impurity scattering
as well as the usual drift term is derived on an equal footing.
Hence, the conventional treatment of impurity scattering un-
der the Wigner function scheme is inconsistent because the
collision integral is introduced in an ad hoc way and the
short-range part of the impurity potential is double-counted.
Furthermore, introducing the coarse-grained Wigner function
in space, the quantum kinetic equation reduces to a closed
form with the coarse-grained Wigner function and becomes
consistent with the approximations implicitly imposed on the
kinetic equation. Also, the Wigner function becomes positive
semidefinite and, thus, can be interpreted as a probability
density in the present framework. The BTE has been derived
without imposing the long-wavelength limit of the Hartree
potential and the self-averaging over random impurity con-
figurations, which have been essential ingredients to derive
the BTE with impurity scattering under bulk structures. The
derived BTE is able to take into account the discrete nature of
impurities and applicable to the analysis of electron transport
under semiconductor nanostructures.
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