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We study the effects of gauge-symmetry breaking (GSB) perturbations in three-dimensional lattice gauge
theories with scalar fields. We study this issue at transitions in which gauge correlations are not critical and the
gauge symmetry only selects the gauge-invariant scalar degrees of freedom that become critical. A paradigmatic
model in which this behavior is realized is the lattice CP! model or, more generally, the lattice Abelian-Higgs
model with two-component complex scalar fields and compact gauge fields. We consider this model in the
presence of a linear GSB perturbation. The gauge symmetry turns out to be quite robust with respect to the
GSB perturbation: the continuum limit is gauge invariant also in the presence of a finite small GSB term. We
also determine the phase diagram of the model. It has one disordered phase and two phases that are tensor and
vector ordered, respectively. They are separated by continuous transition lines, which belong to the O(3), O(4),
and O(2) vector universality classes, and which meet at a multicritical point. We remark that the behavior at
the CP' gauge-symmetric critical point substantially differs from that at transitions in which gauge correlations
become critical, for instance at transitions in the noncompact lattice Abelian-Higgs model that are controlled by

the charged fixed point: in this case, the behavior is extremely sensitive to GSB perturbations.
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I. INTRODUCTION

Gauge symmetries have been crucial in the development
of theoretical models of fundamental interactions [1-3]. They
also play a relevant role in statistical and condensed-matter
physics [4—12]. For instance, it has been suggested that they
may effectively emerge as low-energy effective symmetries
of many-body systems. However, because of the presence
of microscopic gauge-symmetry violations, it is crucial to
understand the role of the gauge-symmetry breaking (GSB)
perturbations. One would like to understand whether these
perturbations do not change the low-energy dynamics—in
this case, the gauge-symmetric theory would describe the
asymptotic dynamics even in the presence of some (possi-
bly small) violations—or whether even small perturbations
can destabilize the emergent gauge model— consequently,
a gauge-invariant dynamics would be observed only if an
appropriate tuning of the model parameters is performed. This
issue is also crucial in the context of analog quantum sim-
ulations, for example, when controllable atomic systems are
engineered to effectively reproduce the dynamics of gauge-
symmetric theoretical models, with the purpose of obtaining
physical information from the experimental study of their
quantum dynamics in laboratory. Several proposals of arti-
ficial gauge-symmetry realizations have been reported (see,
e.g., Refs. [13-16] and references therein) in which the
gauge symmetry is expected to effectively emerge in the low
-energy dynamics.

Previous studies of the critical behavior (or continuum
limit) of three-dimensional (3D) lattice gauge theories with
scalar matter have shown the emergence of two different
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scenarios. One possibility is that scalar-matter and gauge-field
correlations are both critical at the transition point. This be-
havior is related to the existence of a charged fixed point (FP)
in the renormalization-group (RG) flow of the corresponding
continuum gauge field theory [3]. This is realized in some of
the transitions observed in the 3D lattice Abelian-Higgs (AH)
model with noncompact gauge fields [17]. Alternatively, it
is possible that only scalar-matter correlations are critical at
the transition. The gauge variables do not display long-range
critical correlations, although their presence is crucial to iden-
tify the gauge-invariant scalar-matter degrees of freedom that
develop the critical behavior. This typically occurs in lattice
AH models with compact gauge variables.

In Ref. [18], we studied GSB perturbations in the 3D
lattice AH model with noncompact gauge field, at transi-
tions controlled by the charged FP of the RG flow of 3D
electrodynamics with multicomponent charged scalar fields
[3,19-22] (also called AH field theory). In that case, a
photon-mass GSB term, however small, gives rise to a drastic
departure from the gauge-invariant continuum limit of the
statistical lattice gauge theory, driving the system towards a
different critical behavior (continuum limit). This is due to
the fact that a photon-mass term qualitatively changes the
phase diagram of the noncompact lattice AH theory [17]. The
Coulomb phase is no longer present and, therefore, the nature
of the transition to the Higgs phase, previously controlled by
the charged fixed point, varies. One ends up with a new critical
behavior with noncritical gauge fields.

At transitions where gauge fields are not critical, the role
of gauge symmetries is more subtle, but still crucial to de-
termine the continuum limit. Even if gauge correlations are
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not critical, gauge fields prevent non-gauge-invariant correla-
tors from acquiring nonvanishing vacuum expectation values
and, therefore, from developing long-range order. Therefore,
gauge symmetries effectively reduce the number of degrees of
freedom of the matter-field critical modes. The lattice CPV~!
model [23-25] or, more generally, the lattice AH model with
compact gauge fields [26], where an N-component complex
scalar field is gauge-invariantly coupled to a compact U(1)
gauge field associated with the links of the lattice, have tran-
sitions of this type. In these models, the role of the U(1)
gauge symmetry is that of hindering some scalar degrees of
freedom, i.e., those related to a local phase, from becoming
critical. As a consequence, the critical behavior or continuum
limit is driven by the condensation of a gauge-invariant tensor
matter operator, and the corresponding continuum field theory
is associated with a Landau-Ginzburg-Wilson (LGW) field
theory with a tensor field, but without gauge fields. For N = 2,
the LGW approach predicts that the continuum limit of the
CP! model (or of the N = 2 lattice compact AH model) is
equivalently described by the LGW field theory for a three-
component real vector field with O(3) global symmetry.

In this paper, we investigate the effects of perturbations
breaking the gauge symmetry when gauge-field correlations
are not critical, and the gauge symmetry acts only to pre-
vent some of the matter degrees of freedom from becoming
critical. For this purpose, we consider a lattice AH model
with compact gauge fields, focusing on the case of two scalar
components. We consider the most natural and simplest GSB
term, adding to the Hamiltonian (or action, in the high-energy
physics terminology) a term that is linear in the gauge link
variable. This GSB term is similar to the photon-mass term
considered in noncompact lattice AH models, and indeed it is
equivalent to it in the limit of small noncompact field A, ,,
as can be immediately seen by expanding the exponential
relation between the compact and noncompact gauge fields,
i.e., Ay, = exp(iAy ). At variance with what was obtained in
Ref. [18], where we considered GSB perturbations at transi-
tions controlled by charged FPs, in the present case the linear
GSB perturbation does not change the continuum limit, at
least for a sufficiently small finite strength of the perturbation.

In Fig. 1, we anticipate a sketch of the phase diagram
of the lattice CP' model in the presence of a GSB term
whose strength is controlled by the parameter w. It presents
three different phases: a high-temperature (small J) disor-
dered phase, and two low-temperature (large J) phases with
different orderings. When the GSB perturbation is small, the
low-temperature phase is qualitatively analogous to that of the
gauge-invariant model, i.e., it is characterized by the conden-
sation of a bilinear tensor matter operator. In the RG language,
the GSB perturbation turns out to be irrelevant at the FP of the
gauge-invariant theory. On the other hand, when the GSB pa-
rameter w is sufficiently large, there is a second ordered phase
characterized by the condensation of the vector matter field.
These phases are separated by three different transition lines,
meeting at a multicritical point. Along the disordered-tensor
(DT) transition line, we observe the same critical behavior
as in the CP! model: the tensor degrees of freedom behave
as in the O(3) vector model. The GSB term is irrelevant and
the continuum limit of the model with a finite GSB break-
ing is the same as that of the gauge-invariant model. Along
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FIG. 1. Sketch of the phase diagram of the lattice CP' model
in the presence of the GSB term, H, = —w Zx,u Re A, . This is a
particular case of the lattice AH model with two-component scalar
matter and compact gauge variables for y = 0. The phase diagram is
characterized by three different phases: a disordered phase (small J),
a tensor-ordered phase where the tensor operator Q condenses (large
J and small w), and a vector-ordered phase where the vector field z,
condenses (large J and w). These phases are separated by the DT,
DV, and TV transition lines, where CP!/O(3), O(4) vector, and O(2)
vector critical behaviors are observed.

the DV line, we observe instead a different continuum limit:
vector and tensor degrees of freedom behave as in the O(4)
model. Finally, on the TV line, we observe an O(2) vector
critical behavior.

The paper is organized as follows. In Sec. II, we define
the lattice AH model with compact gauge variables and the
linear GSB perturbation. In Sec. I1I, we define the observables
that we consider in the numerical study and review the main
properties of the finite-size scaling (FSS) analyses employed.
In Sec. IV, we discuss some limiting cases where the ther-
modynamic behavior is known and propose a possible phase
diagram for the model. In Sec. V, we discuss our numerical re-
sults for N = 2, which support the conjectured phase diagram.
Finally, in Sec. VI, we summarize and draw our conclusions.
In the Appendix, we report some universal curves in the O(N)
vector model that allow us to identify the universality class of
the different transitions.

II. THE MODEL

A. The lattice Abelian-Higgs model with compact gauge
variables

A compact lattice formulation of the three-dimensional AH
model is obtained by associating complex N-component unit
vectors z, with the sites x of a cubic lattice, and U(1) variables
Ax,;. With each link connecting the site x with the site x 4 [
(where 1 = 1,2, ... are unit vectors along the positive lattice
directions). The partition function of the system reads

7 — E*HAH(ZJ)’ 00
{z,A}

Hpu(z, M) = H:(z, 1) + Hy(}). ©))
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We define
H,=—JNY 2ReluZs Zeip 3)

X,/

where the sum runs over all lattice links, and

H), = -Y Z 2Re Hx.;wa (4)
X, >V
where
Hx,/w = )\x,u )\x-Hl,v )_\x-&-f),u )_\x.m (5)

and the sum runs over all plaquettes of the cubic lattice.
The AH Hamiltonian is invariant under the global SU(N)
transformations,

2x - szv U € SU(N)’ (6)

and the local U(1) gauge transformations,
e — €%z, A —> ei(’*)»x,,te_i9*+"‘, @)

where 6, is an arbitrary space-dependent real function. The
parameter y > 0 plays the role of inverse gauge coupling.

For y = 0, the model is a particular lattice formulation of
the 3D CPY~! model, which is quadratic in the scalar-field
variables and linear in the gauge variables. We can obtain a
lattice formulation without explicit gauge fields by integrating
out the link variables. We obtain

z=7 e =N TThQINE zernl),  (®)
{z, A}

{z} *.u

where Iy(x) is a modified Bessel function. The corresponding
effective Hamiltonian is

Heir = — ) Inlg(2IN Zx - Ze 1), ©)

X,

which is invariant under the gauge transformations (7) even
in the absence of gauge fields. For small J, since Ip(x) = 1 +
x2 /4 + O(x*), the Hamiltonian H. simplifies to

Hcp = —J>N? Z Zx - Zeral®s (10)

X0

which represents another equivalent formulation of the
CP"~! model.

The compact AH model presents two phases when varying
J and y [26], separated by a transition line, whose nature does
not depend on the gauge parameter y. The appropriate order
parameter is the bilinear gauge-invariant operator,

ab sa b 1 ab
Oy =72y N6 ; 1D

which is a Hermitian and traceless N x N matrix. It trans-
forms as Q; — U'Q, U under the global SU(N) transforma-
tions. Its condensation signals the spontaneous breaking of the
global SU(N) symmetry.

B. Linear breaking of the U(1) gauge symmetry

In the following, we investigate the effects of perturba-
tions breaking gauge invariance. In particular, we consider the

simplest gauge-breaking perturbation that is linear in the A
variables. We consider the extended Hamiltonian

H,(z,A) = Hau(z, ) + Hp(A), (12)
where
Hy=—w) Rely,. (13)
X,

Note that if we perform the change of variables,
ix — (_I)XIHzﬂ%zx’ )\x,/t - _)\x,/u (14)

we reobtain the action (12), with w replaced by —w. Thus,
the phase diagram is independent of the sign of w (but, for
w < 0, the relevant vector-order parameters would be stag-
gered quantities). Thus, in the following, we only consider the
case w > 0.

When y = 0, one can straightforwardly integrate out the
link variables A, obtaining

7 = Z e H:@2)—Hy(2)

{z.2}
= > [ TH@INID +2c - zera), (15)
{z} *n
where @ = w/(2JN). The corresponding effective
Hamiltonian reads
Her = — ) InIQINI® + % -zesp). (16)

X

The Bessel function should be irrelevant for the critical be-
havior. Since the argument of the Bessel function can be
equivalently written as

|ﬁ) + Zx ’zx+ﬂ|2 = wz + 2 Re (¢ 'zx+/2) + |zx 'Zx+/1|2,
(17)

we expect that for infinite gauge coupling, the model has the
same critical behavior as a model with Hamiltonian

Het = =N ) (e 2eil” + 200 ReZy - 2eypl.  (18)

X, 1

Such a Hamiltonian is the sum of a U(N) invariant CPV~!
model and an O(2N) invariant vector model, which now repre-
sents the gauge-breaking perturbation. Thus, the introduction
of the linear gauge-breaking term (13) is equivalent to the
addition of a ferromagnetic vector interaction Re(Zy - Zx44)
among the vector fields. Although this has been shown for
y = 0, we expect this equivalence to hold at criticality for any
positive finite y.

We would like now to show that at transitions where the
vector fields show a critical behavior, one observes an en-
larged O(2N) symmetry. For this purpose, note that the CPV~!
interaction in Eq. (18) can be rewritten as

Ze - Zerpl? = (ReZy - 2eyp)® + (ImZe - Apze)®,  (19)

where A2y = 2y — Zx, and we used the fact thatz, - z, = 1.
The first term represents an additional O(2N) invariant vec-
tor ferromagnetic interaction, while the second one is only
invariant under U(N) transformations. We will now argue
that the latter term is irrelevant at the O(2N) fixed point.
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For this purpose, we consider the usual LGW approach and
define a real field ¥,;,, a=1,...,N and i =1, 2, which
represents a coarse-grained version of the field z,, with the
correspondence being

Rez; — W, (x), Imzi — Vp(x). (20)
The coarse-grained Hamiltonian corresponding to model (18)
is given by

1 2, r 2
Liow = 5 D (0, %a)’ + 5 Z w2

ai,ju

u
+ Z(Z W2 1) (Wt Wz — Wap 8, War ).

a,p

2n

The first three terms are O(2N) symmetric and repre-
sent the coarse-grained version of the O(2N)-invariant part
of the Hamiltonian. The last term corresponds to the O(2N)-
symmetry breaking term, i.e., to the last term in Eq. (19).
Since this quartic term contains two derivatives, its naive
dimension is six close to four dimensions and, therefore, it
is generally expected to be irrelevant at the three-dimensional
O(2N)-symmetric fixed point. This symmetry enlargement is
a general result that holds for generic 3D vector systems with
global U(N) invariance (without gauge symmetries) [18]. It
should be stressed that this symmetry enlargement is only
present in the large-scale critical behavior. Moreover, it as-
sumes that the vector fields are critical at the transition since
the LGW theory is defined in terms of coarse-grained z fields.
Therefore, no O(2N) behavior is expected at transitions where
vector correlations are short ranged (as we discuss below, this
may also occur for finite values of w).

C. Axial gauge fixing

In a lattice gauge theory, the redundancy arising from the
gauge symmetry can be eliminated by adding a gauge fixing,
which leaves gauge-invariant observables unchanged. For ex-
ample, one may consider the axial gauge, obtained by fixing
the link variable A, , along one direction,

axial gauge :  Ay3 = 1. 22)
For periodic boundary conditions, this constraint cannot be
satisfied on all sites, and a complete gauge fixing is obtained
by setting A, , = 1 on a maximal lattice tree [27,28], which
necessarily involves some links that belong to an orthogonal
plane. To avoid this problem, one can use C* boundary con-
ditions [18,29,30]. In this case, one can require condition (22)
on all sites x.

In the following, we will study the phase diagram of the
model (12) in the presence of the axial gauge fixing. Note that
also in this case, the phase diagram is independent of the sign
of w. Instead of Eq. (14), one should consider the mapping
Ix — (_1)X1+x2zxa )\x,/t - _)\x,u-

It is interesting to write the effective Hamiltonian that
is obtained by integrating the gauge fields. In the axial
gauge, repeating the same arguments presented in Sec.II B,

we obtain
Hep = =°N* ) [12x - Zernl® + 200 ReZy - 2oy
L2y
—2JN Y “ReZy -z, (23)

where, in the first sum, p takes only the values 1 and 2. We
then obtain a stacked CPV~!-O(2N) ferromagnetic system, in
which the different layers are ferromagnetically coupled by a
standard vector interaction.

III. OBSERVABLES AND FSS ANALYSES

In our numerical analysis, we consider the vector and
tensor two-point functions of the scalar field, respectively,
defined as

Gy(x,y) = Re (Zx - zy) 24)
and
GT(x’y) = (Tr Qny)’ (25)

where Q is the bilinear operator defined in Eq. (11). The
corresponding susceptibility and second-moment correlation
length are defined by the relations

Xvir =Y Gyr(x) = Gyr(0), (26)
g2 o | Gv/r(0) — Gy/r(p,,)
YT asin*(m/L)  Gyr(p,)

where 5V/T(p) = Zx ei”'va/T(x) is the Fourier transform
of Gy;r(x), and p,, = (27 /L, 0, 0). In our FSS analysis, we
consider the ratios

. @D

Ry;r = &yyr/L (28)

associated with the vector and tensor correlation lengths, and
the vector and tensor Binder parameters

(:U«%//T>
{(vyr)?’

pv =) ReZizy pr=) Tro.Q.  (29)
x.y x.y

Uy;r =

We recall that at continuous phase transitions driven by a
relevant Hamiltonian parameter r, the RG invariant quantities
associated with the critical modes are expected to scale as (we
denote a generic RG invariant quantity by R) [31]

R(L,w)~ fr(X), X =(—r)L"", (30)

where v is the critical exponent associated with the correla-
tion length. Scaling corrections decaying as L~ have been
neglected in Eq. (30), where w is the exponent associated with
the leading irrelevant operator. The function fz(X) is universal
up to a multiplicative rescaling of its argument. In particular,
U* = fy(0) and R; = fr,(0) are universal, depending only
on the boundary conditions and the aspect ratio of the lattice.
To verify universality, we will plot U versus R¢. The data are
expected to approach a universal curve, i.e.,

U=F,;R)+O0L™™), 3D
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where Fy (R) is universal and independent of any normaliza-
tion. It only depends on the boundary conditions and aspect
ratio of the lattice.

IV. PHASE DIAGRAM AND CRITICAL BEHAVIORS

Before presenting the results of the numerical simulations,
we discuss some limiting cases that allow us to determine the
phase diagram of the model. Because of the symmetry under
the change of the sign of w, we only consider the case w > 0.

A. The model for w = 0 and w = o0

For w = 0, we recover the lattice AH model with compact
U(1) gauge variables. Its phase diagram has been extensively
studied in the literature; see Refs. [26,38]. For any y > 0,
there is a disordered phase for small J and an ordered phase
for large J, where the gauge-invariant operator Q defined in
Eq. (11) condenses. For N = 2, the transition occurs at [26]
J. =0.7102(1) for y =0, J. = 0.4145(5) for y = 0.5, and
J. = 0.276(1) for y = 1. For this value of N, the transitions
are continuous and belong to the O(3) vector universality
class [31] as the transition in the CP' model corresponding
to y = 0. Accurate estimates of the O(3) critical exponents
can be found in Refs. [31-37]. In the following, we use the
estimate of the correlation-length exponent v of Ref. [32],
v =0.71164(10). For N > 2, transitions are instead of
first order [26,38].

In the limit y — oo, the plaquette operator Il ,, con-
verges to 1. In infinite volume, this implies that A, , =1
modulo gauge transformations. We thus recover the O(2N)
vector model. For N = 2, the relevant model is the O(4)
model, which has a transition at [39—41] J. = 0.233965(2).
Estimates of the O(4) critical exponents can be found in
Refs. [31,35]: for example, v = 0.750(2). The O(4) fixed
point at y = oo is unstable with respect to nonzero gauge
couplings. For finite values of y, it only gives rise to crossover
phenomena [26].

It is important to stress that in the limit y — oo, one
obtains O(2N) behavior only for gauge-invariant quantities, as
Ay, = 1 modulo gauge transformations. For instance, tensor
correlations in the AH model converge to the corresponding
O(2N) correlations in the limit. Instead, quantities that are not
gauge invariant are not related to the corresponding quantities
of the O(2N) model. For instance, vector correlations satisfy
Gy (x) = 6x ¢ for any y and are therefore not related to vector
correlations in the O(2N) model.

In a finite volume with periodic boundary conditions, the
limit y — oo is more subtle. Indeed, Polyakov loops, i.e., the
product of the gauge fields along nontrivial paths that wrap
around the lattice, do not order in the limit. This implies that
one cannot set A, , = 1 on all sites. Rather, on some boundary
links, one should set

)‘(L»nz,nz)-l =T,
Aoy Lony),2 = T2,

A ma,L),3 = T3, (32)

where 1), 75, and 73 are three space-independent bound-
ary phases that should be integrated over. We thus obtain

an O(2N) model with U(1)-fluctuating boundary conditions.
This argument generalizes a similar result that holds in sys-
tems with real fields and Z, gauge invariance [42]. In the
latter case, one obtains models with fluctuating periodic-
antiperiodic boundary conditions.

The behavior for w — oo is definitely simpler. In this
limit, A, converges to 1 trivially. Thus, for any y, both
gauge-invariant and non-gauge-invariant quantities behave as
in the standard O(2N) vector model.

B. The model for /] — oo

For J — o0, the relevant configurations are those that min-
imize the Hamiltonian term H,. This implies that

Zx = Ax,uZx+pi- (33)

By repeated application of this relation, one can verify that
the product of the gauge fields along any lattice loop, includ-
ing nontrivial loops that wrap around the lattice, is always
1. Therefore, the gauge variables can be written (in a finite
volume with periodic boundary conditions, too) as

)\x.y_ = V;xl//x+[u Wx € U(l) (34)
Substituting in Eq. (33), we obtain
ZxWx = zx+[th+ﬂ~ (35)

We can thus define a constant unit-length vector v =
Zx Wy, SO that

x = &x v. (36)

Because of Egs. (34) and (36), the only nontrivial Hamiltonian
term is H, defined in Eq. (13), which reduces to the XY
Hamiltonian,

Hy=~w ) Re i Yess. (37)

X

The XY model has a continuous transition at [43,44] w. =
0.4541652(11). Estimates of the critical exponents can be
found in Refs. [43,45,46]; for example, v = 0.6717(1). Thus,
for J = oo, we expect two phases, which can be equivalently
characterized by using correlations of the gauge field or vector
correlations. Indeed, relation (36) implies

Gy (x,y) = (ReZy - zy) = (Re Vi ¥y). (38)

C. The model for y = co

We have already discussed this limit for w = 0. In that
case, gauge-invariant quantities behave as in the O(2N)
model, although with different boundary conditions. For w #
0, as the model is not gauge invariant, we cannot get rid of the
gauge fields. However, we can still rewrite the gauge fields
as in Eq. (34)—for the moment, we ignore the subtleties of
the boundary conditions—and therefore obtain the following
effective Hamiltonian:

Hy—oo = 2IN Y Re Ve  Zxsii

X0

~w ) Re Yiein. (39)

X
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If we define new variables Z, = z, 1, the Hamiltonian H, _,
is the sum of two contributions that correspond to two inde-
pendent models: an O(2N) model with coupling J and fields
Z, and an XY model with coupling w and fields . Thus,
four different phases appear, which are separated by the crit-
ical lines w = w, and J = J,. meeting at a tetracritical point,
with O(2N) and XY decoupled critical behaviors. Correlation
functions of the bilinear fields O, and A, are only sensitive
to the O(2N) and XY critical behavior, respectively. Vector
correlations instead are sensitive to both transitions, since

Gy (x) = Re (Zo - Z:) (Yo ). (40)

In particular, the vector fields only order for w > w, and J >
J., where both Z,. and ¥, show long-range correlations.

The decoupling of the XY and O(2N) degrees of freedom
only occurs in infinite volume. For finite systems with periodic
boundary conditions, for y — oo one obtains U(1) fluctuating
boundary conditions for both fields, with the same boundary
fields t,,. In this case, a complete decoupling is not realized.

D. The model for J =0

For J =0, we obtain a pure U(l) gauge theory in the
presence of the gauge-breaking term (13). For y = oo, as
discussed in Sec. IV C, an XY transition occurs at w = we,
where the gauge field A, becomes critical. As we discuss
below, this transition disappears for finite values of y. For
large values of y, only a crossover occurs for w &~ w,.

E. The phase diagram

The limiting cases we have discussed above and the nu-
merical results that we present below allow us to conjecture
the phase diagram of the model. In Fig. 1, we sketch the
J-w phase diagram for y = 0 and N = 2. It is supported by
the numerical results and is consistent with the limiting cases
reported above. We expect three different phases. For small
values of J, there is a disordered phase, while for large J, there
are two different ordered phases. For small w and large J,
the tensor operator Q condenses, while the vector correlation
Gy, defined in Eq. (24), is short ranged. In this phase, the
model behaves as for w = 0: the gauge-symmetry breaking
is irrelevant and gauge invariance is recovered in the critical
limit. On the other hand, for large w, both vector and tensor
correlations are long ranged. In the latter phase, the ordered
behavior of tensor correlations is just a consequence of the
ordering of the vector variables z,. We do not expect y to be
relevant and, therefore, we expect the same phase diagram for
any finite y.

Note that for y = oo, the multicritical point is tetracritical
and four lines are present. In particular, there is a line where
Ay, orders, while both vector and tensor correlations are short
ranged. We have no evidence of this transition line for finite
values of y, at least for N = 2, which is the only case we
consider. Simulations for J = 0 and for small values of J, in
the parameter region where vector and tensor correlations are
both disordered, observe crossover effects but no transitions.

The three phases mentioned above are separated by three
transition lines, whose nature depends on the value of N. For
N = 2, transitions are continuous. Along the DT line, which

separates the disordered phase from the tensor-ordered and
vector-disordered phase, we expect the transition to belong to
the same universality class as the transition for w = 0. Thus,
the transitions should belong to the O(3) vector universality
class. Along the DV line, which separates the disordered
phase from the vector-ordered and tensor-ordered phase, we
expect the transition to belong to the same universality class
as the transition for w = oco. It should belong to the O(4)
vector universality class, consistent with the LGW argument
presented in Sec. II B. Finally, along the TV line that starts
at J = oo and separates the two tensor-ordered phases, the
critical behavior should be associated with the phases of the
scalar variables. Therefore, the most natural hypothesis is that
transitions belong to the O(2) or XY universality class, as it
occurs for J — oo. The three transition lines are expected to
meet at a multicritical point; see Fig. 1.

The three phases can be characterized using the
renormalization-group invariant quantities Uy,r and Ry,r. In
the disordered phase Ry = Ry = 0, while Uy and Uy take, in
the O(N) model, the values

N+1 N> +1
W=y U=y
In the vector-ordered phase, Ry = Ry = oo and Uy = Ur =
1. In the tensor-ordered phase, Ry = 0, Ry = oo, and Uy = 1.
As for Uy, note that the ordering of Q implies the ordering of
the absolute value of each component z§, and of the relative
phases between z¢ and z%. Only the global phase of the field
does not show long-range correlations. Thus, z, can be written
as Y, v, where v is a constant vector and 1/, is an uncorrelated
phase. Therefore, we expect Uy to converge to the value
appropriate for a disordered O(2) model, i.e., Uy = 2.

As we discussed in Sec. IIB, for y = 0, the model we

consider should be equivalent to a model with Hamiltonian

(41)

H =HZ+wZRe2x-zx+,;, (42)

X,

i.e., an equivalent breaking of the gauge invariance is obtained
by adding a ferromagnetic O(2N)-invariant vector interaction.
On the basis of an analysis analogous to that presented above,
we expect a phase diagram, in terms of J and @, similar to
the one presented in Fig. 1. The only difference should be
the behavior of the DV line, which should connect the mul-
ticritical point with the point J = 0, @ = w,., where w, is the
O(2N) critical point. By using the relation between the origi-
nal model and the formulation with Hamiltonian (42), one can
understand why the gauge fields A, , can only be critical at
transitions where the vector field has long-range correlations.
For y =0, zero-momentum correlations of Re A, , can be
directly related to vector energy correlations in the model with
Hamiltonian (42). Thus, gauge fields become critical only on
the DV and TV lines.

F. The phase diagram in the presence of an axial
gauge-fixing term

In the absence of the linear GSB term (13), i.e., when
w = 0, the gauge-invariant observables of the AH model
(2) remain unchanged if we add a gauge-fixing constraint,
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such as the axial gauge fixing (22). However, while gauge-
invariant quantities are identical, vector correlations vary,
although they remain short ranged. Indeed, the gauge fixing
introduces a ferromagnetic interaction, which is, however,
effectively one dimensional [this is evident in the formulation
with Hamiltonian (23)] and therefore unable to give rise to
long-range correlations. Of course, in the presence of the
linear GSB term, i.e., w # 0, the models with and without
gauge fixing are no longer equivalent and the gauge-invariant
observables vary. Since the gauge fixing gives rise to an-
other equivalent formulation of the gauge-invariant lattice AH
model, we want to understand how the effects of the linear
GSB perturbations change when considering a gauge-fixing
constraint, such as the axial gauge fixing (22). For this pur-
pose, we also discuss the phase diagram of the lattice AH
model in the presence of both the axial gauge fixing and the
linear GSB term.

The behavior for y — oo and J — oo changes. In this
limit, since no gauge degrees of freedom are present, the
gauge fields converge to 1. Therefore, only two phases are
present—a disordered phase and a vector-ordered phase—and
a single DV transition line. Given these results, it would
be possible for the system to have, for finite values of y
and J, a phase diagram without the tensor-ordered phase.
The numerical data we will show, instead, indicate that the
qualitative behavior is not changed by the gauge fixing: the
phase diagram is still the one presented in Fig. 1. How-
ever, consistency with the limiting cases gives constraints
on the large-J, large-y behavior of the TV line. If the TV
line is given by the equation w = fry(J, y), one should
have fry(J,y) — 0 for J — oo at fixed y and for y — oo
at fixed J. The gauge fixing only shrinks the size of the
tensor-ordered phase.

V. NUMERICAL RESULTS

In this section, we discuss our numerical Monte Carlo
results for N = 2 for the model with Hamiltonian (12), fo-
cusing mostly on the behavior for y = 0. They provide strong
evidence in support of the phase diagram sketched in Fig. 1
and of the theoretical analysis of Sec. IV. An accurate study
of the nature of the multicritical point deserves further inves-
tigations, which we leave for future work.

The Monte Carlo data are generated by combining
Metropolis updates of the scalar and gauge fields with micro-
canonical updates of the scalar field. The latter are obtained
by generalizing the usual reflection moves used in O(N)
models. Trial states for the Metropolis updates are gener-
ated so that approximately 30% of the proposed updates
are accepted. Each data point corresponds to a few million
updates, where a single update consists of one Metropolis
sweep and five microcanonical sweeps of the whole lattice.
Errors are estimated by using standard jackknife and blocking
procedures.

We consider cubic lattices of linear size L. In the absence
of gauge fixing, we use periodic boundary conditions along
all lattice directions. We consider C* boundary conditions
[18,29,30] in simulations in which the axial gauge—A, 3 = 1
on all sites—is used.

1.5
L o L=8 ) |
& [=16 000y
v L=24 A
Lo o =3 °0oovv’ 4 & 7
g i
| o L=8 2
1.00F A 1=J6 A@QV@@B*
L v L=24 - ]
075 © L=32 @vw@ _
T | @Vj@ ]
0.501 9@@ T
i ov® ]
0.25 PRESUCEN RN
0.00 | | |
- -1 0 1 2
N
(J-J)L

FIG. 2. Numerical data for y =0 and w = 0.3. Top: tensor
correlation-length ratio Ry vs J. Bottom: Ry vs (J — J.)L'", with
J. = 0.7097 and the O(3) critical exponent v &~ 0.7117.

A. The extended model for N = 2

We start the numerical investigation of the phase diagram
of the model with Hamiltonian (12) by studying the critical
behavior in the small-w region, where we expect transitions
to belong to the DT line. Since for J = oo the tensor-ordered
phase corresponds to w < w, &~ 0.454, we perform simula-
tions keeping w = 0.3 < w, fixed and varying J. We observe
criticality in the tensor channel for J =~ 0.71; see the upper
panel in Fig. 2. The data for Ry are fully consistent with
an O(3) critical behavior, as is evident from the lower panel
where we show a scaling plot using the O(3) critical expo-
nent v and the estimate J. = 0.7097(1) of the critical point.
Stronger evidence for O(3) behavior is provided in Fig. 3,
where data for Ur are reported as a function of Ry and
compared with the universal curve of the O(3) vector model,
obtaining excellent agreement.

FIG. 3. Numerical data for y = 0 and w = 0.3. We report Uy vs
Ry and the universal scaling curve Ur (Rr), defined in Eq. (31), for
the O(3) vector model [Eq. (A2) in the Appendix].
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FIG. 4. Numerical data for y = 0 and w = 0.3. Results for &,
(top) and Uy (bottom) as a function of J across the transition, which
show that the vector degrees of freedom are disordered in the whole
critical region.

Finally, we check that vector degrees of freedom are not
critical at the transition: for all the values of J studied, &y is
very small (see Fig. 4), and the same is true for the suscep-
tibility xy, which takes the value xy = 1.9 in the transition
region (not shown); note that xy = 1 for every J when w = 0.
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FIG. 5. Numerical data for y =0 and w = 2.25. Top: Vector
correlation-length ratio Ry vs J. Bottom: Ry vs (J — J.)L'”’, using
J. = 0.3270 and the O(4) critical exponent v = 0.750.

o L=8

A L=16 B
o L=32 1
— O(4) vector

FIG. 6. Numerical data for y = 0 and w = 2.25. Plots of Uy vs
Ry (top) and of Uy vs Ry (bottom). The numerical data are compared
with the universal scaling curves Uy (Ry ) (top) and Ur (R7 ) (bottom),
defined in Eq. (31), computed in the O(4) vector model [Egs. (A3)
and (A4) in the Appendix].

The vector Binder parameter Uy is also reported in Fig. 4. As
expected, it is approximately equal to 3/2 in the disordered
phase [see Eq. (41)] and increases towards the XY value 2
as J increases.

We next investigate the behavior for large-w values, where
we expect the DV line. Vector and tensor correlations should
simultaneously order, displaying O(4) vector critical behavior.
Again we perform simulations at fixed w, choosing w = 2.25.
In Fig. 5, we show Ry as a function of J: a transition is
identified for J = J. = 0.3270(1). The data show very good
scaling when plotted against (J — J.)L!/?, using the O(4) ex-
ponent v = 0.750. The O(4) nature of the transition is further
confirmed by the plots of Uy and Ur versus Ry and Ry,
respectively, shown in Fig. 6. The numerical data fall on top of
the scaling curves Uy (Ry) and Uy (R7) computed in the O(4)
vector model.

Finally, we performed a set of simulations to investigate
the nature of the TV line, which separates the two phases in
which the tensor degrees of freedom are ordered. As discussed
in Sec. IVE, the TV line can be identified using vector ob-
servables that should display O(2) critical behavior. Given that
the DT line ends at J. = 0.7102, w = 0, we fixed J = 1 and
increased w. As evident from Fig. 1, this choice should allow
us to observe the TV line. In Fig. 7, we report Ry versus w. A
crossing point is detected for w, ~ 0.5505. Close to it, vector
data are fully consistent with an O(2) critical behavior. This is
further confirmed by the results reported in Fig. 8. The data of
the vector Binder parameter, when plotted versus Ry, are fully
consistent with the corresponding universal curve computed
in the vector O(2) model. As a further check that the transition
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FIG. 7. Numerical data for y =0 and J =1. Top: Vector
correlation-length ratio Ry vs w. Bottom: Ry vs (w — we)L'",
using the O(2) value v = 0.6717. The critical point is located at
w. = 0.5505(3).

belongs to the TV line, in Fig. 9 we report Uy versus J: Ur
converges to 1 by increasing the size of the lattice on both
sides of the transition, confirming that tensor modes are fully
magnetized.

B. Results in the presence of an axial gauge fixing

We now discuss the extended model with Hamiltonian (12)
in the presence of the axial gauge fixing. We use C* boundary
conditions [18,29,30] so that we can require A3 = 1 on all
sites. The purpose of the simulations is that of understanding
if a tensor-ordered phase as well as a DT transition line are
present, so that gauge invariance is recovered in the critical
limit for finite small values of w. As we shall see, the answer
is positive: the gauge fixing does not change the qualitative
shape of the phase diagram.

FIG. 8. Numerical data for y = 0 andJ = 1. We report Uy vs Ry
and the universal scaling curve Uy (Ry ), defined in Eq. (31), for the
O(2) vector model [Eq. (A1) in the Appendix].
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FIG. 9. Numerical data for y = 0 and J = 1. Estimates of Uy vs
w across the transition: the tensor degrees of freedom are ordered on
both sides of the transition [w. = 0.5505(3)].

As we have discussed in Sec. IVF, even if the qualitative
phase diagram is unchanged, the DT phase should shrink and
the TV line should get closer to the w = 0 axis. For this rea-
son, we decided to perform simulations at fixed w = 0.1. The
vector and tensor correlation lengths are reported in Fig. 10
as a function of J. The data for Ry have a crossing point at
J. = 0.706(1), which is very close to the critical point for
w =0, J. =0.7102(1) [26]. The tensor degrees of freedom
are critical at the transition. The vector ones are instead disor-
dered and &y is of the order of 1 across the transition. Thus, the
data confirm the existence of a DT line also in the presence of
the axial gauge fixing. As an additional check, in Fig. 11, we
plot Uy against Ry. The data are compared with the results for
the gauge-invariant model (w = 0) with the same C* bound-
ary conditions (we consider results with L = 32, which should
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FIG. 10. Numerical data for y =0 and w = 0.1, in the axial
gauge with C* boundary conditions. Behavior of Ry (top) and &,
(bottom) across the transition [J. = 0.706(1)]. While a crossing
point for Ry is clearly seen, vector degrees of freedom are disordered
for all values of J.
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FIG. 11. Numerical data for y =0 and w = 0.1, in the axial
gauge with C* boundary conditions. The estimates of Uy vs Ry
obtained for w = 0.1 (results for L = 8, 16, 24) are compared with
results for the gauge-invariant model with w = 0 (results for L =
32). The continuous line is a spline interpolation of the w = 0 data.
The consistency of the data signals that the two transitions belong to
the same O(3) universality class.

provide a good approximation of the asymptotic curve). The
agreement is excellent, confirming that the transition belongs
indeed to the DT line, where O(3) behavior is expected. As a
side remark, note that the O(3) curves reported in Figs. 11
and 3 are different since the scaling curve depends on the
boundary conditions.

We also performed a simulation with w = 0.2. In this
case, we observe two very close transitions, which are nat-
urally identified with transitions on the DT and TV line.
They provide an approximate estimate of the multicritical
point, wye ~ 0.2,0.69 < Jye < 0.70. Note that the size of the
tensor-ordered phase is, not surprisingly, significantly smaller
than in the absence of gauge fixing. Indeed, in the latter case,
Wie 2 We(J = 1) = 0.55.

C. Finite-y results for the pure gauge model

At y = oo, the phase diagram is characterized by four
transition lines; see Sec. IV C. In addition to the lines reported
in Fig. 1, there is a line where A, , is critical and which sep-
arates two phases with no tensor or vector order. As we have
discussed in Sec. IV E, such a line is not expected to occur at
y = 0. We wish now to provide evidence that such a line does
not exist for any finite y. As this line starts on the J = 0 line,
we consider the pure gauge model with Hamiltonian

H = H, (L) + Hy(A). (43)

For y = oo, there is an XY transition for w = w, xy ~ 0.454.
We wish now to verify whether there is a transition for large,
but finite values of y. If it were present, it would imply the
presence of a fourth transition line in the phase diagram.
For this purpose, we have studied the model for y = 2.5.
For this value of y, the gauge fields are significantly ordered
and, indeed, (Il ,,) ~ 0.93 in the relevant region w ~ wc xy.
To detect the transition, we have considered cumulants of
the energy,

1
Cr. = 5 (Hy = (Hp))?),
1
M = s (Hy = (Hp))*). (44)
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FIG. 12. Numerical data for y =2.5 and J =0 (pure gauge
model). Top panel: specific heat C,. Bottom panel: third
moment M3 ;.

At an XY transition, the specific heat has a nondiverging max-
imum, while the third cumulant should have a positive and
a negative peak [47], both diverging as L3/"~3 = LU+®/V ~
L'#7 InFig. 12, we show the two quantities as a function of w.
The specific heat has a maximum at w = 0.476, which might,
in principle, signal an XY transition. However, M3 ; is not
diverging. It increases significantly as L changes from 16 to
24, but its maxima decrease as L varies from 24 to 32. We are
evidently observing a crossover behavior due to the transition
present for infinite y. Simulations do not provide evidence of
finite-y transitions and, therefore, of a fourth transition line in
the phase diagram.

VI. CONCLUSIONS

In this work, we discuss the role of GSB perturbations in
lattice gauge models. In Ref. [18], we studied the AH model
with noncompact gauge fields, analyzing the role of GSB
perturbations at transitions associated with a charged FP, i.e.,
where both scalar-matter and gauge correlations are critical.
In that case, we showed that there is a strong sensitivity of
the system to GSB perturbations, such as the photon mass
in the AH field theory. In this work, instead, we discuss
the behavior at transitions where gauge correlations are not
critical and the gauge symmetry has only the role of reducing
the scalar degrees of freedom that display critical behavior. A
paradigmatic model in which this type of behavior is observed
is the 3D lattice CP! model or, more generally, the lattice AH
model with two-component complex scalar matter and U(1)
compact gauge fields. We find that in this case, the critical
gauge-invariant modes are robust against GSB perturbations:
for small values of the GSB coupling, the critical behavior
(continuum limit) is the same as in the gauge-invariant model.
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Note that even when gauge symmetry is explicitly broken,
the existence of a gauge-symmetric limit is very useful to
understand the physics of the model. If, indeed, one directly
studies the gauge-broken model, a detailed analysis of the
nonperturbative dynamics of the model would be required to
identify the nature of the critical degrees of freedom, which
instead emerges naturally in the gauge-invariant limit. Look-
ing for gauge-invariant limits, or deformations, might thus be
a useful general strategy to pursue to understand the origin
of “unusual” orderings and transitions, such as the DT and
the TV lines in the present model or in the models with
Hamiltonians (18) and (23).

In our study, we consider the N = 2 lattice AH model with
Hamiltonian (2). The model has two phases [26] separated
by a continuous transition line driven by the condensation
of the gauge-invariant operator Q defined in Eq. (11). The
nature of the transition is independent of the gauge coupling
and is the same as that in the CP! model, which, in turn, is
the same as that in the O(3) vector model. We add to the
Hamiltonian (2) the GSB term H, = —w ), Re Ay ,, where
the parameter w quantifies the strength of the perturbation.
A detailed numerical MC study, supported by the analysis of
some limiting cases, allows us to determine the phase diagram
of the model; see Fig. 1. Its main features are summarized
as follows.

(i) The parameter w is an irrelevant RG perturbation of
the gauge-invariant critical behavior (continuum limit). There-
fore, even in the presence of a finite small GSB perturbation,
the critical behavior is the same as that of the gauge-invariant
CP! universality class. The gauge-breaking effects of the lin-
ear perturbation disappear in the large-distance behavior.

(ii) As sketched in Fig. 1, the phase diagram of the model
with the Hamiltonian given by Eq. (12) presents three phases
for y = 0: a disordered phase for small J and two ordered
phases for large J. There is a tensor-ordered phase for small
values of w, in which the operator Q defined in Eq. (11)
condenses, while the vector correlation Gy defined in Eq. (24)
is short ranged. For sufficiently large values of w, the or-
dered phase is characterized by the condensation of the vector
matter field.

The three phases are separated by three different transition
lines that presumably meet at a multicritical point. It would be
interesting to understand its nature, but we have not pursued
this point further.

Most of our results are obtained for the case y =0, i.e.,
for the CP' model, but we expect the same phase diagram
also for any finite y, with strong crossover effects for large
values of y.

(iii) Transitions along the DT line, which separates the
disordered phase from the tensor-ordered phase, belong to the
O(3) vector universality class, as the transition for w = 0.

(iv) Transitions along the DV line, which separates the
disordered phase from the vector-ordered phase, belong to
the O(4) vector universality class [18]. Note the effec-
tive symmetry enlargement at the transition—from U(2) to
O(4)—that was predicted using RG arguments based on the
corresponding LGW theory [18]. Of course, the symmetry
enlargement is limited to the critical regime. Outside the crit-
ical region, one can only observe the global U(2) symmetry
of the model.

(v) Transitions along the TV line, which separates the
tensor- and the vector-ordered phases, are associated with the
condensation of the global phase of the scalar field, which
is disordered in the tensor-ordered phase and ordered in the
vector-ordered phase. Continuous transitions along the TV
line belong to the O(2) or XY universality class. Note that
this mechanism realizes an unusual phenomenon: two ordered
phases are separated by a continuous transition line.

(vi) We have also studied the model in the presence of a
gauge fixing. We consider the axial gauge fixing defined in
Eq. (22). We find the phase diagram to be qualitatively similar
to that found in the absence of a gauge fixing; see Fig. 1. In
particular, for sufficiently small w, the critical behavior is the
same as in the gauge-invariant theory.

We have not analyzed the behavior for N > 2. Also, in this
case, we expect a phase diagram with three different phases,
as for N = 2. However, the nature of the transition lines might
be different. Since the transitions in the gauge-invariant lattice
CP"~! models are of first order for any N > 2, the transitions
along the DT line should be of first order. Transitions along
the TV line should still belong to the XY universality class,
if they are continuous, while transitions along the DV line
are expected to belong to the O(2N) vector universality class,
with the effective enlargement of the symmetry of the critical
modes from U(N) to O(2N).

There are several interesting extensions of our work. One
might consider GSB terms involving higher powers of the
link variables, for instance, Hy, = —w ) . Re Af ., which
leave a residual discrete Z, gauge symmetry. In this case, we
may have a more complex phase diagram where the residual
gauge symmetry may play a role. One may also consider the
same linear perturbation in the AH model with higher-charge
compact matter fields [48], which has a more complex phase
diagram than the AH lattice model we consider here.

Finally, we mention that several non-Abelian gauge models
with multiflavor scalar matter [49-51] have transitions where
gauge correlations do not become critical. Gauge symmetry
is only relevant for defining the critical modes and therefore
the symmetry-breaking pattern associated with the transition,
as in the lattice AH model we have considered here. For
this class of non-Abelian models, one might investigate the
role of similar GSB terms, for instance, of a perturbation
Hy=-w) . . Re Tr Uy, where Uy, are the gauge variables
associated with the lattice links [1], to understand whether
a gauge-invariant continuum limit is still obtained for small
values of w.

ACKNOWLEDGMENTS

Numerical simulations have been performed on the CSN4
cluster of the Scientific Computing Center at INFN-PISA.

APPENDIX: UNIVERSAL SCALING CURVE IN O(N)
VECTOR MODELS

In this Appendix, we collect the expressions of the scaling
curves Fy (R), defined in Eq. (31), for periodic boundary con-
ditions and cubic lattices L*, computed in the O(2), O(3), and
O(4) vector models. We report here some simple parametriza-
tions. The error on these expressions should be less than 0.5%.

014140-11



BONATI, PELISSETTO, AND VICARI

PHYSICAL REVIEW E 104, 014140 (2021)

On the TV line, the vector data have been compared with
analogous vector data computed in the XY model. The XY
curve Uy = Fy(Ry) is given by
Fy(x) = 2 4+ 27.508562x> — 216.397337x> + 360.327374x*

—307.205086x° + 133.83076x° — 23.718357x"
— (1 — e ™)(4.038703 — 5.785571x)

+22.958929x%(1 — e~ %), (A1)

valid for x < 1.1.

Along the DT line, the scaling curve Ur = Fy(Rr) in the
tensor sector is the same as the scaling curve in the O(3)
model for vector quantities (i.e., computed using correlations

of m* =3 s¢, where s¢ is a three-dimensional unit spin):

5
Fy(x) = 3 47.83889x> + 58.48967x° — 67.02068x*

+38.408855x° — 8.8557348x°
+x(3.0263535 + 23.139470x)(1 — ¢~ 15%), (A2)

valid for x < 1.0.

Finally, the scaling curves Uy = Fy (Ry) and Uy = Fy (Ry)
along the DV line can be computed in the O(4) model. The
vector curve Uy = Fy (Ry) corresponds to the vector curve in
the O(4) model, which can be parametrized as

3
Fy(x) = 3 48.804243x> 4 64.371024x>

—85.177814x* + 62.735307x°
—24.558342x% 4+ 3.998991x’
+x(3.039763 + 23.904433x)(1 — e~ %),  (A3)

valid for x < 1.0. The tensor curve Uy = Fy (Ry) for the ten-
sor operator Q can also be related to an O(4) scaling curve.
The relation is discussed in Appendix B of Ref. [26]. We
parametrize the O(4) results as

5
Fy(x) = 3 2077.568536x* + 6198.556568x

— 15494.694968x* + 22321.613611x°
— 17453.201432x° + 5754.439605x"
+x(128.626365 + 713.495184x)(1 — ¢~ '), (A4)

valid for x < 0.6.
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