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Description of a stochastic system by a nonadapted stochastic process
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An approach for the description of stochastic systems is derived. Some of the variables in the system are
studied forward in time, others backward in time. The approach is based on a perturbation expansion in the
strength of the coupling between forward and backward variables, and it is well suited for situations in which
initial and final conditions are imposed on different components of the system, and the coupling between those
components is weak. The form of the stochastic equations in our approach is determined by requiring that they
generate the same statistics obtained in a forward description of the dynamics. Numerical tests are carried out on
a few simple two-degrees-of-freedom systems. The merit and the difficulties of the approach are discussed and
compared to more traditional strategies based on transition path sampling and simple shooting algorithms.
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I. INTRODUCTION

Stochastic systems are described by equations whose form
depends on how the state of the system is measured, meaning
whether, in an experiment, knowledge of the past state of the
system or some different condition is assumed. The simplest
example is provided by the Langevin dynamics,

Ė + �Edt = ξ, 〈ξ (t )ξ (0)〉 = 2Eδ(t ), (1)

in which the sign of the relaxation coefficient � depends on
whether we are interested in determining the future evolu-
tion or, as in backward induction [1], the previous history of
the system. In the two cases, the solution of the differential
equation can be expressed as an integral over past (future)
values of the noise ξ , corresponding to causal (anticausal)
response of the system to external forcing [2]. In mathematical
language, one says that the stochastic process is adapted to the
forward (backward) filtration induced by the Wiener process
associated with ξ [3]. The situation differs from the one in
deterministic (Newtonian) mechanics, in which the form of
the equations does not depend on the experiment one wishes
to carry out on the system.

A forward description allows us in a natural way to take
into account initial conditions. In the same way, a backward
description allows us more easily to take into account final
conditions. It is possible, however, to imagine more general—
nonadapted—descriptions of the stochastic dynamics. In fact,
there are infinite such descriptions; in the case of Eq. (1), for
instance, the same dynamics could be generated by any equa-
tions in the form, in frequency space, GωEω = ξω, 〈ξωξω′ 〉 =
4πEδ(ω + ω′), where |Gω|2 = �2 + ω2.

It has been suggested that nonadapted stochastic processes
could be used to describe a stochastic dynamics conditioned
at multiple times [4], and new forms of stochastic calculus
have been introduced to deal with this type of problem [5].
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The simplest example of a conditioned stochastic system is the
Brownian bridge, i.e., a Brownian motion in which the initial
and final positions of the particle are supposedly given. The
problem was initially studied by Schrödinger in the context of
a possible interpretation of quantum mechanics as a statistical
theory with boundary conditions in the past and the future [6].
The concept was later extended to more general systems, typ-
ically described by stochastic differential equations (SDEs),
with applications ranging from mathematical finance [7], to
ecology [8], to optimization theory [9]. Such extensions of the
concept of a Brownian bridge are sometimes referred to as a
stochastic bridge [10].

The mathematical theory for the solution of conditioned
SDEs is well established [11]. In practice, however, such
problems require a sampling procedure, which can be numer-
ically demanding if the number of variables is large, or if the
final condition is a low probability state for the system. It is
still possible, through a Doob transform [12,13], to write a
forward SDE with a modified drift that steers trajectories to
the imposed final conditions, but the new drift depends on
the same probability of the state of the system conditioned
to its final state that one aims to determine. To overcome
such difficulties, various methods have been devised, either
based on some form of importance sampling [14–16], or on
the adoption of transition path sampling algorithms [17,18]

In this paper, we focus on a particular version of an “incom-
plete” stochastic bridge, in which initial and final conditions
are imposed separately on different subsets of the variable
describing the system. In a large deviation context [19,20],
e.g., one may be interested in studying the development of
a large fluctuation in a particular region of a system, con-
ditioned to the occurrence of some other event, say, the
decay of another large fluctuation elsewhere in the system.
Situations of physical interest include protein folding [21],
chemical reactions [22,23], as well as extreme events in the
atmosphere [24]. More specifically, one may wish, e.g., to
have an indicator of the occurrence of a future rare event in
a component of a system (say, a heat wave in a particular
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region of the planet) from the modification of the dynamics
in another portion of the system (the atmospheric circulation
in another part of the globe). The matter has some intriguing
aspects, as the interaction of portions of a system where large
fluctuations are developing or decaying can be seen as the in-
teraction between portions of the system with opposite (local)
arrows of time: positive where the fluctuation is decaying,
negative where the fluctuation is developing. Similar issues
were studied in a cosmological context in [25].

Incomplete stochastic bridges provide an example of
systems for which a nonadapted description can cure most dif-
ficulties generated by low probability final conditions. What
we want to explore is the possibility of a description, which,
in the limit of vanishing interaction between components of
the system with opposite conditioning, becomes forward for
the part of the system conditioned in the past and backward
for the part conditioned in the future. For finite interaction,
the description of the two components will not be purely
forward or backward, and the system response to external
stimuli will not have well-defined causality properties; what
is lost because of the lack of a physical causal framework,
however, is gained with low probability final conditions being
treated perturbatively around a backward description of the
dynamics, which by construction does not require sampling.
We shall speak in this case of a mixed backward-forward
description of the dynamics (concisely, a mixed description),
to be opposed to the standard forward description afforded by
Eq. (1), and to its time-reversed backward version.

We are going to limit our analysis to reversible systems.
The simplest example is that of two bodies exchanging heat
with one another and with a thermostat, a process that in re-
cent years has attracted the attention of researchers interested
in fluctuation theorems [26,27], and calorimetric experiments
in mesoscopic systems [28,29].

It is interesting to note that in a mixed description, the two
bodies will see the heat flowing, relative to their own time,
from one to the other with an identical sign, i.e., simulta-
neously in or out from both. Such a condition could not be
accommodated by a change of sign of a relaxation coefficient,
as in the shift from Eq. (1) to its time-reversed version; a non-
trivial redefinition of the concept of heat exchange is required.

The paper is organized as follows. In Sec. II, the mixed
backward-forward approach is introduced by considering an
infinite time horizon. Section III examines the problem of
boundary conditions. In Sec. IV, the approach is applied to
the case of linear dynamics. In Sec. V, the possible applica-
tion of the technique to Monte Carlo evaluation of statistical
quantities is discussed, and some applications and tests are
presented. Section VI is devoted to the conclusions. Technical
details are discussed in Appendixes A–C.

II. MIXED BACKWARD-FORWARD APPROACH

We consider the simplest possible example of a system
with two degrees of freedom, E1,2. weakly coupled through
correlation in the noise and an interaction component in the
drift. The dynamics is described in the forward picture by the
Itô SDE

Ė j + Fj (E) = ξ j, 〈ξ j (t )ξk (0)〉 = 2E� jkδ(t ), (2)

where

Fj (E) = F (0)
j (Ej ) + gF (1)

j (E), (3)

and

�11 = �22 = 1, �12 = �21 = −g. (4)

We assume a reversible dynamics, which means that
XjkFk ≡ (�−1) jkFk must be a gradient [30]. This implies(

X1 j∂E2 − X2 j∂E1

)
F (1)

j = 0. (5)

From Eq. (4) we find

X11 = X22 = 1 + g

1 + 2g
, X12 = X21 = g

1 + 2g
, (6)

and by combining with Eq. (5),

F (1)
1 (E) = −F (1)

2 (E) = F (0)
1 (E1) − F (0)

2 (E2) + H (E1 − E2).

(7)

We seek a mixed backward-forward representation of the
dynamics in Eqs. (2)–(7) as a perturbation expansion in g,
which we will content ourselves with carrying out up to first
order. The stochastic equations in the mixed picture can be
written in the form

Ė j + Mj = ξ j, 〈ξ j (t )ξk (0)〉 = 2E� jkδ(t ),

Mj = M (0)
j + gM (1)

j + · · · , (8)

where to lowest order we impose

M (0)
1 = F (0)

1 (E1), M (0)
2 = −F (0)

2 (E2). (9)

Note that we have assumed identical statistics for the noise in
the two pictures, a condition that is interpreted as a require-
ment of invariance for changes of stochastic description at the
scale of the noise correlation time.

To determine the interaction terms M (1)

j , we require iden-
tity of the statistics in the two representations, ρF [E] =
ρM[E], where ρF [E] and ρM[E] are the functional probability
density functions (PDFs) for the trajectories in the two pic-
tures [31–33]. Adoption of the Itô prescription in the forward
description guarantees that we do not have to care about
Jacobian factors in the PDF:

ρF [E] = N exp

[
− 1

2E

∫
dt LF

]
,

LF = 1

2
Xjk (Ė j + Fj )(Ėk + Fk ). (10)

Since in this work we are not going to discuss how the system
response to external forcing changes from one description
to the other, we are not going to adopt a two-field repre-
sentation for ρ, such as in the standard Martin-Siggia-Rose
approach [34].

To determine the PDF in the mixed picture, we need to se-
lect a prescription on the stochastic differentials. We interpret
Eq. (8) at the discrete scale as


+E1(n) + M1(n)
t = 
+W1(n), (11)


−E2(n) − M2(n)
t = 
−W2(n), (12)
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where 
± indicate forward and backward time increments


± f (n) = f (n ± 1) − f (n),

and 
±W1,2 are Wiener increments, on which we impose cross
correlations at lagged times:

〈(
+W1)2〉 = E�11
t, 〈(
−W2)2〉 = E�22
t,

〈
+W1(n)
−W2(n + 1)〉 = −E�12
t . (13)

The adopted prescription reduces, in the decoupled limit g →
0, to an Itô prescription for E1 and a final point prescription
for E2, the last one equivalent to an Itô prescription in the
backward time tB = T − t (T arbitrary). This tells us that for
g → 0, the PDF ρM[E] does not contain a Jacobian factor. For
finite g, however, 
E1(n) and 
E2(n) receive contributions
from terms E2(n + 1) and E1(n − 1), anticipating with respect
to t in one case, with respect to tB in the other. A nontriv-
ial Jacobian contribution J[E] = | det[∂
±Wj (n)/∂Ek (m)]| is
therefore expected. We derive the form of this contribution in
Appendix A. The result of the calculation is given in Eq. (A8),
and it can be expressed in continuous time as follows:

J = exp

[
− g

2E

∫
dt LJ

]
, (14)

LJ (t ) = −2E
[∫ +∞

t
dt ′ δM (1)

1 (t ′)
δE1(t )

−
∫ t

−∞
dt ′ δM (1)

2 (t ′)
δE2(t )

]
+ O(g). (15)

The procedure to obtain ρM from the PDF for the noise history
is identical to that in the forward case, and the result is

ρM[E] = N exp

[
− 1

2E

∫
dt (LM + gLJ )

]
,

LM = 1

2
Xjk (Ė j + Mj )(Ėk + Mk ), (16)

where Ė1 + Mi ≡ 
+E1(n)/
t + M1(n) and Ė2 + M2 ≡

+E2(n)/
t + M2(n + 1).

The identity of the statistics in the forward and mixed
pictures is established through

LF = LM + gLJ . (17)

Substitution of Eqs. (10) and Eqs. (15) and (16) into Eq. (17)
yields an equation involving time derivatives Ė j . To deal with
such terms, we recall the stochastic integration by parts for-
mula,

Xi j
dVjE j

dt
= Xjk[ĖkVk + EkV̇j] + E∂EjVj, (18)

which is a consequence of Itô’s lemma [3].
Let us consider first the O(g0) part of Eq. (17). To use

Eq. (18), we must convert all terms in Eq. (17) to a common
Itô prescription. We have from Eqs. (6), (9), (10), and (16),

L(0)
M − L(0)

F = [
F (0)

2 (n) + F (0)
2 (n + 1)

]
−E2(n + 1)


t

= −2Ė2F (0)
2 (E2) + E∂E2 F (0)

2 (E2),

where the second line in the equation is understood in the
Itô sense, and the last term is a Zakai-Wong correction [3].

Exploiting Eq. (18), with V = (0, F (0)

2 ) and X (0)

22 = 1, yields
the expression

L(0)
M − L(0)

F = −dF (0)
2 E2

dt
, (19)

which can then be eliminated from Eq. (17), at the price of a
redefinition of the probability of states at t = ±∞.

We repeat the operations leading to Eq. (19), with the
O(g) remnant of Eq. (17). After substitution into Eq. (17) of
Eqs. (6), (7), (10), and (16), and after some straightforward
algebra, we reach the result[

E1(n)
d

dt
− F (0)

1

]
M̂1(n) +

[
E2(n + 1)

d

dt
+ F (0)

2

]
M̂2(n)

= 2
(
F (0)

1 + H
)
F (0)

2 + LP + LI + LJ , (20)

where the discrete scale shorthand df (n)/dt ≡ ḟ (n) =

+ f (n)/
t continues to be used, we have defined

M̂1(n) = M (1)
1 (n) − F (0)

1 (n) − F (0)
2 (n + 1) − H (n), (21)

M̂2(n + 1) = M (1)
1 (n + 1) + F (0)

1 (n) + F (0)
2 (n + 1) + H (n),

(22)

together with

LP(n) = −2Ė1(n)
[
F (0)

2 (n) + F (0)
2 (n + 1)

]
+ 2Ė1(n)

[
F (0)

2 (n) − F (0)
2 (n + 1)

]
(23)

and

LI (n) = −E∂Ej (n)M̂ j (n), (24)

and we recall H = H (E1 − E2) is the part of the interaction
explicitly dependent on the difference E1 − E2 [see Eq. (7)].
The term LP in Eq. (20) arises from the discrepancies in
the prescriptions in Eqs. (11) and (12); the term LI in the
same equation is the Itô correction arising from application
of Eq. (18) to the operation of shifting time derivatives in the
terms Ė1,2M̂1,2 in L(1)

F − L(1)

M . We verify in Appendix B that LP,
LI , and LJ can all be disregarded. Back to continuous time,
Eq. (20) becomes then equivalent to the system of differential
equations, (

d

dt
− F (0)

1

E1

)
M̂1 = F (0)

1 F (0)
2

E1
+ E2Q, (25)

(
d

dt
+ F (0)

2

E2

)
M̂2 = F (0)

2

E2

(
F (0)

1 + 2H
)− E1Q, (26)

where Q = Q(E, t ) is arbitrary. We can solve Eqs. (26)
and (26) explicitly. By introducing

R1,2(t ) = F (0)
1,2 (E1,2(t ))/E1,2(t ), (27)

S1(t ) = R1(t )F (0)
2 (E2(t )) + E2(t )Q(t ), (28)

S2(t ) = R2(t )
{
F (0)

1 (E1(t ))+ 2H[E1(t )− E2(t )]
}− E1(t )Q(t ),

(29)
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we can write

M̂1(t ) = −
∫ +∞

t
dτ S1(t ) exp

[
−
∫ τ

t
dτ ′ R1(τ ′)

]
, (30)

M̂2(t ) =
∫ t

−∞
dτ S2(t ) exp

[
−
∫ t

τ

dτ ′ R2(τ ′)
]
. (31)

We see that different choices of the arbitrary function Q(E, t )
allow us to shift the weight of the nonlocal contribution to the
dynamics between M̂1 and M̂2.

We summarize the main results of the section. The stochas-
tic system is described in the mixed picture by a system of
stochastic equations [Eqs. (8) and (9)], involving new vari-
ables M̂ j [Eqs. (21) and (22) and Eqs. (25) and (26)] that
are anticipating relative to the proper time of the respective
component: the forward time t for j = 1, the backward time
tB = T − t for j = 2. The new description thus becomes non-
local in time, a situation that becomes manifest if the new
variables are expressed as functionals of the old ones through
Eqs. (30) and (31), thus turning Eq. (8) into a system of
integrodifferential stochastic equations.

The upshot is that a naive perturbative approach based
on an iterative solution of purely forward and backward
equations in separate portions of the system, using at each
iteration the values of the variables outside that portion, ob-
tained in the previous iteration would not work; modified
equations must be used, whose form at O(g) is given in
Eqs. (8), (9), (21), (22), (25), and (26).

III. TREATMENT OF BOUNDARY CONDITIONS

We have derived the stochastic equations in the mixed
picture, Eqs. (8), (9), (21), (22), (25), and (26), in an infinite
time domain. For the same reason that a forward SDE in the
form of Eq. (1) cannot directly be utilized to take into account
final conditions, the equations derived in the previous section
cannot be used, in their current form, for the treatment of
boundary condition problems.

We consider the following boundary conditions:

B ≡ {B1,B2} = {
E1(ti ) = Ei

1, E2(t f ) = E f
2

}
, (32)

which provide us with the simplest example of an incomplete
stochastic bridge.

A natural extension of the approach in Sec. II would be
to solve perturbatively Eq. (8), E = E(0) + gE(1) + · · · , and to
enforce Eq. (32) order by order in the expansion. Unfortu-
nately, while it is straightforward to impose Eq. (32) on E(0),
we have no control on E(1); in fact, E (1)

1 (ti ) and E (1)

2 (t f ) are
determined by the behavior of Ē outside [ti, t f ], and their value
is in general nonzero. The evaluation of statistical quantities
must therefore include correction terms accounting for the fact
that the boundary conditions in Eq. (32) can only be enforced
to O(g0).

The algebra is somewhat lighter if instead of expanding in
g, we decompose E in contributions from the noise and from
the O(g) part of the drift:

E � Ē + gẼ + O(g2), (33)

where Ē and Ẽ obey

˙̄Ej + M (0)
j = ξ j (34)

and

˙̃Ej + Ẽk∂Ēk
M (0)

j + M (1)
j = 0. (35)

Note that since Ē1 and Ē2 only depend on the past (future)
history of the noise, the following condition of statistical
independence is going to hold:

ρM (Ē1(t )Ē2(t ′)) = ρM (Ē1)ρM (Ē2), t ′ > t . (36)

The condition does not hold in the forward picture, therefore
ρM[Ē] 	= ρF [Ē]. Since all the following calculations are car-
ried out in the mixed picture, however, for lighter notation we
shall drop subscript M on all averages and PDFs involving Ē.

The statistics of the conditioned problem is contained in
the generating functional

Z[J] =
〈
exp

[
i
∫

dt J(t ) · E(t )

]∣∣∣∣B
〉

= Q
〈
δB exp

[
i
∫

dt J(t ) · E(t )

]〉
, (37)

where

Q−1 = 〈δB〉 ≡ ρ(B), (38)

and δB is the Dirac delta enforcing the boundary condition B.
Let us indicate

B̄ ≡ {B̄1, B̄2} = {
Ē1(ti) = Ei

1, Ē2(t f ) = E f
2

}
, (39)

and decompose Z as in Eq. (33),

Z[J] = Z̄[J] + gZ̃[J] + O(g2), (40)

where

Z̄[J] =
〈

exp
[
i
∫

dt J(t ) · E(t )
]∣∣∣B̄〉

= Q̄
〈
δB̄ exp

[
i
∫

dt J(t ) · E(t )
]〉

, (41)

Q̄−1 = 〈δB̄〉 ≡ ρ(B̄), (42)

and

gZ̃[J] =
(Q
Q̄

− 1

)〈
exp

[
i
∫

dt J(t ) · Ē(t )

]∣∣∣∣B̄
〉

+ Q̄
〈
(δB − δB̄ ) exp

[
i
∫

dt J(t ) · Ē(t )

]〉
. (43)

Thus, Z̄[J] contains the statistics that would be obtained if the
boundary conditions were enforced on Ē instead of E, and
Z̃[J] contains the correction.

The correction term Z̃[J] is evaluated in Appendix C.
Let us introduce the notation 〈Ẽ exp(i

∫
J · E)|B̄〉c ≡

〈Ẽ exp(i
∫

J · E)|B̄〉 − 〈Ẽ|B̄〉〈exp(i
∫

J · E)|B̄〉, and indicate

∇i f = (
∂Ei

1
, ∂E f

2

)
, Ẽi f = (Ẽ1(ti), Ẽ2(t f )),

F(0)
i f = (

F (0)
1

(
Ei

1

)
, F (0)

2

(
E f

2

))
. (44)
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A calculation detailed in Appendix C allows us then to eval-
uate the correction term Z̃[J] as follows:

Z̃[J] =
[

F(0)
i f

E − ∇i f

]
·
〈
Ẽi f exp

[
i
∫

dt J(t ) · Ē(t )

]∣∣∣∣B̄
〉c

−〈Ẽi f |B̄〉 · ∇i f

〈
exp

[
i
∫

dt J(t ) · Ē(t )

]∣∣∣∣B̄
〉
. (45)

Substituting Eqs. (41) and (45) into Eq. (40) produces the final
expression

Z[J] = [1 − g〈Ẽi f |B̄〉 · ∇i f ]

〈
exp

[
i
∫

dt J(t ) · E(t )

]∣∣∣∣B̄
〉

+ g

[
F(0)

i f

E − ∇i f

]
·
〈
Ẽi f exp

[
i
∫

dt J(t ) · Ē(t )

]∣∣∣∣B̄
〉c

+ O(g2). (46)

From Eq. (46) we can obtain expressions for the condi-
tional averages 〈Ē1,2|B̄〉. We can exploit Eq. (36) to write
〈Ē1,2|B̄〉 = 〈Ē1,2|B̄1,2〉. We introduce the notation for the fluc-
tuations

e(t ) = E(t ) − 〈E(t )|B̄〉,
with similar definitions holding for ē and ẽi f , and we find

〈E1(t )|B〉 = [
1 − g〈Ẽ1(ti )|B̄〉∂Ei

1

]〈Ē1(t )|B̄1〉

+ g

[
F(0)

i f

E − ∇i f

]
· 〈ẽi f ē1(t )|B̄〉

+ g〈Ẽ1(t )|B̄〉 + O(g2), (47)

〈E2(t )|B〉 = [
1 − g〈Ẽ2(t f )|B̄〉∂E f

2

]〈Ē2(t )|B̄2〉

+ g

[
F(0)

i f

E − ∇i f

]
· 〈ẽi f ē2(t )|B̄〉

+ g〈Ẽ2(t )|B̄〉 + O(g2). (48)

The presence of terms ∝E−1〈ẽi f ē j (t )|B̄〉 in Eqs. (47)
and (48) tells us that fluctuations remain important also in a
large deviation regime E → 0. It is worth pointing out that
these terms produce the dominant contribution to the error in
the numerical evaluation of 〈E|B〉. Indeed, the error in sample
averages 〈Ē|B̄〉N and 〈Ẽ|B̄〉N scales with (E/N )1/2, where N is
the sample size, while that in E−1〈ẽē j |B̄〉N scales with N−1/2.

IV. APPLICATION TO A LINEAR SYSTEM

Consider the following system of SDEs:

Ė1 + E1 + g(E1 − E2) = ξ1, (49)

Ė2 + E2 + g(E2 − E1) = ξ2, (50)

with noise statistics obeying Eqs. (2) and (4). The equations,
for g > 0, could describe in the forward picture a pair of
identical bodies that exchange heat with a thermostat and
(weakly) with one another.

The equations describing the system dynamics in the mixed
picture are obtained from Eqs. (8), (9), (21), (22), (30),

and (31). We note that H = 0. In Eqs. (25) and (26) we
set Q = 0 [the most natural choice given the symmetry of
Eqs. (49) and (50)] and get

Ė1 + E1 + g(M̂1 + E1 + E2) + · · · = ξ1, (51)

Ė2 − E1 + g(M̂2 − E1 − E2) + · · · = ξ2, (52)

where

M̂1(t ) = −
∫ +∞

t
dτ E2(τ )et−τ , (53)

M̂2(t ) =
∫ t

−∞
dτ E1(τ )eτ−t . (54)

As expected, the heat transfer between the two bodies loses in
the mixed picture its original character of a relaxation process.

It is possible to verify that the statistics of E in the two
pictures coincide—as requested by the theory—by showing
that the expression of the correlation functions 〈Ej (t )Ek (t ′)〉
obtained in the two cases is identical. The calculation is
straightforward and is not carried out here. Instead, we direct
our attention to the dynamics of the conditioned system, and
we verify that the forward and the mixed backward-forward
approach lead to identical expressions for the average trajec-
tories 〈E(t )|B〉.

Let us consider first the forward approach. Thanks to
linearity, the average trajectories can be expressed as a super-
position 〈Ej (t )|B〉 = 〈Ej (t )|B1〉 + 〈Ej (t )|B2〉. From Eqs. (49)
and (50) we then get, for t ∈ [ti, t f ],

〈Ea(t )|B〉 = a+(t − ti )E
i
a + a−(t f − t )E f

b , (55)

〈Eb(t )|B〉 = a−(t − ti )E
i
a + a+(t f − t )E f

b , (56)

where a±(t ) = [e−t ± e−(1+2g)t ]/2; expanding to first order
in g:

〈E1(t )|B〉 = Ei
1[1 − g(t − ti )]e

ti−t + gE f
2 [(t f − t )et−t f

− (t f − ti )e
2ti−t−t f ] + O(g2), (57)

〈E2(t )|B〉 = E f
2 [1 − g(t f − t )]et−t f + gEi

1[(t − ti )e
ti−t

− (t f − ti )e
ti+t−2t f ] + O(g2). (58)

The same expressions could be obtained by a rather lengthy
calculation from the Brownian bridge expression for the statis-
tics ρ(E(t )|B) = ρ(B2|E(t ))ρ(E(t )|B1)/ρ(B2|B1) [6].

To obtain the expression for 〈E(t )|B〉 in the mixed picture,
we must evaluate the conditional averages 〈Ē|B̄〉, 〈Ẽ|B̄〉 and
the correlation 〈ẽi f ē j |B̄〉.

By setting F (0)

j = Ej in Eqs. (34) and exploiting Eq. (36),
we find

〈Ē1(t )|B̄〉 = Ei
1eti−t , 〈Ē2(t )|B̄〉 = E f

2 et−t f . (59)

By setting M (1)

1 = E1 + E2 + M̂1, M (1)

2 = −E1 − E2 + M̂2,
with M̂ j given in Eqs. (53) and (54), and substituting the result
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in (35), we find

Ẽ1(t ) = −
∫ t

−∞
dτ eτ−t

[
Ē1(τ ) + 1

2
Ē2(τ )

]

+ 1

2

∫ +∞

t
dτ et−τ Ē2(τ ) (60)

and

Ẽ2(t ) = −
∫ +∞

t
dτ et−τ

[
Ē2(τ ) + 1

2
Ē1(τ )

]

+ 1

2

∫ t

−∞
dτ eτ−t Ē1(τ ). (61)

Substituting Eq. (59) into Eqs. (60) and (61), we then obtain

〈Ẽ1(t )|B̄〉 = −Ei
1

(
1

2
+ t − ti

)
eti−t + E f

2

2
(t f − t )et−t f , (62)

〈Ẽ2(t )|B̄〉 = −E f
2

(
1

2
+ t f − t

)
et−t f + Ei

1

2
(t − ti )e

ti−t . (63)

The fluctuation contribution 〈ẽi f ē j |B̄〉 is proportional,
through Eqs. (60) and (61), to 〈ēi(t )ē j (t ′)|B̄〉. Thus, since
〈ẽi f ē j |B̄〉 enters Eqs. (47) and (48) already at O(g), we need
to evaluate 〈ēi(t )ē j (t ′)|B̄〉 only to O(g0); it is thus irrelevant
whether we work in the forward or in the backward picture.
We immediately find 〈ē1ē1|B̄〉(0) = 〈ē1ē1|B̄1〉(0), 〈ē2ē2|B̄〉(0) =
〈ē2ē2|B̄2〉(0), and 〈ē1ē2|B̄〉 = O(g); the last term can therefore
be disregarded. Since e1(t ) and e1(t ′) are uncorrelated at
opposite sides of ti, and e2(t ) and e2(t ′) are uncorrelated at
opposite sides of t f , the only contribution to 〈E(t )|B〉 comes
from

〈ē1(t )ē1(t ′)|B̄〉(0) = E
2

[e−|t−t ′ | − e−|t+t ′−2ti|], (64)

with t, t ′ > ti or t, t ′ < ti, and from

〈ē2(t )ē2(t ′)|B̄〉(0) = E
2

[e−|t−t ′ | − e−|t+t ′−2t f |], (65)

with t, t ′ > t f or t, t ′ < t f . By exploiting Eqs. (60) and (61),
we then get the result, for t ∈ [ti, t f ],

〈ẽ1(ti )ē2(t )|B̄〉 = E
2

[(t − ti )e
ti−t − (t f − ti )e

ti+t−2t f ]+ O(g),

(66)

〈ẽ2(t f )ē1(t )|B̄〉 = E
2

[(t f − t )et−t f − (t f − ti )e
2ti−t−t f ]+ O(g),

(67)

〈ẽ1(ti )ē1(t )|B̄〉 ∼ 〈ẽ2(t f )ē2(t )|B̄〉 = O(g). (68)

We can now substitute Eqs. (59), (62), (63), (66), and (67) into
Eqs. (47) and (48), and verify with little algebra that the same
expression for 〈E|B〉 in Eqs. (57) and (58) is reproduced.

V. NUMERICAL TESTS

The numerical solution of the stochastic equations in the
mixed picture has important peculiarities. First, since different
sets of variables are integrated into opposite time directions,
the evaluation of the interaction terms requires that the his-
tories of the variables Ē j be already calculated and stored

in memory. Secondly, because of the intrinsic time nonlocal
nature of the mixed picture, and the fact that boundary con-
ditions in an incomplete stochastic bridge are imposed only
on one part of the variables, the stochastic equations for a
problem conditioned at ti and t f , ti < t f , must be solved in
a wider domain [Ti, Tf ] ⊃ [ti, t f ].

The determination of the trajectories, to be used for the
Monte Carlo evaluation of statistical quantities in Eq. (46),
therefore, is going to proceed through the following sequence
of steps:

(i) Generate a noise history ξ in [Ti, Tf ], and store it in
memory.

(ii) Obtain from ξi and store in memory the history of Ē in
the interval [Ti, Tf ] (at this point the history of ξ is not needed
anymore). Since the whole history of Ē in the whole interval
[ti, t f ] is required, forward variables are going to become
backward variables in [Ti, ti] and backward variables become
forward variables in [t f , Tf ]. For the problem considered in
Sec. III, this means that Ē1 and Ē2 are going to obey equa-
tions ˙̄E1 − F (0)

1 = ξ1 and ˙̄E2 + F (0)

2 = ξ2 in domains [Ti, ti] and
[t f , Tf ], respectively.

(iii) Again in [Ti, Tf ], obtain M̂ from Ē. For the system
considered in Sec. II, this is accomplished by integrating
Eq. (25) backward and Eq. (26) forward in time. The domain
[Ti, Tf ] must therefore be large enough to guarantee that the
effect of the boundary conditions at Ti, f on the profile of M̂ in
[ti, t f ] be negligible. Since each Ẽ j is obtained by integrating
in the time direction opposite to that of the corresponding M̂ j ,
also M̂ must be stored in memory.

(iv) From Ē and M̂, finally obtain also Ẽ; this requires
integrating the equations for the forward variables from Ti to
t f and those for the backward variables from Tf to ti. Once
more, the domain [Ti, Tf ] must be chosen large enough for the
boundary conditions on Ẽ at Ti, f not to affect the behavior of
the variables in the domain of interest [ti, t f ].

We continue to focus our attention on simple two-degrees-
of-freedom systems, and verify that the forward and the mixed
picture generates identical statistics. We carry out our tests on
the deviation of the average trajectories from the decoupled
case:

〈E(t )|B〉′ = 〈E(t )|B〉 − 〈E(t )|B〉(0). (69)

We consider three examples of stochastic system; the fol-
lowing profiles for the unperturbed drift are adopted:

F (0)
1 = E1, system a, (70)

F (0)
1 = 1

6

(
E3

1 + E1
)
, system b, (71)

F (0)
1 = 1

3

(
E3

1 − 4E2
1 + 35

9
E1

)
, system c, (72)

with F (0)

2 = E2 in the three cases. The statistics in Eq. (2) is
utilized for the noise, and the condition H = 0 is imposed in
the interaction term. The values of the remaining parameters
are listed in Table I.

The potential V (0)

1 , F (0)

1 = V (0)′
1 , has for systems a and b the

form of a single quadratic (quartic) well; for system c, it is a
rather shallow double potential well, with the profile shown in
Fig. 1.

014139-6



DESCRIPTION OF A STOCHASTIC SYSTEM BY A … PHYSICAL REVIEW E 104, 014139 (2021)

TABLE I. Simulation parameters.

ti = 0, t f = 3 (system a)
Ti = −17, Tf = 20,

E i
1 = 4 E f

2 = 1 (system a)
E = 0.1, g = 0.1,
N = 105 (sample size).

In the case of system a, analytical expressions for the mean
profiles of a generic incomplete stochastic bridge are available
[Eqs. (57) and (58)]. As can be checked in Fig. 2, the result
of numerical simulations basically overlap with the analytical
expressions for the O(g) profiles in Eqs. (57) and (58).

In the case of systems b and c, we consider an initial condi-
tion problem, with B1 = {E1(ti ) = E i

1}, and E2(ti ) distributed
according to ρ(E2(ti )|B1). This allows direct comparison of
numerical simulations in the forward and mixed picture, with-
out having to resort, in the forward case, to sampling.

To compare the result of simulations in the two pic-
tures, the time separation t f − ti must be sufficiently large to
be able to approximate ρ(E2(ti )|B) � ρ(E2(ti)|B1). Alterna-
tively, E2(t f ) must be extracted from the PDF ρ(E2(t f )|B),
which, to the order in g considered, can be approximated
with ρ (0)(E2(t f )) ∼ exp[−(E2(ti ))2/(2E )] anyway. We note
that for the dynamics considered, the relation ρ(E2(ti )) =
ρ (0)(E2(ti )) ∼ exp[−(E2(ti ))2/(2E )] holds exactly. In the case
of system b, as shown in Fig. 3, the gap between the mean
trajectories in the mixed and forward picture is in the range
expected for the values of the coupling g considered.

The performance of the mixed approach in the case of sys-
tem c is much worse. As shown in Fig. 4, the mixed approach
heavily underestimates 〈E1(t )|B1〉′, which is the contribution
to the relaxation of E1 to the bottom of the potential well at
E1 = 0 from interaction with E2. The poor performance of the
mixed approach appears to be a manifestation of the break-
down of the perturbative ansatz gF (1)

2 � F (0)

2 near the potential
barrier at E2 ≈ 1.8 (see Fig. 1), where the contribution from
F (1)

1 to the escape of E1 from the shallow well to the right
is dominant. The situation is similar to the breakdown of the
WKB expansion in the vicinity of turning points [35]. In the

0

0.5

1

1.5

2

2.5

3

3.5

−1 0 1 2 3 4

V (0)
1

E1

FIG. 1. Profile of the potential V (0)
1 for system c.

FIG. 2. Mean trajectory deviation from the decoupled limit in the
case of system a. Result of the numerical integration [continuous
(magenta) line]; exact profiles from Eqs. (55) and (56) [dash-dotted
line (green) line]; analytical O(g) profiles from Eqs. (57) and (58)
(black dashed line).

present case, the poor performance of the mixed backward-
forward approach is associated with the long permanence of
E1 in the shallow potential well to the right (see Fig. 5),
where the dynamics are dominated by the noise and by the
interaction with E2.

VI. CONCLUSION

We have derived a mixed backward-forward approach for
the treatment of stochastic systems, with initial and final
conditions imposed on different subsets of the variables that
describe the dynamics. The main results of the paper are
contained in Eqs. (25), (26), and (46), which provide the form
of the SDEs, together with the procedure for the calculation of
conditional averages in our approach. The interaction between
forward and backward variables is taken into account by the
introduction of additional internal degrees of freedom, which
make the dynamics intrinsically nonlocal in time.

FIG. 3. Mean trajectory deviation from the decoupled limit in the
case of system b. Mixed picture (black dashed line); forward picture
[light continuous (magenta) line].
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FIG. 4. Same as Fig. 3 in the case of system c.

Nonlocality in time turns the boundary conditions on the
system into statistical constraints in an infinite time domain;
this, however, is precisely what happens, independently of
the description, in an incomplete stochastic bridge: by con-
struction, variables in an incomplete stochastic bridge that do
not satisfy boundary conditions at an end of the bridge bring
information from the outside into the bridge. It is thus not
too surprising that the most natural description of a system
in which initial and final conditions are imposed on different
sets of variables is nonlocal in time.

As regards the cosmological models in [25], the implica-
tion is that the hypothetical presence of regions in the universe
with an arrow of time opposite to ours would require some
form of time nonlocality in the interaction between us and
“them.”

We have derived the mixed backward-forward approach in
the case of reversible dynamics described in the forward pic-
ture by an SDE with additive noise. No additional hypotheses
have been made on the form of the SDEs, except the smallness
of the interaction between forward and backward variables.
For the sake of clarity, the derivation has been carried out
in the simplest possible case of a two-variable system; the

FIG. 5. Individual trajectories for system c, obtained from inte-
grating in the forward approach (E1, green line). Notice the long time
spent by the system at E1 � 2, before making the transition to the
potential well at E1 ≈ 0.

generalization to systems with a higher number of variables,
however, is straightforward. A question that remains open is
the possible extension of the perturbative expansion to higher
orders in the coupling strength. It likewise remains open the
question of a possible extension of the approach to the case of
irreversible dynamics.

From the point of view of the Monte Carlo evaluation
of statistical quantities, the main advantage of the approach
is the possibility of treating final conditions as if they were
initial conditions in a forward approach. Therefore, as op-
posed to shooting algorithms, the approach does not need
large samples to treat low probability final states; at the same
time, it does not have the problems of slow convergence
and difficult handling of final points of transition path sam-
pling algorithms [18,36]. The price is the increased memory
requirement implicit—as discussed in Sec. V—in a forward-
backward description of the dynamics, and the constraint of
weak interaction between components of the system with
opposite conditioning.

Numerical tests in the simplest possible case of a system
with two degrees of freedom show that the mixed backward-
forward approach works as long as there is no crossover
in the strength of the interaction relative to the unperturbed
dynamics. A situation of physical interest where the condition
is violated is the crossing of a potential barrier. The situation
is similar to that of the WKB method near a turning point, and
the procedure to tackle the problem is expected to be the same,
namely to shift to an alternative description in the vicinity of
the barrier. How to carry out the procedure, however, remains
unclear at the moment, and the matter deserves further study.
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APPENDIX A: CALCULATION OF THE JACOBIAN
DETERMINANT

Consider initially a finite time domain [ni, n f ]. We can dis-
pose the entries of the four-index matrix ∂
±Wj (n)/∂Ek (m)
along the rows and columns of a staggered 2(n f − ni −
1) × 2(n f − ni − 1) matrix Jα( j,n),β(k,m), where indices α =
1, 2, . . . map to

( j, n) = (1, ni ), (2, n f ), (1, ni + 1),

(2, n f − 1), . . . , (1, n f − 1), (2, ni + 1); (A1)

and indices β = 1, 2, . . . map to

(k, m) = (1, ni + 1), (2, n f − 1), (1, ni + 2),

(2, n f − 2), . . . , (1, n f ), (2, ni ). (A2)

Let us decompose

J = J̄ + gJ̃ = J̄ [1 + gĴ ]. (A3)
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We see from Eq. (8) that to lowest order in 
t , J̄ is a banded
matrix,

J̄αβ = δαβ − δα,β+2 + O(
t ), (A4)

with determinant

det J̄ = 1 + O(
t ), (A5)

and inverse, the lower triangular matrix

J̄ −1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0
0 1 0
1 0 1 0 · · ·
0 1 0 1 0
1 0 1 0 1 0

...

⎤
⎥⎥⎥⎥⎥⎥⎦

+ O(
t ). (A6)

Following standard practice [37], we write the Jacobian J =
| det J | as a Taylor series:

J = | det J̄ || det(1 + gĴ )|
= exp[tr ln(1 + gĴ )]

= exp(1 + gtrĴ ) + O(g2), (A7)

where we have exploited Eq. (A5), and we have disregarded
O(
t ) terms that vanish in the continuous limit. Substituting
Eqs. (A3) and (A6) into Eq. (A7), we get

trĴ =
∑
α�1

∑
β�α

[J̃2α−1,2β−1 + J̃2α,2β ]

=
∑

m

[∑
n>m

∂
W1(tn)

∂E1(tm)
+
∑
n<m

∂
W2(tn)

δE2(tm)

]

= 
t
∑

m

[∑
n>m

∂M (1)
1 (n)

∂E1(m)
−
∑
n<m

∂M (1)
2 (n)

∂E1(m)

]
+ O(g).

(A8)

Note that there is no contribution to trĴ from M (0)

j , which is
consequence of the fact that there is no contribution in the
sums in Eq. (A8) from n = m. This in turn is a consequence
of the fact that M (0)

1 (n) does not depend on E1(n + 1), and that
M (0)

2 does not depend on and E2(n − 1). Taking in Eq. (A8)
the two limits 
t → 0 and [ti, t f ] → [−∞,∞] finally yields
Eqs. (14) and (15).

APPENDIX B: PRESCRIPTION ISSUES
IN THE MIXED PICTURE

Let us analyze separately the contributions to Eq. (20)
from LP, LI , and LJ . We promptly verify that the first term
on the right-hand side (RHS) of Eq. (23) is a Stratonovich
differential [30], which brings no Itô correction when inte-
grating by parts, and that the second term is proportional to
the noise cross correlation, which is O(g). Hence, to the order
considered, we can set LP = 0.

It is difficult to prove in general that LI = LJ = 0, but we
can verify a posteriori that the condition is satisfied in the case
of Eqs. (30) and (31).

In the case of LI , the fact that the argument E in the func-
tionals M̂ j[E, t], as illustrated in Eqs. (30) and (31), depends
on time only through a dummy integration variable guarantees

that ˙̂Mj[E, t] = ∂t M̂ j[E, t]. Hence, substituting Vj = M̂ j in
Eq. (18) does not generate an Itô correction, and therefore
LI = 0.

As regards LJ , Eqs. (30) and (31) tell us that M̂1(τ ) and
M̂2(τ ) receive contribution from E(t > τ ) in one case, and
from E(t < τ ) in the other. In addition to this, we have seen
by working in discrete time, that M (1)

j (n) depends as a function
on Ej (m) only for m = n [see Eqs. (21) and (22)]. However,
from Eqs. (15) and (A8), L 	= 0 only if M (1)

1 (n) depends on
E1(m < n), or M (1)

2 (n) depends on E2(m > n), or both. Hence,
LJ = 0.

APPENDIX C: CORRECTION TERMS IN THE
EVALUATION OF CONDITIONAL AVERAGES

We evaluate the averages in Eqs. (41)–(43) in terms of the
PDF,

ρ[Ē] = ρ(Ē1(ti ), Ē2(t f ))ρ[Ē|Ē1(ti ), Ē2(t f )]. (C1)

We start by evaluating the PDF ρ(B) in Eq. (38). We Taylor-
expand B around Ē and substitute into 〈δB〉 = ∫

[dĒ ] ρ[Ē] δB.
Equation (C1) gives us then

ρ(B) = ρ(B̄){1 − g[∇i f · 〈Ẽi f |B̄〉
+ 〈Ẽi f |B̄〉 · ∇i f ln ρ(B̄)]} + O(g2), (C2)

where

∇i f = (
∂Ei

1
, ∂E f

2

)
, Ẽi f = (Ẽ1(ti ), Ẽ2(t f )). (C3)

In Eq. (C2) we can approximate ρ(B̄) � ρ (0)(B̄) = ρ (0)(B̄1)
ρ (0)(B̄2), where, thanks to the reversibility of the dynamics,

ρ (0)(B̄1) ∼ exp

{
− 1

E

∫ Ei
1

dĒ1 F (0)
1 (Ē1)

}
(C4)

and

ρ (0)(B̄2) ∼ exp

{
− 1

E

∫ E f
2

dĒ2 F (0)
2 (Ē2)

}
. (C5)

By putting together Eqs. (38) and (42) with Eqs. (C2), (C4),
and (C5), we then get

N
N̄

− 1 = g

[
∇i f − F(0)

i f

E

]
· 〈Ẽi f |B̄〉 + O(g2), (C6)

where

F(0)
i f = (

F (0)
1

(
Ei

1

)
, F (0)

2

(
E f

2

))
. (C7)

We can repeat the procedure with the second line of Eq. (43)
to obtain

Z̃[J] =
[

F(0)
i f

E − ∇i f

]
·
〈
Ẽi f exp

[
i
∫

dt J(t ) · Ē(t )

]∣∣∣∣B̄
〉

−
〈
exp

[
i
∫

dt J(t ) · Ē(t )

]∣∣∣∣B̄
〉

×
[

F(0)
i f

E − ∇i f

]
· 〈Ẽi f |B̄〉, (C8)

and from here we get Eq. (45).
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