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Exclusion process on two intersecting lanes with constrained resources:
Symmetry breaking and shock dynamics
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We present a study of the exclusion process on a peculiar topology of network with two intersecting lanes,
competing for the particles in a reservoir with finite capacity. To provide a theoretical ground for our findings,
we exploit mean-field approximation along with domain-wall theory. The stationary properties of the system,
including phase transitions, density profiles, and position of the domain wall are derived analytically. Under the
similar dynamical rules, the particles of both lanes interact only at the intersected site. The symmetry of the
system is maintained until the number of particles do not exceed the total number of sites. However, beyond this,
the symmetry breaking phenomenon occurs, resulting in the appearance of asymmetric phases and continues to
persist even for an infinite number of particles. The complexity of the phase diagram shows a nonmonotonic
behavior with an increasing number of particles in the system. A bulk induced shock appears in a symmetric
phase, whereas, a boundary induced shock is observed in the symmetric as well as the asymmetric phase.
Monitoring the location of localized shock with increasing entry of particles, we explain the possible phase
transitions. The theoretical results are supported by extensive Monte Carlo simulations and explained using
simple physical arguments.
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I. INTRODUCTION

The decisive requirement for the functioning of any com-
plex system ranging from the subcellular level of biological
organisms to globe-spanning human-made structures is the
transportation of matter and information. From a theoretical
point of view, these stochastic transport phenomena are an
intriguing example of multiparticle systems addressing far
from equilibrium processes. The extensive organization of
interconnected linelike pathways for transport mechanisms
forms a networklike structure. However, the study of complex
frameworks remains a major challenge in the field of physics
and cellular biology. In this direction, the investigation of
relatively simpler topologies is crucial for understanding the
complex network systems.

In statistical physics, lattice gas exclusion processes have
gained much popularity to model the active stochastic motion
of particles along a one-dimensional lane [1–3]. Specifically,
the totally asymmetric simple exclusion process (TASEP)
has been a paradigmatic model to study the motion of self-
propelled particles in one preferred direction subjected to
excluded volume interactions [4,5]. It was originally intro-
duced in the context of RNA polymerization by ribosomes
[1,6,7]. Since then, these models have further stimulated a lot
of fundamental research, including vehicular traffic, intracel-
lular transport, surface growth, transport in ion channels, etc.
[6,8–11]. In terms of the TASEP, numerous simpler topolo-
gies, such as junctions, treelike structures, and structureless
links have been extensively analyzed in traffic flow and bio-
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logical transportation [12–15]. However, particles’ collective
behavior on elementary structures of networks is still a subject
of comprehensive discussion.

In the perspective of modeling generic features of trans-
portation processes on lane-based systems, studies abound
in the literature analyzing the topology of intersecting lanes,
crossing pedestrian traffic flows [16–20]. Furthermore, re-
cently the generic cytoskeletal transport features of motor
proteins passing through three-dimensional (3D) filament
crossings have been explored [21]. The 3D structure of the
crossing is unwrapped into an ensemble of one-dimensional
(1D) or quasi-1D paths with branching points located at the
crossing where motor proteins can either follow the same lane
or change their paths. The collective dynamics of motor pro-
teins is strongly influenced by the steric hinderance induced
due to interaction of moving entities at the crossings. Owing
to an extensive body of the TASEP models, quantitative char-
acterization of two crossing roads with parallel update rules in
a closed geometry has been well examined [22–25]. Recently,
a variant of the TASEP network considering “figure-of-eight”
topology of two intersecting lanes has been studied where
particles move in accordance to random sequential update
rules [26]. This prototype provides an insight into the Braess
paradox that explains the counterintuitive situation. Adding
an edge to a road network leads to a user optimum with
higher travel times for all network users [27,28]. However,
the dynamics of two intersecting lanes with open boundary
conditions revealed a much interesting phenomenon known
as spontaneous symmetry breaking (SSB) [25,29–31]. This
displays the occurrence of macroscopic asymmetric station-
ary states under the symmetric microscopic dynamical rules.
The“bridge model” was the pioneer model to exhibit SSB
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where two species of particles are allowed to move in the
opposite direction on a single lane TASEP [32,33]. Since
then this aspect has been of specific interest studied in detail
utilizing variants of the TASEP assimilating various additional
processes [34–38]. Such models have been thoroughly inves-
tigated in the vicinity of an unlimited supply of particles.
However, it is still a challenge to completely uncover vari-
ous features of biological and physical models of intersecting
lanes based on generic dynamical rules.

In recent years, much more generalized versions of the
TASEP model have been contemplated where the particles are
injected from a finite reservoir of particles. Such models have
shown wide applicability in many physical and biological sys-
tems, such as protein synthesis, movement of motor proteins,
“parking garage problems,” and vehicular traffic [39–41]. For
example, invitro experiments performed at motor protein con-
centrations that are low with respect to the concentrations
of polymerized tubulin heterodimers can lead to the limited
available resources [42]. Moreover, during protein synthesis,
the ribosomes disassemble from messenger RNA after the
translation process. Under rapid cell growth, the ribosomes
find themselves in short supply so that a self-limitation of
translation can occur. To explore such a scenario originating
due to real-time dynamics invoked by limited resources stud-
ies based on single as well as multilane TASEP prototypes
have been conducted [39,43–46]. This generalization reveals
a nontrivial behavior of system including the extension of
“shock phase” that leads to traffic jamlike situations on lanes.
For this phase domain-wall approach provides a powerful the-
oretical technique to incorporate fluctuations and accurately
calculate the stationary properties of the system [46].

Although biological and vehicular traffic is our basic mo-
tivation, we present below a model which has an intrinsic
interest that extends beyond this particular application. From a
wider perspective, the proposed model presents a minimalistic
analysis of driven nonequilibrium transport process through
intersecting lanes by considering the limited availability of
resources. Our results allow us to address analytically how
this competition of finite resources on intersecting pathways
influences the density profile and leads to a jam situation on
filaments. We treat this model as a two-lane coupled sys-
tem with an inhomogeneity for which we exploit the idea of
effective rates and domain-wall theory to analyze the inter-
play of the intersected site and finite reservoir. In particular,
we derive explicit expressions of density profiles, determine
the parameter range for which we expect jam formation and
symmetry breaking. Additionally, our purpose is to inspect
whether the symmetry breaking phenomenon prevails in the
system with finite number of particles. And, if it persists can
it be controlled by a varying number of particles.

We also provide a fundamental brief by considering
appropriate limiting cases to visualize the steady-state char-
acteristics of the system.

II. MODEL DEFINITION AND DYNAMICAL RULES

This section intends to elaborate a minimalistic model of
two-lane transport intersecting at a special site. The extreme
ends of both lanes are coupled to a single reservoir having a
finite number of identical particles denoted by Nr . The total

number of particles (Ntot ) in the system remains constant at
any instant of time. The two lanes are labeled L and T assum-
ing each lane to be composed of i = 1, 2, . . . , N sites with a
special site at k = N/2 common to both the lanes as shown in
Fig. 1. We assume this site far away from boundaries to probe
the effect of intersecting lanes on the overall dynamics of the
system. A lane is randomly chosen, and the transition rules are
implemented in accordance to random sequential update rules.
Each site including the intersected site obeys the hard core
exclusion principle that allows each site to occupy at most one
particle.

We presume particles in both lanes to move in one pre-
ferred direction from left to right. A particle is allowed to enter
the first vacant site of any of the two lanes from the reservoir
with effective intrinsic rate α∗ depending on the reservoir
density given by

α∗ = α f (Nr ), (1)

where α is the entry rate for the case with an infinite number
of particles.

It is reasonable to adopt a monotonic increasing function
satisfying f (0) = 0 and f (Ntot ) = 1. This means the smaller
the number of particles in the reservoir, the lower the effective
intrinsic rate of particles in the two lanes. And, the enhanced
particle content in the reservoir leads to greater rush of parti-
cles in the two lanes. Based on these arguments, the simplified
choice for f (Nr ) is as follows:

f (Nr ) = Nr

Ntot
, (2)

that implies the effective intrinsic rate given by [44]

α∗ = α
Nr

Ntot
. (3)

This relation implies that the entry rate of particles is directly
proportional to the free concentration of particles in the reser-
voir as long as it is not too crowded. The choice of function is
generic and suits well to imitate biological as well as vehicular
transport processes [39–41]. For either lane, the exit rate of
particles is independent of the number of particles present in
the reservoir. A particle at site N can escape with constant rate
β back to the reservoir from where it is free to rejoin any lane.

In the bulk of each lane, a particle seeks to jump to the
adjacent vacant site of the same lane with the unit rate and are
not allowed to switch their lanes. However, the intersection
of two lanes at site k distinguishes it from a homogeneous
two-lane TASEP model [16,30]. Since site k is shared by both
lanes, any of the particle approaching from lane L or T can
occupy this site at any instant of time. A particle at site k − 1
of lane L(T ) can jump to intersected site k with the unit rate
if found empty. Furthermore, if site k is occupied with the
particle arriving from lane L or T , it is allowed to jump to
the unoccupied site k + 1 of its own respective lane with rate
1. Here, the particles are not allowed to change their lanes
even after jumping from the intersected site. For the proposed
model, particles of both lanes interact only at the intersected
site because a particle at site k − 1 of lane L(T ) compete to
find an empty site k.

It has been noted that for the case of the infinite number of
particles, the considered topology of lanes induces a nontrivial

014138-2



EXCLUSION PROCESS ON TWO INTERSECTING LANES … PHYSICAL REVIEW E 104, 014138 (2021)

FIG. 1. Schematic representation of two intersecting lanes in a reservoir with a finite number of particles. Green and blue colored lanes
represent lanes L and T , respectively, with i = 1, 2, . . . , N labeled sites. The intersected site k = N/2 is highlighted in the red color that can
occupy any of the particle arriving from lane L or T . If this site accommodates a particle from L(T ) it can jump to the unoccupied site k + 1
of same lane with the unit rate. The particles are allowed to enter any of the two lanes with effective intrinsic rate α∗ given by Eq. (3) and
escape the lane with rate β. Each lane L(T ) is divided into two parts of a left segment L1(T1) and a right segment L2(T2). The particles can
leave L1(T1) with effective exit rate βeff,L (βeff,T ) and enter into L2(T2) with the effective entry rate αeff,L (αeff,T ).

effect on the qualitative behavior of the system in terms of
symmetry breaking [30]. However, in the previous work, the
existence of phase regimes specially for an asymmetric phase
is calculated numerically.

III. THEORETICAL FRAMEWORK

The present model can be viewed as a variant of the TASEP
model with two incoming segments reaching a junction site
and diverging into two outgoing segments [13]. This rep-
resents a network of 2 × 2 segments provided the particles
at site k are distinguishable and are constrained to jump to
the next site of specific lane. To begin with the theoretical
framework of our proposed model, we first briefly recall
the results of the two-lane parallel uncoupled homogeneous
TASEP model with an infinite number of particles in the
system.

A. Brief discussion of results for the two-lane homogeneous
TASEP model with an infinite reservoir

In literature, mean-field approximation has been discerned
to predict exact phase boundaries for the homogeneous single-
lane TASEP model with an infinite reservoir where particles
move in accordance to random sequential update rules [11,47–
50]. It has been found that there exists three distinct stationary
phases: low density (LD), high density (HD), and maximal
current (MC) [11,47–50]. Various network TASEP models
have been extensively explored utilizing mean-field theory
[12–15,28,51]. This approximation ignores all possible cor-
relations in the system and assumes the occupancy of two
consecutive sites independent of each other.

Based on this approach, it can be trivially deliberated that
for equal entry and exit rates of two uncoupled lanes (L
and T ), there exist three dynamic regimes, namely, LD:LD,
HD:HD, and MC:MC. The bulk density in each phase remains
equal for both lanes, leading to the existence of symmetric
phases. In the notation, the first part of : denotes the state of

lane L, and second part describes the phase manifested by lane
T . The description of theoretically calculated density profiles,
particle currents, and existence of phases is summarized in
Table I. The average density of particles at site i in two
lanes L and T is represented by ρ i and σ i, respectively. In
thermodynamic limit N � 1, the steady-state average den-
sity of particles is a function of the spatial variable written
as ρ(x) ≡ ρ i, where x = i/N ranging from [0,1]. Following
mean-field approximation the steady-state particle current in
the bulk (1 < i < N) of lanes L and T is denoted by JL and
JT , respectively, given by

JL = ρ(x)[1 − ρ(x)], JT = σ (x)[1 − σ (x)]. (4)

Since the current is constant throughout the lane, the script (x)
in each lane can be dropped to avoid repetition throughout the
paper. Similarly, the current at sites 1 and N of each lane can
be written as

J1
L = α(1 − ρ1), JN

L = ρNβ, (5)

J1
T = α(1 − σ 1), JN

T = σ Nβ, (6)

where ρ1(σ 1) and ρN (σ N ) represent the average density of
particles at sites 1 and N , respectively, of lane L(T ).

B. Bulk dynamics: Intersection of two lanes

The intersection of two lanes at a special site intro-
duces an inhomogeneity in the system. For this, we divide
each lane into two segments, the left segment L1, T1: i =
1, 2, . . . , k − 1 and the right segment L2, T2: i = k + 1, k +
2, . . . , N coupled at special site k. The two segments of both
lanes are properly integrated by determining the effective rate
of particles. We define, particles entering in lanes L and T
with effective intrinsic rate α∗ [defined in Eq. (3)] can leave
their respective left segment with effective exit rates βeff,L

and βeff,T , respectively. And the particles can enter the right
segment of lanes L and T with effective entry rates αeff,L and
αeff,T , respectively. The average density of particles at site
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TABLE I. Summary of results for a two uncoupled lane TASEP model with a finite reservoir where μ = Ntot
N [44]. When μ → ∞, α∗ → α,

the results converge to that for the model with an infinite reservoir of particles [4]. Here, LD signifies the low-density phase, HD denotes the
high-density phase, and xw denotes the position of the domain wall in the Shock (S) phase. The expression of the S:S phase is valid only for
the case when μ is finite.

Phase region ρ1 = σ 1 ρ = σ ρN = σ N Current (JL = JT ) α∗

LD:LD α∗ < min{β, 1/2} α∗ α∗ α∗ (1−α∗ )
β

α∗(1 − α∗) α
(
1 − 1

μ

)
HD:HD β < min{α∗, 1/2} 1 − β(1−β )

α∗ 1 − β 1 − β β(1 − β ) α
(
1 − 2(1−β )

μ

)
MC:MC 1/2 < min{α∗, β} 1 − 1

4α∗
1
2

1
4β

1
4 α

(
1 − 1

μ

)
S:S α∗ = β, β < 1/2 α∗ xwα∗ + (1 − β )(1 − xw ) 1 − β α∗(1 − α∗) = β(1 − β ) 1

xw

[
μ

2α
(α − β )

− (1 − β )(1 − xw )
]

k − 1, k and k + 1 of lane L is written as ρk−1
1 , ρk , and ρk+1

2 .
Similarly, for lane T to represent these densities ρ is replaced
by σ .

We denote the particle current induced in each lane as JL j

and JTj where j = 1 (left segment) and j = 2 (right segment).
The stationary current arguments in both lanes leads to an
equal current in two segments of each lane read as

JL1 = JL2 and JT1 = JT2 , (7)

that implies

ρb
1

(
1 − ρb

1

) = ρb
2

(
1 − ρb

2

)
and σ b

1

(
1 − σ b

1

) = σ b
2

(
1 − σ b

2

)
,

(8)
where ρb

j and σ b
j denote the bulk density in two segments of

lanes L and T , respectively. The above equations in Eq. (8)
further specifies that the bulk density satisfies

ρb
1 = ρb

2 or ρb
1 + ρb

2 = 1, (9)

σ b
1 = σ b

2 or σ b
1 + σ b

2 = 1. (10)

In each lane, the condition of current continuity suggests that
the exit current of the left segment is equal to the current
passing from site k − 1 to k, given by

ρk−1
1 βeff,L = ρk−1

1 (1 − ρk − σ k ), (11)

σ k−1
1 βeff,T = σ k−1

1 (1 − ρk − σ k ), (12)

that results in

βeff,L = βeff,T = 1 − ρk − σ k = βeff (say). (13)

Also, the current entering into the right segment is equal to
current passing from site k to k + 1, written as(

1 − ρk+1
2

)
αeff,L = ρk

(
1 − ρk+1

2

)
, (14)(

1 − σ k+1
2

)
αeff,T = σ k

(
1 − σ k+1

2

)
, (15)

that leads to

αeff,L = ρk, (16)

αeff,T = σ k . (17)

Our main aim is to calculate the effective rates and average
density of particles in L and T including at the intersected site.
The explicitly computed effective rates helps to determine the

stationary properties of the system. When there are infinite
numbers of particles in the system, it has been observed that
the intersection of lanes assists the phenomenon of symmetry
breaking. The appearance of two symmetric and one asym-
metric phase has been reported [30].

C. Boundary dynamics: Lanes connected to the finite reservoir
of particles

The extreme ends of two intersecting lanes are coupled to a
finite reservoir of particles that governs the effective intrinsic
rate of particles into the lanes as given in Eq. (3). Now, the
total number of particles in the system can be written as

Ntot = Nr + NL + NT , (18)

where NL and NT signify the number of particles in lanes L
and T , respectively.

Since each lane is divided in two segments, the average
density of particles in each lane is the sum of average density
of particles in the respective left and right segment. Therefore,
in continuum limit we can write the average density of parti-
cles integrating over x in lanes L and T as∫ 1

0
ρ(x)dx =

∫ 1/2

0
ρb

1 (x)dx +
∫ 1

1/2
ρb

2 (x)dx, (19)∫ 1

0
σ (x)dx =

∫ 1/2

0
σ b

1 (x)dx +
∫ 1

1/2
σ b

2 (x)dx, (20)

respectively, where
∫ 1

0 ρ(x)dx = NL

N
and

∫ 1
0 σ (x)dx = NT

N
.

Furthermore, the effective intrinsic rate in Eq. (3) can be
written as

α∗ = α − αN

Ntot

(∫ 1/2

0

(
ρb

1 + σ b
1

)
dx +

∫ 1

1/2

(
ρb

2 + σ b
2

)
dx

)
,

(21)
that implies

α∗ = α − α

μ

(∫ 1/2

0

(
ρb

1 + σ b
1

)
dx +

∫ 1

1/2

(
ρb

2 + σ b
2

)
dx

)
,

(22)
where

μ = Ntot

N
. (23)

As already observed in Table I that the density of particles
is distinct in each phase, therefore, the effective intrinsic rate
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α∗ alters correspondingly. For the case when two lanes do not
intersect, we retrieve a two-lane homogeneous model coupled
to a finite reservoir of particles. Therefore, the expression for
effective intrinsic rate in Eq. (22) reduces to [43]

α∗ = α

(
1 − 1

μ

∫ 1

0
(ρ + σ )dx

)
. (24)

Here, in addition to existing distinct stationary phases for the
homogeneous two-lane model with an infinite reservoir, a new
symmetric coexistence LD-HD phase, namely, the S phase has
been observed [44]. A localized shock phase is characterized
by an existing discontinuity in the bulk connected by a low-
density to high-density regime. In literature, a well-known
approach “ domain-wall theory” has been deployed to esti-
mate the position of the localized domain wall [43,50,52]. The
basic idea of this theory is to assume a sharp shock in the
density profile located at any site between the two regimes:
LD to the left and HD to the right of the domain wall. The
estimation of locating this localized shock at a particular site
helps to evaluate the overall density of particles. This shock is
situated anywhere between [0,1], and its position is denoted
by xw throughout the paper. The conditions for the existence
of stationary phases with finite reservoirs have been reviewed
in Table I.

In the next section, we discuss the conditions for the ex-
istence of different phase regimes on the (α, β) plane for
the proposed inhomogeneous model of intersecting lanes.
The phase boundaries are obtained theoretically utilizing the
framework adopted in Sec. III B along with the concept of
domain-wall theory. In addition, we present the convergence
of our theoretical results to the limiting case of intersecting
lanes with infinite reservoirs [30].

IV. STATIONARY SYSTEM STATES

In this section we elaborate the qualitative and quantitative
behaviors of stationary phase diagrams depending on three
controlling parameters (α, β, μ). As already discussed, each
lane L (T ) is divided into two segments L1 and L2 (T1 and T2),
the possible phases in the system are labeled as A-B:C-D
where A (C) and B (D) describe the phase exhibited by left
and right segments of lane L (T ), respectively. In addition, a
phase is characterized as a symmetric phase if the particle den-
sity in L1(L2) is equal to density in T1(T2) (i.e., ρb

1 = σ b
1 and

ρb
2 = σ b

2 ). Otherwise, the phase is indicated as a asymmetric
phase and is labeled in italics.

For the proposed model, each segment can exhibit four
possible stationary states LD, HD, MC, or S. Therefore, the
maximum possible number of stationary phases in each lane
is 42 = 16. However, the existence of an ample number of
phases is prohibited due to various restrictions. For exam-
ple, from Eq. (7) it can be easily realized that for either
lane, the possibility of having the MC phase in any of the
segments and the LD, HD, or S in the other segment can
be discarded because these phases support different particle
currents. Moreover, both segments cannot exhibit MC phase
simultaneously. This is because if the left segment shows an
average density 1/2, the inhomogeneous dynamical rules do
not allow the right segment to achieve maximal current. Also,
due to interaction of particles at site k, the right segments of

both lanes cannot exhibit the HD phase simultaneously since a
particle at site k is restricted to jump only in the same lane. As
a consequence, when any of particle arriving from lane L or T
resides on the intersected site, the particle on site k − 1 of the
other lane has to wait until the particle at the kth site jumps to
the site of its own respective lane. The similar arguments can
affirm the existence of the asymmetric phase in the system
of intersecting lanes with an infinite number of particles [30].
Nevertheless, the limiting case of the proposed model with an
infinite number of particles will be extensively discussed.

Now we theoretically investigate the conditions of the exis-
tence of phases, phase boundaries for the proposed model with
varying entry and exit rates. We provide explicit expressions
for the density profiles, phase boundaries, and position of
shock in terms of μ. Since for the proposed model both sym-
metric and asymmetric phases can exist, we systematically
discuss the existence condition of symmetric and asymmetric
phases in the upcoming sections.

A. Symmetric phases

We now discuss the occurrence of different symmetric
phases and aim to calculate the effective rates and densities
to determine the phase boundaries. As discussed, for the sym-
metric phase the following conditions hold, i.e.:

ρb
1 = σ b

1 , ρb
2 = σ b

2 , (25)

that also implies

αeff,L = αeff,T = αeff , ρk = σ k . (26)

Without any loss of generality, we can, thus, analyze the
dynamics of particles in any one lane (say L). The same results
are pertinent for the other lane T . Hence, Eq. (22) reduces to

α∗ = α − 2α

μ

(∫ 1/2

0
ρb

1dx +
∫ 1

1/2
ρb

2dx

)
. (27)

Therefore, by utilizing the current continuity condition we
can explicitly compute effective rates α∗, αeff and βeff to
determine theoretical phase boundaries, shock position, and
particle densities in possible phases.

As a consequence, there are four possible symmetric
phases, namely, LD-LD:LD-LD, HD-LD:HD-LD, S-LD:S-
LD, LD-S:LD-S. We summarize the existence criteria,
expressions of shock position and effective intrinsic rate for
all symmetric phases in Table II. The detailed calculations
of effective rates, densities, and phase boundaries in each
possible symmetric phase are illustrated in Appendix A.

B. Asymmetric phases

Asymmetric phases appear along with the symmetric
phases due to interaction of both type of particles at the
intersected site. In contrast to symmetric phases, the density
of particles in both lanes is different. Therefore, the specifi-
cations that support the extant of asymmetric phases can be
written as

ρb
1 �= σ b

1 or ρb
2 �= σ b

2 , (28)

that can lead to

αeff,L �= αeff,T , ρk �= σ k . (29)
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TABLE II. Explicit expressions for the conditions of existence, effective intrinsic rate, and shock position in the possible symmetric phases
of the proposed model. The detailed calculations are derived in Appendix A.

Phase Phase region Intrinsic rate α∗ xw

LD-LD:LD-LD α∗ < min{β, 1/3} αμ

μ + 2α
–

HD-LD:HD-LD 1/3 < min{α∗, β} α

(
1 − 1

μ

)
–

S-LD:S-LD 0 < xw < 1/2, β � 1/3 α

(
3μ + 2xw − 4

3μ

)
3

2

(
μ

3α
− μ + 1

)
LD-S:LD-S 1/2 < xw < 1, β � 1/3 β

βμ − α(μ + 2β − 2)

2α(1 − 2β )

To theoretically derive the phase boundaries, position of shock
and particle density in each lane for the possible asymmetric
phases, we calculate effective rates by using current continuity
arguments.

As a result, there are two possible asymmetric phases,
namely, S-HD:HD-LD and HD-HD:HD-LD for which the
existence criteria, expressions of shock position and effective
intrinsic rate are summarized in Table III. The theoreti-
cal computations for the expressions of densities and phase
boundaries are explained in Appendix B.

V. RESULTS AND DISCUSSIONS

In this section, we exploit the results discussed in Sec. IV
to address the behavior of the system on the (α, β) plane
depending on the total number of particles in the system. We
aim to investigate the effect of finite resources in terms of
μ = Ntot

N on the complex dynamical properties of the system.
We observe qualitative as well as quantitative nontrivial ef-
fects on the topology of phase schema especially in terms
of symmetry breaking and shock dynamics. To validate our
theoretical outcomes we perform elementary Monte Carlo
simulations (MCs) for system size N = 1000. Following the
random sequential update rule, each simulation step generates
one specific realization of the stochastic process. At each time
step, a lane is randomly chosen and utilizing uniformly gen-
erated random number a particular site is selected on which
the transition rules are implemented as discussed in Sec. II.
The computer simulations are carried out for 2 × 109 time
steps, and an initial 5% of the time steps are scraped to ensure
the occurrence of the steady state. The average densities in
both lanes are computed by considering time averages over an
interval of 10N . We observe that the theoretically computed
density profiles, phase boundaries, and shock positions match
well with the simulations.

A. Phase boundaries: Effect of μ

We have theoretically computed the existence of distinct
stationary phases in terms of μ where we analyzed that the
symmetry of the system persists for μ � 1. However, for μ >

1 the symmetry of the system is disrupted and asymmetric
phases appear in the stationary phase diagram. To understand
the effect of finite resources, we elaborate two different cases
and possible phase transitions originating in the system by
monitoring the propagation of the localized domain wall in
the steady state for varying boundary controlling parameters.

1. μ � 1

When there are very few numbers of particles in the
system, i.e., μ ≈ 0, only one symmetric phase, namely, LD-
LD:LD-LD appears in the entire phase regime as presented
in Fig. 2(a) for μ = 0.001. This can be easily realized by
a simple argument that due to scarcity of particles in the
reservoir fewer number of particles are allowed to enter any
of the lanes, leading to the low-density phase in each segment.
Also, for lower values of β the particles tend to accumulate
at the right end of each lane. As a consequence, the boundary
layer at the right boundary enters the bulk leading to the emer-
gence of boundary induced shock in the right segment. Thus,
a symmetric phase, namely, the LD-S:LD-S phase appears
in the phase diagram for μ > 0 as shown in Fig. 2(b) for
μ = 0.05. The phase boundary between these two phases is
obtained from Eq. (A33) given by

α = βμ

μ − 2β
, β � 1/3. (30)

With a significant increase in μ no qualitative changes are
observed in the system except the shifting of phase boundaries
resulting in the shrinkage of the LD-LD:LD-LD phase and ex-
pansion of the LD-S:LD-S phase. However, beyond a critical
value μC1 due to interaction of particles at the intersected site

TABLE III. Explicit expressions for the conditions of existence, effective intrinsic rate, and shock position in the possible asymmetric
phases of the proposed model. The detailed calculations are derived in Appendix B.

Phase Phase region Intrinsic rate α∗ xw

S-HD:HD-LD 0 < xw < 1/2, β � 1/3 β
2μ(β − α) + α(3 − 2β )

2α(1 − 2β )

HD-HD:HD-LD
α(3 − 2μ)

2(α − μ)
< β, β � 1/3 α

(
2μ + 2β − 3

2μ

)
–
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FIG. 2. Stationary phase diagrams for increasing parameter μ = Ntot/N (a) μ = 0.001, (b) μ = 0.5, (c) μ = 1, (d) μ = 1.2, (e) μ = 1.5,
and (f) μ = 2. In the limiting case μ → ∞, the phase diagram converges to the two intersecting lane models with infinite particles [30]. The
white colored regions represent symmetric phases, whereas, the colored regions denote asymmetric phases. The black circles are the simulated
results indicating the phase boundaries computed within an estimated error of less than 1%.

a bulk induced shock emerges in the left segment of each lane
resulting in a new symmetric regime S-LD:S-LD as shown in
Fig. 2(c). This critical value is computed from Eq. (A26) that
yields μC1 = 2/3 and,

α = μ

3μ − 2
, β � 1/3. (31)

However, for μC1 < μ � μC2 no new phase appears in the
phase diagram, only quantitative changes are observed.

2. μ > 1 (symmetry breaking)

Distinctively, beyond a critical value μC2 in addition to the
emergence of a new symmetric phase the system experiences
rich topological changes with the occurrence of the symmetry
breaking phenomenon. As soon as μ > μC2 , a new symmetric
HD-LD:HD-LD phase emerges next to the S-LD:S-LD phase
resulting in the shrinkage of observed symmetric until now
as shown in Fig. 2(d). From Eq. (A15), we observe that this
phase exists for boundary controlling parameters satisfying

α = μ

3(μ − 1)
, β � 1/3. (32)

that yields the critical value of μC2 = 1. In addition, due
to interaction of particles at intersected site asymmetric
S-HD:HD-LD phase emerges in the (α, β ) plane. This is
because with an increase in the number of particles, the
boundary induced shock in the LD-S:LD-S phase absorbs the
incoming particles and the position of shock shifts towards
the left side of each lane. Furthermore, as soon the shock
position reaches to the intersected site with an increase in μ,
the particle at the intersected site totally blocks the flow of
particles resulting in the HD-LD phase in one lane (say lane
L). For the other lane (T ) the boundary induced shock crosses
the intersected site and shifts to the left segment. The phase
boundary for which is obtained from Eq. (B10) that leads to

α = βμ

μ − 1
, β � 1/3. (33)

On further increasing μ after a crucial value μC3 = 1 ob-
tained from (33) and μC2 an additional asymmetric phase
HD-HD:HD-LD emerges in the phase schema [as prescribed
in Fig. 2(e)] for

α = 2βμ

2(μ + β ) − 3
, β � 1/3, (34)
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(a) (b)

(c) (d)

FIG. 3. Density profiles attributed to symmetric phases for (a) α = 0.5, β = 0.2, (b) α = 0.1, β = 0.8, (c) α = 2.5, β = 0.8,
(d) α = 1.5, β = 0.8 with fixed parameter μ = 1.2. Solid lines represent theoretical results, whereas markers denote the simulated
results.

and crucial value is obtained as μC4 = 1.1. This happens be-
cause as soon as a particle enters the lane for the entry rate
satisfying Eq. (B22), it is quickly assimilated by the segment
that exhibits shock in the S-HD:HD-LD phase. Beyond this
crucial value μC3 , we observe only quantitative alterations in
the phase diagram as presented in Fig. 2(f) for μ = 2. Even for
a finite value of μ the phase diagram of the proposed model
converges to that of two intersecting the TASEP models in
Ref. [30]. However, in the limiting case μ → ∞, it is clearly
evident from Eqs. (A26), (A33), and (B10) that the boundary
and bulk induced shock disappear, and we retrieve the phase
diagram for two intersecting lanes with an infinite number of
particles.

B. Density profiles and phase transitions

The density profiles attributed to symmetric as well as
asymmetric stationary phases are presented in Figs. 3 and 4,

respectively. We observe that all the density profiles agree well
with MCs except for the case of the shock profile where a
small mismatch is seen near the discontinuity as in Figs. 3(a)
and 3(d). This discrepancy is primarily due to dominating the
finite size effect on the simulation outcomes. To rigorously
visualize this dependency we present Fig. 5 for sufficiently
large system sizes thereby substantiating the theoretical ob-
servations in the thermodynamic limit. Due to the intersection
of lanes, the density profile of LD-S:LD-S, LD-LD:LD-LD,
HD-HD: HD-LD, and S-HD:HD-LD phases admits a kink at
the intersected site as clearly visible in Figs. 3(a), 3(b), 4(a),
and 4(c), respectively.

To further inspect a deeper insight in the phenomenon
of SSB, we probe particle density histograms P(ρ1, ρ2) and
P(σ1, σ2), where ρ j and σ j are instantaneous particle densi-
ties on segment j ( j = 1, 2). For α = 2.5 and β = 0.8, we
present a typical density histogram for asymmetric phases
S-HD:HD-LD and HD-HD:HD-LD with μ = 1.2 and μ =
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FIG. 4. (Left) Density profiles attributed to asymmetric phases for α = 2.5, β = 0.2 in (a) and (b) and (c) and (d) with parameters μ =
1.5 and μ = 1.2, respectively. Such parameters are chosen to show how for a particular value of α, β, considering different values of μ,
two different asymmetric phases exist. (Left) Blue diamonds (black solid lines) and yellow circles (red dashed lines) represent simulated
(corresponding theoretical) densities in lanes L and T , respectively. (Right) Particle-density histograms (b) and (d) corresponding to (a) and
(c), respectively are plotted to probe the phenomenon of symmetry breaking through MCs.

1.5, respectively. One can clearly see in Fig. 4(b), the
peaks in distributions are achieved for ρ1 = ρ2 > 1/2 and
σ1 > 1/2, σ2 < 1/2 that corresponds to the HD-HD:HD-LD
phase. Whereas, Fig. 4(d) demonstrates that the peak occurs
for 0 < ρ1 < 1, ρ2 > 1/2 and σ1 > 1/2, σ2 < 1/2 portray-
ing the S-HD:HD-LD phase. In both cases, we observe a
double peak with two off-diagonal maxima that validates the
existence of asymmetric phases.

In order to visualize phase transitions with respect to μ

we chose particular values of α, β and plot Fig. 6. For chosen
parameters α = 2.5 and β = 0.8, in Fig. 6(a) we portray
transitions within symmetric phases LD-LD:LD-LD −→
S-LD: S-LD −→ HD-LD:HD-LD. When μ = 0.5 the parti-
cles exhibit symmetric the LD-LD:LD-LD phase with a kink
in the density profile at the intersected site. With an increase

in μ = 1.2, the density at the intersected site increases as
also evident from Eq. (A2), that indicates the existence of the
symmetric S-LD:S-LD phase. Further increasing μ = 1.5, the
bulk induced shock transforms into HD regime and leads to
the occurrence of the symmetric HD-LD:HD-LD phase.
Similarly, Fig. 6(b) illustrates the phase transitions
from symmetric to asymmetric phases LD-S:LD-S −→
S-HD:HD-LD −→ HD-HD:HD-LD for α = 2 and β = 0.2.
When μ = 1 particles manifest boundary induced shock in
the right segment of both lanes displaying the symmetric
LD-S:LD-S phase. Increasing μ = 1.2, due to availability
of an ample number of particles this shock stabilizes and
transforms into asymmetric the S-HD:HD-LD phase which
further converges to the asymmetric HD-HD:HD-LD phase
for μ = 1.5.
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FIG. 5. Finite size effect on shock profile in the symmetric
LD-S:LD-S phase for α = 0.5, β = 0.2, and μ = 1.2. Since, for
symmetric phase density profiles are the same for both lanes, we plot
for only one lane (say L). The colored markers denote the simulated
results for various system sizes, and the red solid line signifies the
theoretical mean-field results.

To summarize, there exist a maximum of six stationary
phases in the overall system including four symmetric and
two asymmetric phases. The complexity of the phase dia-
gram shows nonmonotonic behavior with increasing values
of μ. Initially, there exists only one phase whereas in the
midrange dynamics becomes complex, and six phases are
observed. Besides, the intuitive observations of the effect of
finite resources, the appearance and disappearance of phases
is examined from theoretically computed phase boundaries.
In the limiting case μ → ∞, we have explained in Sec. IV,

how effective intrinsic rate α∗ approaches α in each phase.
Consequently, the topological structure of phase schema is
modified, and the number of phases drastically reduces from
six to three [30].

C. Shock dynamics

In the above sections, we have seen that due to the finite
number of particles in the system, two types of localized
shock emerges in the dynamical regimes. It has been observed
that a bulk induced shock exists in the symmetric S-LD:S-LD
phase. Whereas a boundary induced shock persists in a sym-
metric LD-S:LD-S as well as an asymmetric S-HD:HD-LD
phase. The shock emerging in the right segment of any lane
is boundary induced, whereas that appearing in left segment
might be boundary or bulk induced. Here, to discuss the phase
transitions arising due to propagation of shock on the (α − β)
plane we fixed a parameter and vary boundary controlling
parameters (α, β ).

1. Boundary induced shock

The boundary induced shock in the symmetric LD-S:LD-S
phase appears in the right segment of both lanes for which the
position of shock is determined by Eq. (A33) when β < 1/3.
For β = 0.2, we plot Fig. 7(a) where one can note that as α

increases shock shifts toward the left side of the right seg-
ment. This means, if more numbers of particles are allowed
to enter the lattice for a significant choice of μ, the right
segment incorporates these particles tending towards a high
dense region. As soon as this wall reaches the intersected site
with respect to α, interactions with other lanes are forced to
exhibit the low density of particles. Thus, next to this phase
with increasing α, a asymmetric phase S-HD:HD-LD appears
in the steady-state phase diagram. For this phase, the position
of boundary induced shock lies within the range [0,1/2] and
can be computed using Eq. (B10). With an increase in α, the
particles are absorbed by the segment specifying S phase. As
a consequence, shock moves toward the left of the lane as

(a) (b)

FIG. 6. Phase transitions with respect to μ for fixed boundary controlling parameters (a) α = 2.5, β = 0.8 that presents transitions within
symmetric phases LD-LD: LD-LD −→ S-LD: S-LD −→ HD-LD: HD-LD. (b) α = 2, β = 0.2 illustrates phase transitions from symmetric
to asymmetric phases LD-S: LD-S −→ S-HD: HD-LD −→ HD-HD: HD-LD. Since, for the symmetric phase density the profiles are the same
for both lanes, we plot for only one lane (say L). The solid and dashed lines represent theoretical results, whereas markers with similar color
schemes denote the corresponding simulated outcomes.
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(a) (b)

FIG. 7. Symmetric phases: Movement of shock with increasing values of α for a chosen μ = 1.2 in (a) the LD-S:LD-S phase and (b) S-
LD:S-LD phase for β = 0.2 and 0.8, respectively. As already discussed, the symmetric phase satisfies Eqs. (25) and (26). Therefore, without
any loss of generality, we plot the density profile of particles of only one lane (say L). The same results are pertinent for the other lane T . The
red solid and green dashed lines represent the theoretically computed results. Whereas, markers of similar color, i.e., red stars and green circles
denote the corresponding simulated results.

shown in Fig. 8 for β = 0.2 and beyond a critical value of
α, the left lane exhibits HD indicating the appearance of the
asymmetric HD-HD:HD-LD phase.

2. Bulk induced shock

For β > 1/3, a bulk induced shock in the symmetric S-
LD:S-LD phase appears in the phase schema. In this phase the
particles in left segment of both the lanes portray a disconti-
nuity. The explicit expression for the location of this wall is
computed in Eq. (A26) that suggests for a fixed β, with an

FIG. 8. Asymmetric phase: Movement of shock with increasing
values of α for μ = 1.2 and β = 0.2 in the S-HD:HD-LD phase.
One lane portrays the HD-LD phase for chosen parameters marked
with purple stars and a solid line. However, the other lane manifests
the S-HD phase for which the shock position varies with α. As α

increases the domain wall sweeps to the left of the lane. The red
dashed and green dotted lines represent the theoretically computed
results, and the same colored markers (red stars and green circles)
denote the corresponding simulated results.

increase in α as more number of particles are permitted to
enter, the shock in both lanes sweeps to the left of the lane.
This can be easily noted from Fig. 7(b) where we can clearly
see that as α increases for β = 0.8, the HD part of S increases
and after a crucial value of α given in Eq. (32) shock vanishes.
As a result, left segments of both lanes attain the HD phase
leading to the occurrence of the symmetric HD-LD:HD-LD
phase.

VI. SUMMARY AND CONCLUSION

In this paper, we have studied a specific variant of the
network TASEP model with two intersecting lanes, a class of
minimal models for the transportation phenomenon. The two
extreme ends of each lane are connected to a reservoir having
a finite number of particles. The intersection of lanes intro-
duces an inhomogeneity in the system that is suitably dealt
by considering effective entry and exit rates. Even though
the particles interact at the intersected site, the mean-field
approximation works well to theoretically investigate various
crucial steady-state properties of the system, such as density
profiles, phase transitions, and phase boundaries. The theoret-
ical predictions are validated through extensive Monte Carlo
simulations.

We extensively probe the effect of finite resources on the
phenomenon of spontaneous symmetry breaking since the
same persists for an infinite number of particles. With an
increase in the number of particles, crucial qualitative, and
quantitative changes in the topology of the phase diagram are
observed. The symmetry of the phase schema is preserved
until the total number of particles does not exceed the total
number of sites. However, as soon as more numbers of par-
ticles are available than the number of sites, the symmetry
of the phase diagram is disrupted. The interaction of parti-
cles at the intersected site is responsible for the symmetry
breaking phenomenon. There exist maximum six possible
stationary regimes in the system, including four symmetric
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and two asymmetric phases. The exact number and location
of phases depend on the number of particles in the system.
The existence of asymmetric phases is explored by delineating
density histograms using computer simulations. In addition,
a symmetric phase exhibits a bulk and boundary induced
shock in each lane. Whereas, an asymmetric phase manifests a
boundary induced shock in one of the lanes due to interactions
of particles at the intersected site. The density in the shock
profile is estimated by employing the domain-wall approach.
We explicitly calculate the phase boundaries to determine
dynamic regimes and the location of different phases. Also,
by monitoring the movement of shock, we describe the phase
transitions as more particles are allowed to enter.

In the future, our results can serve as a base model for
understanding the typical extensions by considering several
generalizations. The proposed paper can be extended to ana-
lyze more complex dynamics in the network of intersecting
lanes when interlane switching of particles is allowed in the
bulk as well as whereas jumping from the intersected site.
Also, various processes can be incorporated, such as the in-
terplay with nonconserving dynamics, extended particle size,
particle-particle interactions, etc.
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APPENDIX A: SYMMETRIC PHASES

In the proposed model there are four possible symmetric
phases for which we theoretically calculate phase bound-
aries, position of shock, and particle density in each segment.
Therefore, depending on the phase we explicitly compute the
expressions of effective rates α∗, αeff , and βeff by utilizing
the theoretical framework discussed in Sec. IV A. This helps
to determine the bulk density of each segment ρb

1, ρb
2 , density

at intersected site ρk and at boundaries ρk−1
1 and ρk+1

2 . The
detailed theoretical calculations in each phase are elaborated
in the following discussion.

1. LD-LD:LD-LD phase

In this phase, we assume both segments of lane L exhibit
the low-density phase. Each homogeneous segment is entry
dominated for which the conditions of existence are given by

α∗ < min{βeff , 1/2}, αeff < min{β, 1/2}. (A1)

The density of particles in the bulk of each segment is given
by

ρ1 = ρb
1 = α∗ and ρk+1

2 = ρb
2 = αeff . (A2)

Since, the current is equal for both segments Eq. (7) results in

α∗ = αeff . (A3)

Solving Eq. (27), we have

α∗ = α − 2α

μ

∫ 1

0
α∗dx, (A4)

that leads to

α∗ = αμ

μ + 2α
. (A5)

The density of particles arriving from lane L at the intersected
site is given by Eq. (16) ρk = α∗. The effective exit rate with
which a particle leaves from the left segment given in Eq. (13)
reduces to

βeff = 1 − 2α∗. (A6)

In addition, the stationary current argument at site k − 1 im-
plies that the bulk current in the right segment is equal to the
current entering into it that yields

ρk−1
1 = α∗(1 − α∗)

1 − 2α∗ . (A7)

The conditions of existence for this phase, thus, reduce to

α∗ < min{β, 1/3}. (A8)

For the case when μ → ∞, the expression for the effective
intrinsic rate in Eq. (A5) reduces to α∗ = α. As a result, we
retrieve the phase boundaries for the model with an infinite
number of particles given by α < min{β, 1/3}.

2. HD-LD:HD-LD phase

We assume in this phase for each lane, the left segment to
exhibit the high-density phase and the right segment in the
low-density phase. Correspondingly, the homogeneous left
segment is exit dominated, whereas, the right segment is entry
dominated. This phase is determined by

βeff < min{α∗, 1/2}, αeff < min{β, 1/2}. (A9)

The density of particles in the bulk of each segment is given
by

ρb
1 = ρk−1

1 = 1 − βeff and ρb
2 = ρk+1

2 = αeff . (A10)

The condition of the constant current in Eq. (7) leads to

βeff = αeff . (A11)

Clearly, Eq. (16) provides the density of particles at site k as
ρk = βeff . Now, plugging these values in Eq. (13) we obtain

βeff = 1 − 2βeff , (A12)

implying

βeff = 1

3
. (A13)

Furthermore, the effective intrinsic rate given in Eq. (27) is
obtained as follows:

α∗ = α − 2α

μ

(∫ 1/2

0
(1 − βeff )dx +

∫ 1

1/2
αeff

)
, (A14)

that yields

α∗ = α

(
μ − 1

μ

)
. (A15)

From the above equation we conclude that this phase exists
only when μ > 1. The conditions of the existence reduce to

1/3 < min{α∗, β}. (A16)
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In the limiting case as μ → ∞, the effective intrinsic rate in
Eq. (A15) reduces to α. Correspondingly, the conditions that
favor the existence of this phase reduces to 1/3 < min{α, β}
for the model with an infinite number of particles [30].

3. S-LD:S-LD phase

For this phase, the particles in L1 exhibit the shock phase,
i.e., a part of the segment is in the LD phase and the rest is
in the HD phase. Whereas, the right segment shows the low-
density phase. The existence of this phase is determined by
the following conditions:

α∗ = βeff , βeff < 1/2, αeff < min{β, 1/2}. (A17)

For this phase, in the left segment sites 1 and k − 1 are entry
and exit dominated, respectively. The density in L1 is written
as

ρ1 = α∗, (A18)

ρk−1
1 = 1 − βeff , (A19)∫ 1/2

0
ρb

1dx =
∫ xw

0
α∗dx +

∫ 1/2

xw

(1 − βeff )dx. (A20)

Similarly, the density in L2 is given by

ρb
2 = ρk+1

2 = αeff . (A21)

Also, the current is constant in both segments as given in
Eq. (7) that leads to

α∗ = βeff = αeff . (A22)

From Eq. (13) we obtain the effective exit rate of particles
from the left segment as

βeff = 1

3
. (A23)

Hence, Eq. (27) yields

α∗ = α − 2α

μ

(∫ xw

0
α∗dx +

∫ 1/2

xw

(1 − βeff )dx +
∫ 1

1/2
α∗dx

)
,

(A24)
that reduces to

α∗ = α

(
3(μ − 1) + 2xw − 1

3μ

)
. (A25)

Since, α∗ = 1
3 from Eq. (A22), the shock position is given by

xw = 3

2

( μ

3α
− μ + 1

)
. (A26)

As the shock position is bounded between 0 < xw < 1/2 that
provides one of the condition for the existence of this phase.
This xw depends on the parameters μ and α. For a fixed value
of μ, as α increases shock travels to the left of the lattice on
the left segments of lane L. Hence, this phase exists when

0 < xw < 1/2, β � 1/3. (A27)

For a system with an infinite number of particles μ → ∞, we
can clearly see that xw → ∞ as a result this phase ceases to
exist and converges to the HD-LD:HD-LD phase [30].

4. LD-S:LD-S phase

In each lane, the density of particles in the left segment
is in the low-density phase, whereas in the right segment
particles are in the shock phase. The conditions that support
the existence of this phase are as follows:

α∗ < min{βeff , 1/2}, αeff = β, β < 1/2. (A28)

Since, the right segment is entry dominated, we can write the
density at site k + 1, ρk+1

2 = αeff . By the current constancy
condition from Eq. (7), the rates are given by

α∗ = αeff = β. (A29)

The density of particles in the left and right segments is given
by

ρb
1 = ρ1 = α∗, ρk+1

2 = αeff , (A30)∫ 1

1/2
ρb

2dx =
∫ xw

1/2
αeffdx +

∫ 1

xw

(1 − β )dx, (A31)

respectively. As a result, solving Eq. (27) provides the effec-
tive intrinsic rate given by

β = α − 2α

μ

(∫ 1/2

0
β dx −

∫ xw

1/2
β dx −

∫ 1

xw

(1 − β )dx

)
,(A32)

that implies

xw = βμ − α(μ + 2β − 2)

2α(1 − 2β )
. (A33)

For this phase to exist the shock travels within the range of
1/2 < xw < 1. Also, from Eq. (13) the density at the kth site
is ρk = αeff = β. Hence, the effective exit rate is given as

βeff = 1 − 2β. (A34)

In addition, the stationary current argument at site k − 1 im-
plies that the bulk current in the bright segment is equal to the
current entering into it that yields

ρk−1
1 = α∗(1 − α∗)

1 − 2β
. (A35)

The conditions of this phase to exist are as follows:

1/2 < xw < 1, β � 1/3. (A36)

For μ → ∞, the computed expression for the position of
shock converges to ∞. This shows that this symmetric phase
vanishes when there are an infinite number of particles and
tends to the LD-LD:LD-LD phase [30].

APPENDIX B: ASYMMETRIC PHASES

Based on the theoretical framework discussed in Sec. IV B,
we aim to theoretically obtain the expressions of phase bound-
aries, shock position, and density of particles in possible
asymmetric phases. The detailed calculations are discussed
below in each phase to compute the expressions of effective
rates that determine the stationary properties of the system.

1. S-HD:HD-LD phase

We presume particles in the left segment of lane L to
exhibit the shock phase and the right segment to manifest
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TABLE IV. Conditions for the existence of the asymmetric S-
HD:HD-LD phase.

L T

Left segment α∗ = βeff , βeff < 1/2 βeff < min{α∗, 1/2}
Right segment β < min{αeff,L, 1/2} αeff,T < min{β, 1/2}

the high-density phase. Although the particles in the left and
right segments of lane T display high- and low-density phases,
respectively. This phase exists when the boundary control-
ling parameters satisfy the following conditions described in
Table IV. The density in bulk of the two segments of lane L
is given by

ρk−1
1 = 1 − βeff , (B1)∫ 1/2

0
ρb

1dx =
∫ xw

0
α∗dx +

∫ 1/2

xw

(1 − βeff )dx, (B2)

ρb
2 = 1 − β. (B3)

Next, the density in the bulk of the left and right segments of
lane T is given by

σ k−1
1 = σ b

1 = 1 − βeff , (B4)

σ k+1
2 = σ b

2 = αeff,T , (B5)

respectively. Since the current is constant in each segment of
L, from Eq. (8) we have

α∗(1 − α∗) = βeff (1 − βeff ) = β(1 − β ), (B6)

and similarly for lane T , we can write

βeff (1 − βeff ) = αeff,T (1 − αeff,T ). (B7)

This yields

α∗ = αeff,T = β, (B8)

and these values are further substituted in Eq. (22) to evaluate
the shock position in L1,

β = α − α

μ

(∫ xw

0
β dx +

∫ 1/2

xw

(1 − β )dx

+
∫ 1

0
(1 − β )dx +

∫ 1

1/2
β dx

)
. (B9)

The shock position xw is obtained as

xw = 2μ(β − α) + α(3 − 2β )

2α(1 − 2β )
, (B10)

that lies in [0,1/2]. From Eq. (13), plugging σ k = αeff,T = β

we have

βeff = 1 − ρk − β, (B11)

that provides the density of particles arriving from lane L at
the intersected site, given by

ρk = 1 − 2β. (B12)

TABLE V. Conditions for the existence of the asymmetric HD-
HD:HD-LD phase.

L T

Left segment βeff < min{α∗, 1/2} βeff < min{α∗, 1/2}
Right segment β < min{αeff,L, 1/2} αeff < min{β, 1/2}

This gives the effective entry rate of particles in L2, αeff,L =
1 − 2β. Hence, this phase exists for

0 < xw < 1/2, β � 1/3. (B13)

Under these conditions, one can easily obtain that this phase
exists only when μ > 1. However, for μ → ∞, xw → ∞
that implies this phase vanishes in the limiting case of an infi-
nite number of particles and converges to the HD-HD:HD-LD
phase [30].

2. HD-HD:HD-LD phase

Without any loss of generality in this phase, we assume
both segments of lane L exhibit high density, whereas, the
left and right segments of T display high and low densities,
respectively. This phase exists when boundary controlling pa-
rameters satisfy the conditions presented in Table V.

The density in each segment is given by

ρb
1 = ρk−1

1 = 1 − βeff and ρb
2 = 1 − β, (B14)

σ b
1 = σ k−1

1 = 1 − βeff and σ b
2 = σ k+1

2 = αeff,T . (B15)

Since the current is constant in each lane given in Eq. (7)
yields

βeff = β, (B16)

βeff = αeff,T , (B17)

that implies

αeff,T = β = σ k (B18)

giving density of particles from lane T at the intersected site.
The effective intrinsic rate is calculated utilizing Eq. (22) that
leads to

α∗ = α

(
2μ + 2β − 3

2μ

)
. (B19)

From Eq. (13) we have

βeff = 1 − ρk − β, (B20)

that gives the particle density of particles from lane L as

ρk = 1 − 2β. (B21)

As a result the existence of conditions for this phase reduce to

α(3 − 2μ)

2(α − μ)
< β, β � 1/3. (B22)

Combing these conditions, we can easily conclude that this
phase exists when μ > 1.1. Here, in the limiting case μ →
∞, the conditions of existence reduce to α < min{β, 1/3},
that for the model with two intersecting lanes and an infinite
number of particles [30].
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However, it is notable that not all combinations for asym-
metric phases exist in the proposed model. For instance,
suppose lane L exhibits high density in both segments and
lane T displays low density in both segments. The conditions
of existence for this HD:HD-LD:LD phase are given by

Lane L, β < {α∗, 1/2}, (B23)

Lane T, α∗ < {β, 1/2}, (B24)

which contradict each other. Similarly, other asymmetric
phases cease to exist because either the conditions disagree
or no values of (α, β ) satisfy these conditions.
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